Termodynamik Föreläsning 3
|
|
- Malin Ek
- för 1 år sedan
- Visningar:
Transkript
1 Termodynamik Föreläsning 3 Rena Ämnens Egenskaper Jens Fjelstad / 26 Innehåll Rena ämnens egenskaper: faser, fasövergångar, tillståndsdiagram, tillståndstabeller TFS 2:a upplagan (Çengel & Turner) TFS 3:e upplagan (Çengel, Turner & Cimbala) TD 6:e upplagan (Çengel & Boles) / 26
2 Förra veckan Grundbegrepp system; öppet, slutet, isolerat egenskap/tillståndsfunktion; T, P, E, V, m,... tillstånd process; kvasistatisk process, kretsprocess Temperatur T Tryck P Inre Energi U Värme Arbete; moving boundary work (PV arbete) Termodynamikens 1:a huvudsats (TD1) för slutna system U = Q W du = δq δw u = q w du = δq δw 3 / 26 Faser hos Rena/Enhetliga Ämnen Rent/Enhetligt ämne: ämne med välbestämd och enhetlig kemisk sammansättning inkluderar t.ex. blandning av vatten i ångform och vätskeform inluderar ej blandning av luft i gas och vätskeform Fas: tillstånd med karakteristiskt mått av ordning mellan molekyler (alt. karakteristisk bindning mellan molekyler) grafit & diamant: två olika (fasta) faser hos kol vattenånga, flytande vatten: två olika faser hos H 2 O 4 / 26
3 Faser forts. styrkan hos intermolekylära krafter/ ordning a) Fast fas (solid): atomer/molekyler på relativt fixa platser, inkompressibelt, fix form och storlek b) Flytande fas (liquid): molekyler starkt bundna till varandra, men inte i fixa relativa positioner, inkompressibelt, ej fix form c) Gas (ånga) (gas/vapor): molekyler svagt bundna, fri relativ rörelse, kompressibelt, varken fix form eller storlek 5 / 26 Fasomvandlingar Ex: vattenkokning vid konstant tryck 1 fas 1 fas värm trycket P hålls konstant, specifika volymen v förändras (ökar) långsamt värm vid trycket 1atm och temperaturen 20 C befinner sig vatten i flytande fas, och är inte nära att börja förångas Underkyld vätska Compressed liquid vid trycket 1atm och temperaturen 100 C är vattnet fortfarande flytande, men på gränsen att börja förångas Mättad vätska Saturated liquid 6 / 26
4 kokning vid konstant tryckt forts. 2 faser 1 fas värm värm tryck och temperatur förändras ej, all värme går åt till att omvandla vätska till gas, volymen ökar märkbart med mängden ånga värm en del av vätskan har förångats, en del är fortfarande flytande Mättad blandning Saturated liquid vapor mixture all vätska har förångats, ångan befinner sig på gränsen till att kondensera Mättad ånga Saturated vapor 7 / 26 kokning vid konstant tryck forts. 1 fas värm vid fortsatt värmning hålls trycket konstant, temperaturen ökar, och volymen ökar (snabbare än vid upphettning av vätska) hela systemet är fortfarande i gasfas (ånga), och är inte nära att kondensera Överhettad ånga Superheated vapor 8 / 26
5 Kokning i Tillståndsdiagram (T v) 1 fas 2 faser 1 fas T v diagram över 1 atm, isobar inverterad process: kondensation vid konstant tryck, Q kond = Q förångn T sat (T ): 1atm (den temperatur vid vilken ämnet byter fas vid givet tryck) P sat (P T ): mättnadstryck vid T (det tryck vid vilket ämnet byter fas vid given temperatur) isobarer vid P 1 > 1atm, P 2 < 1atm 9 / 26 Kokning i Tillståndsdiagram (T v) 1 fas T sat 2 faser 1 fas T v diagram över 1 atm, isobar inverterad process: kondensation vid konstant tryck, Q kond = Q förångn T sat (T ): 1atm (den temperatur vid vilken ämnet byter fas vid givet tryck) P sat (P T ): mättnadstryck vid T (det tryck vid vilket ämnet byter fas vid given temperatur) isobarer vid P 1 > 1atm, P 2 < 1atm 9 / 26
6 Kokning i Tillståndsdiagram (T v) P 1 P 2 T v diagram över 1 atm, isobar inverterad process: kondensation vid konstant tryck, Q kond = Q förångn T sat (T ): 1atm (den temperatur vid vilken ämnet byter fas vid givet tryck) P sat (P T ): mättnadstryck vid T (det tryck vid vilket ämnet byter fas vid given temperatur) isobarer vid P 1 > 1atm, P 2 < 1atm 9 / 26 Mer om T sat och P sat Mättnadskurva P sat = f (T sat ) tryck och temperatur är inte oberoende egenskaper under en fasomvandling 1atm koka genom att sänka trycket 10 / 26
