18 Eldorado 5 A Lärarbok Undervisning att skapa förutsättningar för elevers lärande

Storlek: px
Starta visningen från sidan:

Download "18 Eldorado 5 A Lärarbok Undervisning att skapa förutsättningar för elevers lärande"

Transkript

1 Undervisning att skapa förutsättningar för elevers lärande I Kommentarmaterialets inledning står att läsa: Avsikten med materialet är att ge en bredare och djupare förståelse för de urval och ställningstaganden som ligger bakom texterna i kursplanerna. (s 4) Eftersom ordet undervisning finns med i varje stycke efter syftestexten i kursplanen, förväntar vi oss att det i Kommentarmaterialet ska finnas ett förtydligande av vad undervisning i matematik kan innebära. Men det enda som står att läsa är: Syftestexten är formulerad så att det tydligt framgår vilket ansvar undervisningen har för att eleverna ska kunna utveckla de kunskaper och förmågor som anges.(s 4). Vad undervisning kan innebära har därför tolkats på många olika sätt av politiker, massmedia och lärare och just tolkningen att nu ska lärar en visa och tala om hur eleverna ska göra i matematik är inte ovanlig. En större tydlighet i Kommentar materialet angående detta hade varit en stor fördel för att undvika missförstånd. I t ex Finland är styr dokumenten tydligare. Där betonas betydelsen av hur lektioner planeras för att dels ge möjlighet till begrepps diskussioner i helklass, dels utgöra stöd och utmaningar för alla elever. Lite hjälp kan vi få på Skolverkets hemsida, där vi hittar texter och föreläsningar om bedömning. Här betonas sambandet mellan lärande, undervisning och bedömning och här finns många förslag på hur bedömning kan vara en ovärderlig hjälp vid lektionsplanering och undervisning. Formativ bedömning för att utveckla undervisningen Det främsta syftet med formativ bedömning är att utveckla elevernas lärande, vilket kan ske genom individuell formativ bedömning, men även genom att förändra undervisningen. Här tar vi upp exempel på formativ bedömning som hjälp för att utveckla undervisningen, ett stöd för att kontinuerligt följa upp undervisningens effekter och anpassa den till elevernas lärande. Det betyder att läraren inte kan detaljplanera flera lektioner, inte ens en enda lektion. Utifrån bedömningen av hur undervisningen fungerar måste läraren kontinuerligt fatta beslut om fortsättningen. I Skolverkets stödmaterial Kunskapsbedömning i skolan praxis, begrepp, problem och möjligheter beskrivs fem nyckelstrategier i den formativa bedömningsprocessen, där eleven, klasskamraterna och läraren deltar. Bedömningen har syftet att stödja lärandet vid de tre centrala frågorna: Vad är målet? Var befinner sig eleven nu? Vad ska eleven eller läraren göra för att eleven ska nå målet i form av kunskapskrav? (s 24) De fem strategierna är: 1. Vad ska eleverna lära sig? 2. Vad kan de redan? 3. Hur ska eleven göra för att komma vidare? 4. Hur kan eleverna stödja varandras lärande? 5. Hur kan eleven bedöma och styra det egna lärandet? Här följer strategierna med tillhörande kommentarer, samt förslag på hur Eldorado kan vara en hjälp för elever och lärare vid de olika strategierna. (Dessa förslag är kursiverade.) Vad ska eleverna lära sig och vad kan de redan? En formativ bedömning börjar redan vid planeringen av undervisningen. Under rubriken Syfte i kursplanen beskrivs de olika förmågor som eleverna ska utveckla och som utgör mål för undervisningen. Arbetet med det centrala innehållet ska resultera i att dessa kunskapskrav uppnås och det är alltså genom att tillämpa förmågorna på det centrala innehållet som förmågorna vidareutvecklas. Men det behövs även mer kortsiktiga mål, t ex för ett matematiskt område eller delmål för en lektion. Det räcker inte med att läraren sätter upp sina mål, utan även eleverna måste vara medvetna om målen och om vad de ska lära sig. För effektiva lärandesituationer krävs att målen är tydliga och att de överensstämmer för både lärare och elever. Vi har valt att slå samman de två första strategierna eftersom de nya delmålen ska kopplas till elevernas tidigare kunskaper, så att eleverna ser hur detta hör ihop. Eleverna ska också kunna avgöra var de befinner sig i förhållande till de nya målen. Eleverna blir väl förtrogna med syftet med sitt lärande i matematik om klassen med hjälp av exemplen på s 159 i var och en av Eldorados grundböcker diskuterar kursplanens förmågor och att det är dessa förmågor som ska bedömas. 18 Eldorado 5 A Lärarbok Undervisning att skapa förutsättningar för elevers lärande

2 Terminsplanering: I brevet på s 4 5 i grundboken kan ni diskutera de nya momenten och hur dessa kan pusslas ihop med tidigare kunskaper. Innehållet i de fyra kapitlen finns i innehållsförteckningen på s 3. Områdesplanering: Varje kapitel i Eldorado innehåller 3 4 områden, vilka presenteras i bild och text på respektive introuppslag, t ex: Numeriska och algebraiska uttryck, Likheter ekvationer och Mönster. I god tid innan det nya kapitlet introduceras gör eleverna fördiagnosen som alltid finns i föregående kapitel. Det ger dig värdefull information inför planeringen av de nya områdena, som t ex på vilken nivå du kan starta eller om några elever kanske först behöver hjälp med vissa förkunskaper, så att de får möjlighet att lyckas tillsammans med kamraterna. I inledningen till varje område finns här i lärarboken en presentation av de mål i kursplanen och de delar i kommentarmaterialets förtydligande som är aktuella, samt målen för området och en beskrivning av det matematiska innehållet i området. Där står även vilken kvalitet som krävs på kunskaperna för att de ska hålla för fortsatt lärande, lite om historisk utveckling, samt om vanliga missuppfattningar att se upp med. Till de olika introsidorna i grundboken finns här i lärarboken förslag på diskussionsfrågor för att elever och lärare ska reflektera över och samtala om vad de nya momenten kan innebära, vad de redan kan och hur det nya kan kopplas till tidigare kunskaper. Till varje område finns en eller två sidor med rubriken Utforska. Här får eleverna parvis eller i mindre grupper möta och tillsammans reflektera över aktiviteter och frågeställningar som tar upp delar av det nya och synliggör vanliga missuppfattningar m m. Sedan följer den viktiga gemensamma uppföljningen där läraren lyssnar på elevernas begreppsförståelse för att kunna reda ut missuppfattningar och lyfta fram dels det nya (och vad det innebär att kunna det nya), dels hur det nya hör ihop med tidigare kunskaper. Eleverna får inte uppfatta det nya som olika lösryckta delar som de ska lära sig. Här har läraren en mycket viktig uppgift att få kugghjulen att gripa tag i varandra, vilket kräver goda ämneskunskaper. Varje nytt begrepp utgörs ofta av flera delbegrepp och dessa tas upp här i lärarboken till respektive sida, samt i översikten där kapitlet börjar. I elevernas grundböcker tas delbegreppen upp i inforutorna. För att de ska bli tydliga för eleverna kan ni sätta upp en affisch på väggen i klassrummet där ni gemensamt skriver upp alla områden med klargörande exempel till varje, dvs viktiga delbegrepp. Låt gärna eleverna ha ett häfte där de gör motsvarande anteckningar. Dessa blir sedan en god hjälp för eleverna när de ska utvärdera sitt lärande. Hur ska eleven göra för att komma vidare? Eleverna måste vara aktiva i processen. Lärandet måste göras av dem, det kan inte göras åt dem. Här kan lärarens och kamraternas feed-back var en god hjälp för att föra lärandet framåt. Först måste läraren emellertid ta reda på hur eleverna tillgodogjort sig den nya kunskapen och om de använder den på ett korrekt sätt, så att undervisningen kontinuerligt kan justeras utifrån vad eleverna kan. I kapitelöversikten till respektive kapitel i Eldorado finns förslag på minutare som kan användas, t ex efter en genomgång. Detta för att avgöra när eleverna kan arbeta vidare på egen hand, eller kanske för att avgöra vilka elever som kan gå vidare, medan övriga arbetar lite mer med mattesamtal. Minutare kan även användas efter en stunds arbete för att se att arbetet fungerar bra för alla, eller vid slutet av en lektion för att avgöra hur nästa lektion kan starta. Eleverna svarar på de minutare som du tar upp genom att skriva på kort eller små whiteboardtavlor och du får en snabbdiagnos över elevernas aktuella kunskaper. För att få en ännu bättre uppfattning om elevernas kunskap kan du använda Mattelappar, se s 28. Mattelapparna finns som kopieringsunderlag, se K Elevernas svar på bl a minutare och mattelappar avgör hur fortsättningen av lektionen eller hur nästa lektion ska planeras. Kanske behöver alla elever reflektera över någon detalj och parvis diskutera innan ni gemensamt reder ut begreppen. Kanske är det bara några elever som är osäkra och du kan resonera vidare med den gruppen. Under rubrikerna Observera här i lärarboken finns också förslag på sådant som speciellt bör uppmärksammas när det gäller elevernas kunskaper. Genom kontinuerlig uppföljning kan undervisningen ständigt anpassas för att varje elevs lärande ska bli effektivt. Naturligtvis ger läraren även feedback där fokus ligger på hur eleven ska förbättra sig mot målen. Undervisning att skapa förutsättningar för elevers lärande Eldorado 5 A Lärarbok 19