7 Latent Värme Latent värme: mängden värme som absorberas eller frigörs vid en fullständig fasomvandling Ångbildningsvärme (latent heat of vaporization): mängden värme som absorberas under en förångningsprocess, ekvivalent mängden värme som frigörs under en kondensationsprocess ångbildningsvärmet för vatten vid 1 atm: 2256,5kJ/kg Smältvärme (latent heat of fusion): mängden värme som absorberas under en smältprocess, ekvivalent mängden värme som frigörs under en frysprocess (stelningsprocess) smältvärmet för vatten vid 1 atm: 333,7kJ/kg Tryck och temperaturberoende 11 / 26 Tillämpningar och Konsekvenser Vakuumkylning & vakuumfrysning Frystorkning (sublimering: fasövergång Fast Gas)... Flytande Kväve = 196 C sluten testkammare nedsänkt i flytande kväve kvävet i termos med liten öppning ut all värme testkammaren absorberar från omgivningen går åt att förånga kväve, temperaturen är konstant T sat 12 / 26
8 Tillståndsdiagram Kritisk Punkt Vid något tryck får isobaren en terasspunkt (inflektionspunkt): Kritiska punkten (critical point) Ett tillstånd: Tcr, P cr, v cr,... För vatten: T cr = 373,95 C P cr = 22,06MPa v cr = 0,003106m 3 /kg Ämnesspecifik egenskap I kritiska punkten sammanfaller två faser (här: mättad vätska och mättad ånga) 13 / 26 Kritisk Punkt forts. En kritisk punkt är förknippad med väldigt viktiga, speciella och intressanta fenomen Stor del av forskningen i statistisk fysik (och därmed fasta tillståndets fysik, kemi, etc. etc) direkt relaterad till kritiska fenomen Finns för många typer av fasövergångar, i många system Vatten visar s.k. kritisk opalescence vid kritiska punkten Filmklipp: kritisk opalescence i metanol cyclohexan 14 / 26
9 Tillståndsdiagram Tv forts. överhettad ånga underkyld vätska mättad blandning, tvåfasområde 15 / 26 Tillståndsdiagram Pv överhettad ånga underkyld vätska mättad blandning, tvåfasområde 16 / 26
10 Tillståndsdiagram Inklusive Fast Fas Pv diagram: ämne som krymper vid stelning (frysning) Pv diagram: ämne som expanderar vid stelning (frysning) Trippellinje: serie tillstånd med 3 faser (fast, vätska, ånga) fix temperatur Ttp fixt tryck Ptp Trippelpunkt: Ttp, P tp Vatten: Ttp = 0,01 C, P tp = 0,6117kPa 17 / 26 Fasdiagram Sublimering: direkt övergång Fast Gas Pressure solid phase expanderar critical pressure Pcr krymper compressible liquid liquid phase supercritical fluid critical point ex: kolsyreis i rumstemp. & atmosfärstryck Ptp triple point superheated vapour deposition sublimering Ttp gaseous phase critical temperature Tcr Temperature 18 / 26
11 Fasdiagram Vatten många fasta faser! 19 / 26 P v T yta ämne som krymper vid frysning P v T yta ämne som expanderar vid frysning 20 / 26
12 Entalpi H Entalpi: H=U+PV (kj) Specifik entalpi: h = u + Pv (kj/kg) Används ofta för öppna system 21 / 26 Termodynamiska Tabeller Tillståndspostulatet: tillståndet fullständigt bestämt av två oberoende intensiva egenskaper Via tabeller kan vi få värdet på alla egenskaper om vi känner värdet på två oberoende Vissa egenskaper ej direkt mätbara Resultat av mätningar och beräkningar Finns i Appendix i boken (alla versioner och upplagor) vatten kylmedel 134a Referenstillstånd vatten: mättad vätska vid T = 0,01 C u = s = 0 Referenstillstånd 134a: mättad vätska vid T = 40 C 22 / 26 h = s = 0
13 Mättad Ånga och Mättad Vätska Temperaturtabell (Table A 4, A 11 i TFS3) Trycktabell (Table A 5, A 12 i TFS3) y f : specifik egenskap y för mättad vätska y g : specifik egenskap y för mättad ånga y fg = y g y f y = u, v, h, s h fg = h g h f : förångningsentalpi = ångbildningsvärmet per massenhet för ämnet vid givet tryck och temperatur 23 / 26 Mättad Ånga och Mättad Vätska Temperaturtabell (Table A 4, A 11 i TFS3) Trycktabell (Table A 5, A 12 i TFS3) y f : specifik egenskap y för mättad vätska y g : specifik egenskap y för mättad ånga y fg = y g y f y = u, v, h, s h fg = h g h f : förångningsentalpi = ångbildningsvärmet per massenhet för ämnet vid givet tryck och temperatur TD1: u = q P v q = u + P v = u g u f + P(v g v f ) = (u g + Pv g ) (u f + Pv f ) = h g h f = h fg 23 / 26