3 Hur kan eleverna stödja varandras lärande? Olika gruppdiskussioner är exempel på att eleverna hjälper till med varandras lärande. Tillsammans ställer eleverna hypoteser och reflekterar över hypotesernas rimlighet. När de sedan redovisar sina förslag får alla möjlighet att fundera över olika alternativ som framkommit och ta ställning till vilka som fungerar och inte. I alla samtal tränar eleverna att använda och tolka det matematiska språket. Att denna kommunikation är viktig framgår tydligt i kursplanens förmågor. I Eldorado finns aktiviteter och uppgifter som engagerar och utmanar eleverna och som stimulerar till matte diskussioner, t ex på sidorna Utforska och Kul med matte. I lärar boken finns såväl öppna som slutna frågor att ställa kring specifika begrepp och som utmanar elevernas kunnande. Här trän ar eleverna att kommunicera matematik. Hur kan eleven bedöma och styra det egna lärandet? Elevens förmåga att ta ansvar för sitt lärande kan stärkas genom att eleven ges möjlighet att bedöma sitt arbete och sina kunskaper. Det innebär att eleverna måste känna till målen och kunskapskraven och vad olika kvaliteter innebär. Här måste skolan gå varligt fram och ställa olika krav på olika elever och naturligtvis inte lägga över hela ansvaret på eleverna. Men att succesivt träna sig i att se sitt eget kunnande underlättar fortsatt lärande. På sidan Utvärdering i Eldorado ska eleverna utvärdera vad de lärt sig i kapitlet. Först får de därför möta några uppgifter som hör till kapitlets områden. Uppgifterna har alltid följande upplägg: Rätt och fel? Här ska eleverna skriva om respektive påstående är rätt eller fel, samt kunna motivera sina val. 1 X 2. Här ska de välja rätt alternativ som svar. Läraren kan ställa frågor som t ex Varför passar inte alternativ X här? Kan du? Här ska eleverna lösa en uppgift, samt markera på vilken nivå de klarar att lösa uppgiften. Om de endast kan lösa uppgiften skriver de siffran 1. Om de även kan förklara sin lösning skriver de 2. Om de dessutom skulle kunna förklara uppgiften för någon som inte kan, så skriver de siffran 3. Här kan du se hur de klarat uppgifterna, men även hur säkra de är på sin kunskap. Matematiken i kapitlet. Här skriver eleven säker (s), ganska säker (gs) eller osäker (o) till de olika delmålen i kapitlet. Resonera gärna först om delmålen, vad de innebär och hur man måste kunna dem och använd då affischen på väggen och elevernas egna anteckningshäften om de har skrivit i sådana. När eleverna gör fördiagnosen inför nästa kapitel märk er de hur väl de behärska tidigare inlärd kunskap och de blir medvetna om att denna nu ligger till grund för det fortsatta lärandet. På den andra repetitionssidan, med kolumntiteln Kan du? kan eleverna också bedöma hur de klarar sådant som de lärt sig tidigare och de blir medvetna om att inget får glömmas bort, utan att kunskap måste hållas vid liv. Vissa saker kanske de upplever att de bör färdighetsträna mer och repetera lite då och då för att inte glömma. På kopieringsunderlagen med läxor, se K 44 57, finns en ruta till varje uppgift där eleverna skriver s, gs eller o som ovan. Det ger även läraren information om vad eleverna anser sig kunna. Våga visa vad man kan och inte kan Elever som är vana vid formativ bedömning i klassrummet inser att om läraren ska kunna anpassa undervisningen till elevernas nivå, så måste de visa vad de kan och vad de inte riktigt förstått. Läraren skapar ett klassrumsklimat där felaktiga lösningar och missuppfattningar blir intressanta diskussionsämnen, som hjälp er alla elever framåt i sitt lärande. Eleverna blir även medvetna om att uppgifter kan lösas på olika sätt och på olika nivåer. Att t ex kunna rita hur mönstret för den tjugonde figuren ser ut ligger naturligtvis på en enklare nivå än att matematiskt kunna uttrycka det mönstret, liksom att pröva sig fram till en lösning ligger på en enklare nivå än att skriva en ekvation för att finna lösningen. Litteratur om formativ bedömning för lärande Den mesta litteraturen som behandlar formativ bedömning för lärande baseras på forskningsöversikten Inside the black box från år 1998, skriven av Black and Wiliams. Där beskrivs hur en formativ bedömning kan ge många positiva effekter för elevernas lärande och speciellt bra hade de svaga eleverna lyckats. Idéerna 20 Eldorado 5 A Lärarbok Undervisning att skapa förutsättningar för elevers lärande