14 Mättad Blandning Ånghalt (Quality): x = m ånga m total förhållandet mellan ångans massa och blandningens totala massa m total = m ånga + m vätska 0 x 1, x = 0: vätska, x = 1: ånga en ny oberoende intensiv egenskap (T, x) eller (P, x) oberoende egenskaper för mättad blandning Ångans resp. vätskans egenskaper är oförändrade av blandningen 24 / 26 Mättad Blandning Ånghalt (Quality): x = m ånga m total Ångans resp. vätskans egenskaper är oförändrade av blandningen tvåfassystem behandlas för enkelhets skull som homogen blandning egenskaperna för blandningen är då viktade medelvärden y avg y avg = y f + x y fg y f y avg y g y = v, u, h, s Förenkling: v avg, u avg, h avg, s avg v, u, h, s 24 / 26
15 Mättad Blandning Ånghalt (Quality): x = m ånga m total Ångans resp. vätskans egenskaper är oförändrade av blandningen tvåfassystem behandlas för enkelhets skull som homogen blandning egenskaperna för blandningen är då viktade medelvärden y avg y avg = y f + x y fg y f y avg y g y = v, u, h, s v = v f + x v fg u = u f + x u fg h = h f + x h fg s = s f + x s fg ånghalten beräknas enligt x = y y f y fg 24 / 26 Överhettad Ånga Tabell A 6, A 13 i TFS3 Typiska egenskaper jämfört med mättad ånga: lägre tryck vid given temperatur (P < P sat ) högre temperatur vid givet tryck (T > T sat ) större specifik volym vid givet P el. T (v > v g ) u > u g vid givet P el. T h > h g vid givet P el. T 25 / 26
16 Underkyld Vätska Tabell A 7 i TFS3 Typiska egenskaper jämfört med mättad ånga: högre tryck vid given temperatur (P > P sat ) lägre temperatur vid givet tryck (T < T sat ) mindre specifik volym vid givet P el. T (v < v g ) u < u g vid givet P el. T h < h g vid givet P el. T En underkyld vätska kan approximeras som mättad vätska vid samma temperatur y y h h + v (P P ) 26 / 26
Termodynamik FL3. Fasomvandlingsprocesser. FASER hos ENHETLIGA ÄMNEN. FASEGENSKAPER hos ENHETLIGA ÄMNEN. Exempel: Koka vatten under konstant tryck:
Termodynamik FL3 FASEGENSKAPER hos ENHETLIGA ÄMNEN FASER hos ENHETLIGA ÄMNEN Enhetligt ämne: ämne med välbestämd och enhetlig kemisk sammansättning. (även luft och vätske-gasblandningar kan betraktas som
Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning).
EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt
Termodynamik Föreläsning 4
Termodynamik Föreläsning 4 Ideala Gaser & Värmekapacitet Jens Fjelstad 2010 09 08 1 / 14 Innehåll Ideala gaser och värmekapacitet TFS 2:a upplagan (Çengel & Turner) 3.6 3.11 TFS 3:e upplagan (Çengel, Turner
Kap 3 egenskaper hos rena ämnen
Rena ämnen/substanser Kap 3 egenskaper hos rena ämnen Har fix kemisk sammansättning! Exempel: N 2, luft Även en fasblandning av ett rent ämne är ett rent ämne! Blandningar av flera substanser (t.ex. olja
EGENSKAPER FÖR ENHETLIGA ÄMNEN
EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt
Termodynamik Föreläsning 5
Termodynamik Föreläsning 5 Energibalans för Öppna System Jens Fjelstad 2010 09 09 1 / 19 Innehåll TFS 2:a upplagan (Çengel & Turner) 4.5 4.6 5.3 5.5 TFS 3:e upplagan (Çengel, Turner & Cimbala) 6.1 6.5
Repetition. Termodynamik handlar om energiomvandlingar
Repetition Termodynamik handlar om energiomvandlingar Termodynamikens första huvudsats: (Energiprincipen) Energi kan inte skapas och inte förstöras bara omvandlas från en form till en annan!! Termodynamikens
Termodynamik Föreläsning 7 Entropi
ermodynamik Föreläsning 7 Entropi Jens Fjelstad 200 09 5 / 2 Innehåll FS 2:a upplagan (Çengel & urner) 7. 7.9 FS 3:e upplagan (Çengel, urner & Cimbala) 8. 8.9 8.3 D 6:e upplagan (Çengel & Boles) 7. 7.9
Arbetet beror på vägen
VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:
Termodynamik FL4. 1:a HS ENERGIBALANS VÄRMEKAPACITET IDEALA GASER ENERGIBALANS FÖR SLUTNA SYSTEM
Termodynamik FL4 VÄRMEKAPACITET IDEALA GASER 1:a HS ENERGIBALANS ENERGIBALANS FÖR SLUTNA SYSTEM Energibalans när teckenkonventionen används: d.v.s. värme in och arbete ut är positiva; värme ut och arbete
FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω)
FUKTIG LUFT Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft Normalt är ω 1 (ω 0.02) ω = m v /m a m = m a (1 + ω) Luftkonditionering, luftbehandling:
Termodynamik Föreläsning 1
Termodynamik Föreläsning 1 Grundläggande Begrepp Jens Fjelstad 2010 08 30 1 / 35 Klassisk Termodynamik omvandling av energi mellan olika former via värme och arbete (mekaniskt, elektriskt,...) behandlar
Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.
Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,
Termodynamik (repetition mm)
0:e HS, 1:a HS, 2:a HS Termodynamik (repetition mm) Definition av processer, tillstånd, tillståndsstorheter mm Innehåll och överföring av energi 1: HS öppet system 1: HS slutet system Fö 11 (TMMI44) Fö
Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2
Exempeltentamen 2 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är
Ch. 2-1/2/4 Termodynamik C. Norberg, LTH
GRUNDLÄGGANDE BEGREPP System (slutet system) = en viss förutbestämd och identifierbar massa m. System Systemgräns Omgivning. Kontrollvolym (öppet system) = en volym som avgränsar ett visst område. Massa
Kap 4 energianalys av slutna system
Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =
Lite kinetisk gasteori
Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl
Termodynamik FL7 ENTROPI. Inequalities
Termodynamik FL7 ENTROPI Varför är den termiska verkningsgraden hos värmemaskiner begränsad? Varför uppstår den maximala verkningsgraden hos reversibla processer? Varför går en del av energin till spillvärme?
Föreläsning 2.3. Fysikaliska reaktioner. Kemi och biokemi för K, Kf och Bt S = k lnw
Kemi och biokemi för K, Kf och Bt 2012 N molekyler V Repetition Fö2.2 Entropi är ett mått på sannolikhet W i = 1 N S = k lnw Föreläsning 2.3 Fysikaliska reaktioner 2V DS = S f S i = Nkln2 Björn Åkerman
Termodynamik FL 2 ENERGIÖVERFÖRING VÄRME. Värme Arbete Massa (endast öppna system)
Termodynamik FL 2 ENERGIÖVERFÖRING, VÄRME, ARBETE, TERMODYNAMIKENS 1:A HUVUDSATS ENERGIBALANS FÖR SLUTNA SYSTEM ENERGIÖVERFÖRING Värme Arbete Massa (endast öppna system) Energiöverföring i ett slutet system
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats
Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats
Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats Jens Fjelstad 2010 09 14 1 / 30 Innehåll Termodynamikens 2:a huvudsats, värmemaskin, reversibilitet & irreversibilitet TFS 2:a upplagan (Çengel
Tentamen i teknisk termodynamik (1FA527)
Tentamen i teknisk termodynamik (1FA527) 2016-08-24 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook, miniräknare
Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.
Van der Waals gas Introduktion Idealgaslagen är praktisk i teorin men i praktiken är inga gaser idealgaser Den lättaste och vanligaste modellen för en reell gas är Van der Waals gas Van der Waals modell
Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00
Repetition F7 Intermolekylär växelverkan kortväga repulsion elektrostatisk växelverkan (attraktion och repulsion): jon-jon (långväga), jon-dipol, dipol-dipol medelvärdad attraktion (van der Waals): roterande
Vätskors volymökning
Värmelära Värme Värme är rörelse hos atomer och molekyler. Ju varmare ett föremål är desto kraftigare är atomernas eller molekylernas rörelse (tar mer utrymme). Fast Flytande Gas Atomerna har bestämda
Repetition F9. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00
Repetition F9 Process (reversibel, irreversibel) Entropi o statistisk termodynamik: S = k ln W o klassisk termodynamik: S = q rev / T o låg S: ordning, få mikrotillstånd o hög S: oordning, många mikrotillstånd
Uppvärmning, avsvalning och fasövergångar
Läs detta först: [version 141008] Denna text innehåller teori och korta instuderingsuppgifter som du ska lösa. Under varje uppgift finns ett horisontellt streck, och direkt nedanför strecket finns facit
Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft
Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik = läran om värmets natur och dess omvandling till andra energiformer (Nationalencyklopedin, band 18, Bra Böcker, Höganäs, 1995) 1
Vad är vatten? Ytspänning
Vad är vatten? Vatten är livsviktigt för att det ska finnas liv på jorden. I vatten finns något som kallas molekyler. Dessa molekyler går inte att se med ögat, utan måste ses med mikroskop. Molekylerna
Laborations-PM Termodynamik (KVM091) lp 1 2015/2016 version 3 (med sidhänvisningar även till inbunden upplaga 2)
Chalmers, Kemi och kemiteknik & Energi och milj 1 Laborations-PM Termodynamik (KVM091) lp 1 2015/2016 version 3 (med sidhänvisningar även till inbunden upplaga 2) Omfattning: Fyra obligatoriska laborationer