4 prövades vid skolor i England och eftersom man då uppnådde mycket goda resultat har dessa idéer spridit sig till många länder. Ett par av häftena finns nu även översatta till svenska på Stockholms universitets förlag, nämligen: Mathematics inside the black box, Bedömning för lärande i matematikklassrummet, J. Hodgen och D. Wiliams Bedömning för lärande i årskurs F 5 Inne i the Primary Black Box, C. Harrison En hel del om formativ bedömning finns med i Skolverkets stödmaterial Kunskapsbedömning i skolan praxis, begrepp, problem och möjligheter och på Skolverkets hemsida finns dessutom filmer om bedömning för lärande och likvärdighet. Du kan även läsa artiklar i tidskriften Nämnaren och i ma/no-tidskriften Origo 2012:2. Den senare tar upp formativ bedömning i olika ämnen och har två artiklar om formativ matematikundervisning baserad på forskning vid Umeå universitet. Lärare som får det att fungera Det är inte helt enkelt att utveckla sin matematikundervisning och att hela tiden tänka på att anpassa den till den aktuella situationen. Ett gott råd enligt litteraturen är att ändra sitt förhållningssätt långsamt, genom att fokusera på en eller två idéer åt gången. Att stötta varandra genom regelbundna arbetslagsträffar varje månad och då gemensamt reflektera över varandras erfarenheter har visat sig ha goda effekter. Idéer i litteraturen Förläng väntetiden: Ge lite mer betänketid vid reflekterande frågor. Att utöka från det vanligaste, vilket är mindre än en sekund, till tre sekunder har ofta medfört att svaren blir längre, fler elever svarar och ett större urval av förklaringar ges. Eleverna ställer frågor: Låt eleverna ge förslag på frågor att ställa med Vad? Varför? och Hur? till olika begrepp och processer. Samtala om vilka frågor som ställer höga krav på kunskaper och förmågor. Grön, gul och röd: Vid genomgångar och vid eget arbete visar eleverna grönt om de förstår, gult om de är osäkra och rött om de inte förstår eller kan. En del har använt muggar i de tre färgerna medan andra valt att använda kort med tre färger att visa. Eleverna kan då vid en genomgång vända upp det röda kortet för att visa att de inte kan följa med länge eller vid individuellt arbete visa rött kort när de behöver hjälp. Elever hjälper varandra När elever ska hjälpa varandra blir det lätt att de ger tips om närmaste vägen till svaret, vilket egentligen inte är någon konstruktiv hjälp. Därför krävs att man tillsammans diskuterar vad hjälp till lärande innebär. Eleverna löser ju inte uppgifter för att hjälpa till att få fram ett rätt svar, för det finns ju redan i ett facit, utan för att träna processer, välja strategier och verktyg. Den som vill ha hjälp av en kamrat måste därför berätta var han eller hon kört fast och vad det är som är svårt att förstå. Då har kamraten möjlighet att resonera om uppgiften och hjälpa till att förklara problemet. Hjälp en kan då bli en förstärkning av lärandet, både för den som frågar och för den som hjälper till med förklaringen. Lärarbok 4 A Om du tidigare inte använt läromedlet Eldorado och därför inte läst Lärarbok 4 A, så läs nu s i den. Om lärarna på din skola inte redan diskuterat möjligheterna att pröva intensivsatsning och att låta elever få träna förkunskaper innan en genomgång i klassen, så ta upp det. Detta beskrivs på s 22 i Lärarbok 4 A. Vi måste samtala om hur vi kan använda timmar för specialundervisning och resurser på ett så effektivt sätt som möjligt. Inte räcka upp handen: Detta är delvis för att undvika att högpresterande elever svarar på nästan allt. Den som ska svara väljs slumpvis, läraren drar t ex en av glasspinnarna med elevernas namn i en burk. Men det har även visat sig att fler elever då bidrar med svar. Om en elev svarar Vet inte så säg Jag återkommer och ge eleven en ny möjlighet lite senare. Då måste eleven vara aktiv och följa med för att klara frågan när den återkommer senare. Undervisning att skapa förutsättningar för elevers lärande Eldorado 5 A Lärarbok 21

5 Varför är decimaltal svårt? I sista kapitlet i Eldorado 4 B arbetade eleverna med decimaltal med tiondelar och nu repeteras detta. Sedan fortsätter eleverna med hundradelar och tusendelar och ser hur systemet med decimaler kan generaliseras. Att förstå och kunna hantera decimaltal är en viktig kunskap, både inom aritmetik och inom mätning med enheter, varför det kan vara bra att som lärare påminna sig om didaktiska tankar kring detta. Det finns många orsaker till att elever tycker det är svårt att räkna med decimaltal och vi ska här belysa några av dem, även om en del togs upp i Lärarbok 4 B. Heltal och decimaler När eleverna möter decimaltal i åk 4 har de i 3 ½ år arbetat med heltal och bl a lärt sig att hantera dem vid olika räknesätt och att jämföra och storleksordna dem. Även om läraren poängterat att vid t ex 4 30 = 120 så kan man tänka 4 3 tiotal = 12 tiotal = 120, så finns det elever som skapat egna regler, som här t ex 4 3 och så nollan efter. Tyvärr blir alla uppgifter rätt även med den här egna regeln och vid multiplikation med 300 läggs i stället två nollor på. Problemet är emellertid att risken är stor att dessa elever gör likadant när de sedan möter decimaler, t ex 4 0,3 och felaktigt svarar 0,12. Därför är det viktigt att då och då låta eleverna beskriva räkneprocesserna, så att du upptäcker om de använder egna regler och glömmer vad som händer med de olika talsorterna. I tabellen nedan visas hur de egna reglerna (markerade med svart) fungerar vid heltal, men ställer till problem vid decimaler. Däremot fungerar de vedertagna, blåmarkerade metoderna, såväl vid heltal som vid decimaler. Detta bör synliggöras för eleverna. Vilken kvalitet som behövs på ett begrepp avgörs av hur det ska användas senare. Vid heltal hade den egna regeln fungerat, men som synes håller den inte vid decimaltal. På en minut kan man lära elever att vid multiplikation av heltal med, 0 och lägga på 1, 2 respektive 3 nollor. Alla uppgifter får rätta svar, men vad är den kunskapen värd när eleverna sedan möter decimaltal? För att eleverna ska förstå vad räkneoperation en verkligen innebär behövs undervisning med konkret arbete så att eleverna får flytta talens siffror i positionsrutor, får sätta ord på vad som händer, samt får möjlighet att utveckla inre bilder. Därefter kommer färdighetsträning, då eleverna jobbar med utvecklingsbara och effektiva tankeformer som håller för fortsatt lärande. Decimaltal kräver förståelse av positionssystemet Endast kunskapen om vilken siffra i ett tal som visar ental, tiotal eller hundratal räcker alltså inte som förkunskap när eleverna ska hantera decimaltal. De måste ha förstått positionssystemets uppbyggnad och hur växlingar mellan olika positioner/talsorter fungerar. Elever som inte har den kunskapen i åk 4 5 måste så fort som möjligt få hjälp att förstå detta och då rekommenderar vi intensivträning av innehållet i Grundbok 4 A, kapitel 1 och 2. Positionssystemet är ryggraden i aritmetiken och utan förståelse av det blir allt räknande svårt. HELTAL och en nolla efter ger tiotal + 8 tiotal = 15 tiotal = och en nolla efter ger tiotal 5 tiotal = 7 tiotal = Jämn högerkant Lika talsorter under varandra och en nolla ger tiotal = 12 tiotal = och en nolla ger Värdet av varje siffra blir gånger större, flytta en position åt vänster. Det ger Stryk en nolla vilket ger 85. Värdet av varje siffra blir gånger mindre, flytta en position åt höger. Det ger > 7 Ett tvåsiffrigt tal > ensiffrigt tal. 4 tiotal > 0 tiotal DECIMALTAL 0,70 + 0, och en nolla efter ger felaktigt 0, tiondelar + 8 tiondelar= 15 tiondelar = 1,5 1,20 0,50 En nolla efter fungerar ej. 12 tiondelar 5 tiondelar = 7 tiondelar = 0,7 12,3 + 0, Jämn högerkant blir fel. 12,3 0, Lika talsorter under varandra. 4 0,3 4 3 en nolla efter fungerar ej. 4 3 tiondelar = 12 tiondelar = 1,2 3,04 En nolla efter fungerar ej. Värdet av varje siffra blir gånger större, flytta en position till vänster. Inga decimaltecken flyttar sig. Det ger 30,4. 8,50 Att stryka en nolla fungerar ej. Värdet av varje siffra blir gånger mindre, flytta en position åt höger. Det ger 0,85. 0,45 0,7 Att ett tvåsiffrigt tal > ensiffrigt tal fungerar ej här. 4 tiondelar < 7 tiondelar 22 Eldorado 5 A Lärarbok Undervisning att skapa förutsättningar för elevers lärande