Värmelära. Värme 2013-02-22. Fast Flytande Gas. Atomerna har bestämda Atomerna rör sig ganska Atomerna rör sig helt
Värmelära Värme Värme är rörelse hos atomer och molekyler. Ju varmare ett föremål är desto kraftigare är atomernas eller molekylernas rörelse (tar mer utrymme). Fast Flytande Gas Atomerna har bestämda
Lärare: Jimmy Pettersson. 1. Materia
Lärare: Jimmy Pettersson 1. Materia Men först Vad är Kemi?! Vad är Kemi?! Kemi är: vetenskapen om materias egenskaper och sammansättning. Okej! Vad är materia då?! Materia är: allt som tar upp yta och
Repetition F10. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00
Repetition F10 Gibbs fri energi o G = H TS (definition) o En naturlig funktion av P och T Konstant P och T (andra huvudsatsen) o G = H T S 0 G < 0: spontan process, irreversibel G = 0: jämvikt, reversibel
Motorer och kylskåp. Repetition: De tre tillstånden. Värmeöverföring. Fysiken bakom motorer och kylskåp - Termodynamik. Värmeöverföring genom ledning
Motorer och kylskåp Repetition: De tre tillstånden Gas Vätska Solid http://www.aircraftbanking.com/ http://sv.wikipedia.org Föreläsning 3/3, 2010 Plasma det fjärde tillståndet McMurry Chemistry, http://wps.prenhall.com
Temperatur T 1K (Kelvin)
Temperatur T 1K (Kelvin) Makroskopiskt: mäts med termometer (t.ex. volymutvidgning av vätska) Mikroskopiskt: molekylers genomsnittliga kinetiska energi Temperaturskalor Celsius 1 o C: vattens fryspunkt
Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18
Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
7. Inre energi, termodynamikens huvudsatser
7. Inre energi, termodynamikens huvudsatser Sedan 1800 talet har man forskat i hur energi kan överföras och omvandlas så effektivt som möjligt. Denna forskning har resulterat i ett antal begrepp som bör
Föreläsning i termodynamik 11 oktober 2011 Lars Nilsson
Ångkraftsprocessen (Rankinecykeln) Föreläsning i termodynamik 11 oktober 2011 Lars Nilsson Ångkraftsprocessens roll i svensk elproduktion Ångtabellen: mättad vätska och mättad ånga efter tryck Ångtabellen:
2-52: Blodtrycket är övertryck (gage pressure).
Kortfattad ledning till vissa lektionsuppgifter Termodynamik, 4:e upplagan av kursboken 2-37: - - Kolvarna har cirkulära ytor i kontakt med vätskan. Kraftjämvikt måste råda 2-52: Blodtrycket är övertryck
Kapitel 6. Termokemi
Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 Energi och omvandling 6.2 Entalpi och kalorimetri 6.3 Hess lag 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage
Kapitel IV. Partikeltalet som termodynamisk variabel & faser
Kapitel IV Partikeltalet som termodynamisk variabel & faser Kemiska potentialen Kemiska potentialen I många system kan inte partikelantalet antas vara konstant så som vi hittills antagit Ett exempel är
Termodynamiska potentialer Hösten Assistent: Frans Graeffe
Räkneövning 3 Termodynamiska potentialer Hösten 206 Assistent: Frans Graeffe (03-) Concepts in Thermal Physics 2.6 (6 poäng) Visa att enpartielpartitionsfunktionen Z för en gas av väteatomer är approximativt
Kapitel 6. Termokemi. Kapaciteten att utföra arbete eller producera värme. Storhet: E = F s (kraft sträcka) = P t (effekt tid) Enhet: J = Nm = Ws
Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 6.2 6.3 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage Learning. All rights reserved 2 Energi Kapaciteten att
Kapitel 6. Termokemi
Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 Energi och omvandling 6.2 Entalpi och kalorimetri 6.3 Hess lag 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage
Laborations-PM Termodynamik (KVM091) lp /2015. Omfattning: Fyra obligatoriska laborationer ingår i kursen:
Chalmers, Kemi- och bioteknik & Energi och miljö 1 Laborations-PM Termodynamik (KVM091) lp 1 2014/2015 Omfattning: Fyra obligatoriska laborationer ingår i kursen: TD1: Jämvikt mellan ånga och vätska hos
Kap 6: Termokemi. Energi:
Kap 6: Termokemi Energi: Definition: Kapacitet att utföra arbete eller producera värme Termodynamikens första huvudsats: Energi är oförstörbar kan omvandlas från en form till en annan men kan ej förstöras.
Allmän kemi. Läromålen. Viktigt i kap 17. Kap 17 Termodynamik. Studenten skall efter att ha genomfört delkurs 1 kunna:
Allmän kemi Kap 17 Termodynamik Läromålen Studenten skall efter att ha genomfört delkurs 1 kunna: n - använda de termodynamiska begreppen entalpi, entropi och Gibbs fria energi samt redogöra för energiomvandlingar
Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare.
Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 5 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,
Repetition F11. Molär Gibbs fri energi, G m, som funktion av P o Vätska/fasta ämne G m G m (oberoende av P) o Ideal gas: P P. G m. + RT ln.
Repetition F11 Molär Gibbs fri energi, G m, som funktion av P o Vätska/fasta ämne G m G m (oberoende av P) o Ideal gas: G m = G m + RT ln P P Repetition F11 forts. Ångbildning o ΔG vap = ΔG P vap + RT
Omtentamen i teknisk termodynamik (1FA527) för F3,
Omtentamen i teknisk termodynamik (1FA527) för F3, 2012 04 13 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, miniräknare. Anvisningar:
Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14.
Tentamen i termisk energiteknik 5HP för ES3, 2009, 2009-10-19, kl 9-14. Namn:. Personnr: Markera vilka uppgifter som du gjort: ( ) Uppgift 1a (2p). ( ) Uppgift 1b (2p). ( ) Uppgift 2a (1p). ( ) Uppgift
Sortera på olika sätt
Material Sortera material Att sortera material innebär att vi delar i materialen i grupper utifrån deras egenskaper. Egenskaper berättar hur någonting är, t.ex. färg, form, storlek, naturligt eller konstgjort.
Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare.
Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 7 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,
Värmelära. Fysik åk 8
Värmelära Fysik åk 8 Fundera på det här! Varför kan man hålla i en grillpinne av trä men inte av järn? Varför spolar man syltburkar under varmvatten om de inte går att få upp? Varför hänger elledningar
Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.
Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära Tentamen Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära, miniräknare.
Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00
Repetition F8 System (isolerat, slutet, öppet) Första huvudsatsen U = 0 i isolerat system U = q + w i slutet system Tryck-volymarbete w = -P ex V vid konstant yttre tryck w = 0 vid expansion mot vakuum
OMÖJLIGA PROCESSER. 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0
OMÖJLIGA PROCESSER 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0 Q W; GÅR INTE! PMM1 bryter mot 1:a HS 1:a HS: Q in = W net,out ; OK 2:a HS: η th = W net,out /Q in < 1 η th = 1; GÅR INTE! PMM2 bryter mot
LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v
Fysikum FK4005 - Fristående kursprogram Laborationsinstruktion (1 april 2008) LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v Mål Denna laboration är uppdelad i två delar. I den första bestäms C p /C
a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt
Lösningsförslag till tentamen Energiteknik 060213 Uppg 1. BA Trycket i en luftfylld pistong-cylinder är från början 100 kpa och temperaturen är 27C. Volymen är 125 l. Pistongen, som har diametern 3 dm,
Linnéuniversitetet Institutionen för fysik och elektroteknik
Linnéuniversitetet Institutionen för fysik och elektroteknik Ht2015 Program: Naturvetenskapligt basår Kurs: Fysik Bas 1 delkurs 1 Laborationsinstruktion 1 Densitet Namn:... Lärare sign. :. Syfte: Träna
Vad är värme? Partiklar som rör sig i ett ämne I luft och vatten rör partiklar sig ganska fritt I fasta ämnen vibrerar de bara lite
Värme Fysik åk 7 Fundera på det här! Varför kan man hålla i en grillpinne av trä men inte av järn? Varför spolar man syltburkar under varmvatten om de inte går att få upp? Varför hänger elledningar på
ENERGI? Kylskåpet passar precis i rummets dörröppning. Ställ kylskåpet i öppningen
ENERGI? Energi kan varken skapas eller förstöras, kan endast omvandlas till andra energiformer. Betrakta ett välisolerat, tätslutande rum. I rummet står ett kylskåp med kylskåpsdörren öppen. Kylskåpet
Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd.
Övningsuppgifter termodynamik 1 1. 10,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Svar: Q = 2512 2516 kj beroende på metod 2. 5,0 kg H 2 O av 40 C skall värmas till 200
TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH
TERMODYNAMIK? Termodynamik är den vetenskap som behandlar värme och arbete samt de tillståndsförändringar som är förknippade med dessa energiutbyten. Centrala tillståndsstorheter är temperatur, inre energi,
Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002
UPPSALA UNIVERSITET Fysiska institutionen Sveinn Bjarman Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 Skrivtid: 9-14 Hjälpmedel: Räknedosa, Physics Handbook
Föreläsning 4. Koncentrationer, reaktionsformler, ämnens aggregationstillstånd och intermolekylära bindningar.