6 Positionssystemet eller mätning som utgångspunkt för decimaltal? Eftersom våra nuvarande mätenheter för längd, volym och massa är konstruerade utifrån vårt positionssystem (även kallat decimalsystem, då det bygger på tiobas) är det naturligt att först arbeta med decimalsystemet och sedan visa hur de olika mätenheterna fungerar i det systemet. TIOTUSEN TAL TUSEN TAL TAL TIOTAL ENTAL TION DEL, DEL TUSEN DEL 000 m m 0 m m 1 m 0,1 m 0,01 m 0,001 m km 1 mil mil kilo - meter km (hektometer) (dekameter) meter m decimeter dm centimeter dm milli - meter mm Utifrån dessa jämförelser kan man dra den slutsatsen att för att förstå enheter och enhetsbyten, så måste man ha förstått decimalsystemet. Att sedan arbeta med mätning och enheter ger dels viktig vardagsanknytning av decimalsystemet, dels bra färdighetsträning. Det är inte konstigt att många elever tycker att enhetsbyten är svårt. Det måste vara svårt för elever som inte arbetat med decimalsystemet att försöka förstå detta utifrån arbete med enheter, där siffrorna står för olika enheter, som t ex i mätvärdena: 1,4 m 1,4 dm 1,4 cm 1,4 mm 1,4 l 1,4 kg. Decimaler kräver förståelse av bråk En siffras värde blir tio gånger större för varje position/ talsortsruta som den flyttas åt vänster. Flyttas siffran åt höger så blir värdet i stället tio gånger mindre för varje position. Vad händer då när entalssiffran 1 flyttas en position åt höger? Eftersom värdet ska bli tio gånger mindre blir värdet av siffran 1 nu en tiondel 1, vilket då skrivs 0,1 som decimaltal. TUSEN TAL TAL TIOTAL ENTAL TION DEL, DEL TUSEN DEL Innan eleverna möter decimaltal med tiondelar bör de därför ha arbetat med bråk och då speciellt tiondelar och växlingar mellan bråkform och blandad form, som t ex 13 = 1 3. På motsvarande sätt behövs arbete med bråk och hundradelar innan eleverna arbetar med decimaltal och hundradelar. Sambandet mellan bråktal och decimaltal kan sedan visas konkret på tallinjen. 5 = ,5 1,0 1,5 2,0 2,5 3,0 Tre komma fyra eller tre hela och fyra tiondelar? 5 2 Kan elevernas förståelse av decimaltal påverkas av hur lärare och elever läser ut talen? För oss som kan detta går det ju bra att använda den korta varianten tre komma fyra, men för den som ska lära sig heltal och tiondelar har det stor betydelse att få höra talets beståndsdelar och även själva läsa ut talet med alla talsorter. Laborativt arbete Decimalsystemet lämpar sig bra för laborativt arbete, där eleverna får möjlighet att sätta ord på begreppen och processerna. Då utvecklar de även inre mentala bild er för decimalsystemets talsortsrutor och kan senare koppla dem till enhetsrutorna för olika mätenheter. Färdighetsträning Olika spel och miniräknare är lämpliga att använda även för att träna decimalsystemet och i boken finns många förslag att pröva. Inga decimaltecken flyttar sig åt höger eller vänster Decimaltecknet visar var entalen står och där tar alltså heltalen slut. Till höger om decimaltecknet finns tiondelar, hundradelar osv. Vid multiplikation med t ex och 0 flyttas siffrorna en respektive två positioner åt vänster, eftersom deras värde ska bli tio respektive hundra gånger större. Siffrorna flyttas, men decimaltecknet står kvar. Lätt eller svårt Det är alltså många delbegrepp som ingår i förståelse av decimaltal och de elever som har fått möjlighet att förstå dessa har byggt upp ett system som håller för såväl stora som små tal. Men för elever som inte har systemet klart för sig, måste decimaltal i alla sammanhang upplevas svårt. Vi måste försöka ge alla elever möjlighet att förstå och kunna utnyttja decimalsystemet och en del elever behöver därför extra insatser för att lyckas. Tänk sedan vilken nytta eleverna har av att förstå decimalsystemet när de ska göra olika enhetsbyten. 2 3 Undervisning att skapa förutsättningar för elevers lärande Eldorado 5 A Lärarbok 23