Föreläsning 4. Koncentrationer, reaktionsformler, ämnens aggregationstillstånd och intermolekylära bindningar. Koncentrationer i vätskelösningar. Kap. 12.2+3. Lösning = lösningsmedel + löst(a) ämne(n)
Innehåll. Energibalans och temperatur. Termer och begrepp. Mål. Hur mycket energi. Förbränning av fasta bränslen
Innehåll balans och temperatur Oorganisk Kemi I Föreläsning 4 14.4.2011 Förbränningsvärme balans Värmeöverföring Temperaturer Termer och begrepp Standardbildningsentalpi Värmevärde Effektivt och kalorimetriskt
TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V
CHLMERS 1 (3) TENTMEN I TERMODYNMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V Hjälpmedel: Kursböckerna Elliott-Lira: Introductory Chemical Engineering Thermodynamics och P. tkins, L. Jones:
Tentamen i FTF140 Termodynamik och statistisk mekanik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,
HYDRAULIK Grundläggande ekvationer III
HYDRAULIK Grundläggande ekvationer III Rolf Larsson, Tekn Vattenresurslära För VVR145, 3 mars, 2014 NASA/ Astronaut Photography of Earth - Quick View VVR015 Hydraulik/ Grundläggande begrepp I 21 feb 2014
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats
Överhettad ånga, Table A-6 (2.5 MPa): T [ C] v [m 3 /kg] ? Linjär interpolation:
Exempel 1, Ch.3 Givet: H 2 O, P = 2.5 MPa = 2500 kpa, T = 265 C = 538.15 K. Sökt: v (volymitet). Table A-4: T = 265 C > T sat@2.5mpa = 223.95 C Table A-5: P = 2500 kpa < P sat@265 C = 5085.3 kpa Överhettad
Planering Fysik för V, ht-11, lp 2
Planering Fysik för V, ht-11, lp 2 Kurslitteratur: Häfte: Experimentell metodik, Kurslaboratoriet 2011, Fysik i vätskor och gaser, Göran Jönsson, Teach Support 2010 samt föreläsningsanteckningar i Ellära,
Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi
Entropi Är inte så enkelt Vi kan se på det på olika sätt (mikroskopiskt, makroskopiskt, utifrån teknisk design). Det intressanta är förändringen i entropi ΔS. Men det finns en nollpunkt för entropi termodynamikens
Material föreläsning 8. HT2 7,5 p halvfart Janne Färm
Material föreläsning 8 HT2 7,5 p halvfart Janne Färm Tisdag 15:e December 10:15 16:00 PPU105 Material Förmiddagens agenda Mikrostrukturen i material, fasdiagram ch 19.1-4 GLU 2 Paus Processning av metaller
Föreläsning i termodynamik 28 september 2011 Lars Nilsson
Arbetsgivande gascykler Föreläsning i termodynamik 28 september 211 Lars Nilsson Tryck volym diagram P V diagram Isobar process (konstant tryck)?? Isokor process (konstant volym)?? Isoterm process (konstant
Bindelinjer gäller för bestämd temp. Hävstångsregeln gäller.
5.7 Temperatur sammansättningsdiagram. Fixera p i stället för T. Diagram som fig. 5.36. Om p A * > p B * blir T A * < T B *. (g) är övre enfasområdet, (l) undre. Bindelinjer gäller för bestämd temp. Hävstångsregeln
Materiens tillstånd. Bohrs atommodell. Bohrs atommodell. Grundämnen. Idag kan vi se atomer. Atomer Materiens minsta byggstenar.