Matematik Formula, kap 3 Tal och enheter

Matematik Formula, kap 3 Tal och enheter Matematik Formula, kap 3 Tal och enheter Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du blå

Läs mer

1Mål för kapitlet. Tal i decimalform. Förmågor. Ur det centrala innehållet 0? 1 15,9 19,58 158,9 15,89. Problemlösning. Metod

1Mål för kapitlet. Tal i decimalform. Förmågor. Ur det centrala innehållet 0? 1 15,9 19,58 158,9 15,89. Problemlösning. Metod Taluppfattning Kapitlets innehåll I kapitel möter eleverna decimaltal för första gången. Det första avsnittet handlar om vårt talsystem och att de hela tal eleverna tidigare jobbat med går att dela in

Läs mer

Skapa ett MatteEldorado i ÅK 1 3

Skapa ett MatteEldorado i ÅK 1 3 MatTE Skapa ett MatteEldorado i ÅK 1 3 Hej, Ingrid Margareta Vi vill nu berätta för dig om Eldorado läromedlet för FK-6 som vi hoppas ska bli ett tryggt och inspirerande verktyg för dig som pedagog, och

Läs mer

Decimaltal Kapitel 1 Decimaltal Borggården Diagnos Rustkammaren Tornet Sammanfattning Utmaningen Arbetsblad Läxboken 1:1 Läxa 1 1:2 1:3 Läxa 2 1:4

Decimaltal Kapitel 1 Decimaltal Borggården Diagnos Rustkammaren Tornet Sammanfattning Utmaningen Arbetsblad Läxboken 1:1 Läxa 1 1:2 1:3 Läxa 2 1:4 Kapitel 1 6A-boken inleds med ett kapitel om decimaltal. Kapitlet börjar med en repetition av tiondelar och hundradelar. Sedan följer en introduktion av tusendelar med utgångspunkt i hur vikt anges på

Läs mer

Matematik Formula, kap 3 Tal och enheter

Matematik Formula, kap 3 Tal och enheter Matematik Formula, kap 3 Tal och enheter Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du blå

Läs mer

KURSBESKRIVNING - MATEMATIK

KURSBESKRIVNING - MATEMATIK KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Jeff Linder, Daniel Spångberg, Emil Ohlander Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var

Läs mer

Att undervisa multiplikation och division med 10, 100 och 1000

Att undervisa multiplikation och division med 10, 100 och 1000 Att undervisa multiplikation och division med 10, 100 och 1000 Learning Study i praktiken Tina Edner & Tinna Lidgren Bakgrund Grundskolan Nya Elementar i Stockholm Analys av nationella prov och lärarnas

Läs mer

Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik.

Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik. Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Veckomatte åk 5 med 10 moment

Veckomatte åk 5 med 10 moment Veckomatte åk 5 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik 3 Grundläggande struktur i Veckomatte - Åk 5 4 Strategier för Veckomatte - Åk 5 5 Veckomatte

Läs mer

Taluppfattning åtgärda. Sammanfattning Västerås 3 och 4 februari 2009

Taluppfattning åtgärda. Sammanfattning Västerås 3 och 4 februari 2009 Taluppfattning åtgärda. Sammanfattning Västerås 3 och 4 februari 2009 Skriver först en liten sammanfattande inledning, tar upp de områden vi samtalade om och mycket av det vi tog upp hittar ni i Förstå

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Klara målen i 3:an - ta tillbaka undervisningen! Vad är matematik? Matematiska processer

Klara målen i 3:an - ta tillbaka undervisningen! Vad är matematik? Matematiska processer Klara målen i 3:an - ta tillbaka undervisningen! Dokumentation från Matematikbiennalen 2008, Ingrid Olsson En deltagare påpekade att rubriken kunde misstolkas innan föreläsningen. Av den hoppas jag att

Läs mer

LPP för årskurs 2, Matte V.46-51 HT12

LPP för årskurs 2, Matte V.46-51 HT12 LPP för årskurs 2, Matte V.46-51 HT12 Värdegrund och uppdrag Skolan ska vara öppen för skilda uppfattningar och uppmuntra att de förs fram. Den ska framhålla betydelsen av personliga ställningstaganden

Läs mer

Klara målen i 3:an - undervisa i matematik!

Klara målen i 3:an - undervisa i matematik! Klara målen i 3:an - undervisa i matematik! Att få chans att lyckas i matematik De flesta elever älskar matte under sitt första skolår. Allas vår önskan är att eleverna ska få en fortsatt intressant och

Läs mer

Positionssystemet och enheter

Positionssystemet och enheter strävorna 5A 5C Positionssystemet och enheter uttrycksformer tal geometri Avsikt och matematikinnehåll Aktiviteten utgår från en gammal och väl beprövad mall för att skapa struktur och ge förståelse för

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Veckomatte åk 4 med 10 moment

Veckomatte åk 4 med 10 moment Veckomatte åk 4 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik 3 Grundläggande struktur i Veckomatte - Åk 4 4 Veckomatte och det centrala innehållet i

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr och Favorit matematik 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med undervisningen

Läs mer

Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta

Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter

Läs mer

Pedagogisk planering i matematik X + 7 = 30 Myrstacken Äldre årskurs 5, Hällby skola

Pedagogisk planering i matematik X + 7 = 30 Myrstacken Äldre årskurs 5, Hällby skola Pedagogisk planering i matematik X + 7 = 30 Myrstacken Äldre årskurs 5, Hällby skola Gäller för första delen av VT15 Syfte Du ska genom undervisningen ges förutsättningar att utveckla din förmåga att:

Läs mer

Matematik Formula, kap 2 Längd och räknesätt

Matematik Formula, kap 2 Längd och räknesätt Matematik Formula, kap 2 Längd och räknesätt Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du

Läs mer

Prata matematik. Bengt Drath. Stöpenskolan i Skövde kommun

Prata matematik. Bengt Drath. Stöpenskolan i Skövde kommun Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte vara?

Läs mer

Pedagogisk planering i matematik

Pedagogisk planering i matematik Pedagogisk planering i matematik Myrstacken Äldre årskurs 6, Hällby skola L= mest för läraren E= viktigt för eleven Gäller för första delen av HT15 Förankring i kursplanen - L Syfte L Eleven ska genom

Läs mer

Bengt Drath. Högskolan i Skövde Stöpenskolan i Skövde kommun

Bengt Drath. Högskolan i Skövde Stöpenskolan i Skövde kommun Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande tikk Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte

Läs mer

Visible teaching visible learning. Formativ bedömning en väg till bättre lärande

Visible teaching visible learning. Formativ bedömning en väg till bättre lärande Bedömning Summativ Formativ bedömning en väg till bättre lärande Gunilla Olofsson Formativ ------------------------------------------------- Bedömning som en integrerad del av lärandet Allsidig bedömning

Läs mer

ARBETSPLAN MATEMATIK

ARBETSPLAN MATEMATIK ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera

Läs mer

Bedömningsexempel Matematik årskurs 3

Bedömningsexempel Matematik årskurs 3 Bedömningsexempel Matematik årskurs 3 Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter i årskurs 3, 2010... 5 Skriftliga räknemetoder... 5 Huvudräkning, multiplikation och division... 7 Likheter,

Läs mer

2-5 Decimaltal Namn: Inledning. Vad är ett decimaltal, och varför skall jag arbeta med dem?

2-5 Decimaltal Namn: Inledning. Vad är ett decimaltal, och varför skall jag arbeta med dem? 2-5 Decimaltal Namn: Inledning Tidigare har du jobbat en hel del med bråktal, lagt ihop bråk, tagit fram gemensamma nämnare mm. Bråktal var lite krångliga att arbeta med i och med att de hade en nämnare.

Läs mer

En begreppsbubbla är en bild med några tecknade personer som uttalar

En begreppsbubbla är en bild med några tecknade personer som uttalar Karin Andrén & Matilda Östman Begreppsbubblor Författarna har arbetat med en serie bilder som kallas begreppsbubblor och funnit att en genomtänkt undervisning med dessa kan synliggöra vanliga missförstånd.

Läs mer

2-1: Taltyper och tallinjen Namn:.

2-1: Taltyper och tallinjen Namn:. 2-1: Taltyper och tallinjen Namn:. Inledning I det här kapitlet skall du studera vad tal är för någonting och hur tal kan organiseras och sorteras efter storleksordning. Vad skall detta vara nödvändigt

Läs mer

1 Boris stegmätare visar att han har gått steg. Vad visar den när Boris har gått tio steg till? Fortsätt talmönstret.

1 Boris stegmätare visar att han har gått steg. Vad visar den när Boris har gått tio steg till? Fortsätt talmönstret. Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet ungefär i uppgift

Läs mer

Mål Blå kursen Röd kurs

Mål Blå kursen Röd kurs Tal Mål När eleverna har arbetat med det här kapitlet ska de förstå varför vi använder decimaler kunna storleksordna decimaltal förstå betydelsen av orden deci, centi och milli kunna räkna med decimaltal

Läs mer

Nya vägar till språk och kunskap i matematik och NO

Nya vägar till språk och kunskap i matematik och NO Nya vägar till språk och kunskap i matematik och NO Per Johansson Lärare i Ma/Idh/NO Handledare matematiklyftet Navets skola - Örebro kommun Navets språkklass Navet språkklass blogg Språk och kunskap

Läs mer

Sammanfattningar Matematikboken X

Sammanfattningar Matematikboken X Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för

Läs mer

Gemensam presentation av matematiskt område: Ekvationer Åldersgrupp: år 5

Gemensam presentation av matematiskt område: Ekvationer Åldersgrupp: år 5 Gemensam presentation av matematiskt område: Ekvationer Åldersgrupp: år 5 Mål för lektionen: Eleven skall laborativt kunna lösa en algebraisk ekvation med en obekant. Koppling till strävansmål: - Att eleven

Läs mer

Målet i sikte åk 1 3. Målet i sikte 1 3. kartläggning i matematik. Lgr11

Målet i sikte åk 1 3. Målet i sikte 1 3. kartläggning i matematik. Lgr11 Må Målet i sikte åk Målet i sikte Målet i sikte är ett kopieringsmaterial som kartlägger elevernas kunskaper i matematik. Utgångspunkt är det centrala innehållet och kunskapskraven i Lgr. För varje område

Läs mer

1 Aylas bil har gått 14 999 kilometer. Hur långt har den (2) gått när hon har kört en kilometer till? 15 000

1 Aylas bil har gått 14 999 kilometer. Hur långt har den (2) gått när hon har kört en kilometer till? 15 000 Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet ungefär i uppgift

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

På Nya Elementar, en grundskola i Stockholm, har vi matematiklärare

På Nya Elementar, en grundskola i Stockholm, har vi matematiklärare Tina Edner Multiplikation och division med 10, 100 och 1000 en Learning study i praktiken Denna artikel är en förkortad version av ett utvecklingsarbete som finns att läsa i sin helhet på Pedagog Stockholm.

Läs mer

Lokal kursplan i matematik för Stehags rektorsområde

Lokal kursplan i matematik för Stehags rektorsområde Lokal kursplan i matematik för Stehags rektorsområde MÅL Att eleverna ska få möjligheter att tillgodogöra sig de matematiska kunskaper som krävs för att uppnå kursplanens mål. Att eleverna ges en varierande

Läs mer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 3

Enhet / skola: Lindens skola i Lanna Åk: 3 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,

Läs mer

Tummen upp! Matte ÅK 6

Tummen upp! Matte ÅK 6 Tummen upp! Matte ÅK 6 Tummen upp! är ett häfte som kartlägger elevernas kunskaper i förhållande till kunskapskraven i Lgr 11. PROVLEKTION: RESONERA OCH KOMMUNICERA Provlektion Följande provlektion är

Läs mer

C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen

C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen Det här materialet är riktat till lärare och lärarlag och är ett stöd för skolans nulägesbeskrivning av matematikundervisning. Målet är

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

Arbetsblad 1:1. Poängkryss. Arbeta tillsammans > <

Arbetsblad 1:1. Poängkryss. Arbeta tillsammans > < Arbetsblad : Arbeta tillsammans > < Poängkryss Materiel: Spelplan, 3 4 tärningar och penna. Antal deltagare: 2 4 st Utförande: Spelare nr slår alla tärningarna samtidigt. De tal som tärningarna visar ska

Läs mer

Madeleine Zerne, rektor på Hagbyskolan

Madeleine Zerne, rektor på Hagbyskolan Madeleine Zerne, rektor på Hagbyskolan F-6 skola med 340 elever Rektorer på matematikkonferens Tre rektorer från Linköpings kommun, Gunilla Norden, Anna Samuelsson och Madeleine Zerne Rektorskonferens

Läs mer

Terminsplanering årskurs 6 Matematik Ärentunaskolan

Terminsplanering årskurs 6 Matematik Ärentunaskolan Inledning Terminsplanering årskurs 6 Matematik Ärentunaskolan På Ärentunaskolan arbetar vi med läromedlet MatteBorgen. Förutom uppgifter i boken arbetar vi med problemlösning och tränar olika strategier

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri Studieplan och bedömningsgrunder i Matematik för åk F-1 Stor-liten, framför - bakom, större än osv. kunna visa att du förstår ordens förhållande till varandra, tex. med hjälp av olika saker eller genom

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

ATT UNDERVISA MULTIPLIKATION OCH DIVISION MED 10, 100 OCH 1000

ATT UNDERVISA MULTIPLIKATION OCH DIVISION MED 10, 100 OCH 1000 EN UTVECKLINGSARTIKEL PUBLICERAD FÖR PEDAGOG STOCKHOLM ATT UNDERVISA MULTIPLIKATION OCH DIVISION MED 10, 100 OCH LEARNING STUDY I PRAKTIKEN Författare: Tina Edner E-post: tina.edner@stockholm.se Skola:

Läs mer

MATEMATIK. Åk 1 Åk 2. Naturliga tal Naturliga tal Större än, mindre än, lika med

MATEMATIK. Åk 1 Åk 2. Naturliga tal Naturliga tal Större än, mindre än, lika med MATEMATIK Åk 1 Åk 2 Naturliga tal 0-100 Naturliga tal 0-100 Talföljd Talföljd Tiokamrater Större än, mindre än, lika med Större än, mindre än, lika med Positionssystemet Sifferskrivning Talskrivning Add.

Läs mer

jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen

jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen Utveckling A Taluppfattning 0-100 Jag kan ramsräkna 0-100. Jag kan jämföra/storleksordna talen 0-100. Jag kan markera ut tal 0-100 på en tallinje. Jag förstår tiotal och ental för talen 0-100. B Taluppfattning