Materiens tillstånd Atomer Materiens minsta byggstenar Bilder från: http://www.qedata.se/js_ishotell-galleri.htm http://www.webkonzepte.de/ 24/2-2010 Bilder från: www.rock-on-rock-on.com www.konsthantverkarna.se
FÖR DE NATURVETENSKAPLIGA ÄMNENA BIOLOGI LÄRAN OM LIVET FYSIK DEN MATERIELLA VÄRLDENS VETENSKAP KEMI
ORDLISTA FÖR DE NATURVETENSKAPLIGA ÄMNENA BIOLOGI LÄRAN OM LIVET FYSIK DEN MATERIELLA VÄRLDENS VETENSKAP KEMI LÄRAN OM ÄMNENS UPPBYGGNAD OCH EGENSKAPER, OCH OM DERAS REAKTIONER MED VARANDRA NAMN: Johan
ENERGIPROCESSER, 15 Hp
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Mohsen Soleimani-Mohseni Robert Eklund Umeå 10/3 2012 ENERGIPROCESSER, 15 Hp Tid: 09.00-15.00 den 10/3-2012 Hjälpmedel: Alvarez Energiteknik del 1 och 2,
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Måndag den 4 januari 008, kl. 8.30-.30 i M-huset. Examinator:
Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2)
GÖTEBORGS UNIVERSITET INSTITUTIONEN FÖR KEMI Fysikalisk kemi KEM040 Laboration i fysikalisk kemi Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) ifylls
TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-01-13 kl. 14.00-18.00
CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2012-01-13 kl. 14.00-18.00
Intermolekylära krafter
Intermolekylära krafter Medicinsk Teknik KTH Biologisk kemi Vt 2012 Märit Karls Intermolekylära attraktioner Mål 5-6 i kap 5, 1 och 5! i kap 8, 1 i kap 9 Intermolekylära krafter Varför är is hårt? Varför
TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V
CHALMERS 1 () ermodynamik (KVM090) LÖSNINFÖRSLA ENAMEN I ERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V 1. I den här ugiften studerar vi en standard kylcykel, som är en del av en luftkonditioneringsanläggning.
Kap 5 mass- och energianalys av kontrollvolymer
Kapitel 4 handlade om slutna system! Nu: öppna system (): energi och massa kan röra sig över systemgränsen. Exempel: pumpar, munstycken, turbiner, kondensorer mm Konstantflödesmaskiner (steady-flow devices)
Linköpings tekniska högskola Exempeltentamen 1 IEI Mekanisk värmeteori och strömningslära. Exempeltentamen 1
Exempeltentamen 1 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är
Tentamen i Kemisk termodynamik kl 14-19
Tentamen i Kemisk termodynamik 2005-11-07 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
KVÄVETS ÅNGBILDNINGSVÄRME
LABORATION (2B1111) KVÄVETS ÅNGBILDNINGSVÄRME Thomas Claesson KTH, IMIT, Materialfysik E-post: tcl@kth.se 060321/tc MÅLSÄTTNING 1. att bestämma ångbildningsvärmet, ångbildningsentalpin, experimentellt
T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på?
TENTAMEN I FYSIK FÖR V1, 11 JANUARI 2011 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad
Från Experimentskafferiet, Sigtuna kommun. Av Ludvig Wellander.
Denna undersökning bör endast genomföras i vuxet sällskap. Dessa risker finns: Glasflaskan som används utsätts för temperatur- och tryckförändringar, vilket gör att den kan spricka. Då finns en risk för
Teknisk termodynamik 5 hp
Teknisk termodynamik 5 hp Välkomna till teknisk termodynamik! Period 3, VT-2016 Cecilia Gustavsson Ralph Scheicher Federico Binda/Jacob Eriksson Sebastian Geroge/Sotirios Droulias examinator och kursansvarig
Teknisk termodynamik repetition
Först något om enheter! Teknisk termodynamik repetition Kom ihåg att använda Kelvingrader för temperaturer! Enheter motsvarar vad som efterfrågas! Med konventionen specifika enheter liten bokstav: E Enhet
1. INLEDNING 2. TEORI. Arbete TD3 Temperaturberoendet för en vätskas ångtryck
Arbete TD3 Temperaturberoendet för en vätskas ångtryck 1. INLEDNING En vätskas ångtryck växer då vätskan värms upp och allt fler molekyler får en tillräckligt stor mängd kinetisk energi för att lösgöra
Materialfysik vt Fasta ämnens termodynamik 4.1 Fasdiagram
530117 Materialfysik vt 2007 4. Fasta ämnens termodynamik 4.1 Fasdiagram 4.1.4. Mer komplicerade tvåkomponentsfasdiagram: principer Vi såg alltså ovan hur det enklaste tänkbara två-komponentsystemet, den
Allmän kemi. Läromålen. Viktigt i kapitel 11. Kap 11 Intermolekylära krafter. Studenten skall efter att ha genomfört delkurs 1 kunna:
Allmän kemi Kap 11 Intermolekylära krafter Läromålen Studenten skall efter att ha genomfört delkurs 1 kunna: n - redogöra för atomers och molekylers uppbyggnad och geometri på basal nivå samt beskriva
hur man beräknar längdutvidgningen på material hur man beräknar energiåtgången när man värmer, smälter eller förångar olika ämnen
Värmelära s.16 22 Efter detta arbetsområde förväntar jag mig att du kan berätta om de två temperaturskalorna Celsius och Kelvin beskriva på vilka tre sätt värmeenergi kan spridas och hur man kan motverka
Observera att uppgifterna inte är ordnade efter svårighetsgrad!
TENTAMEN I FYSIK FÖR V1, 14 DECEMBER 2010 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad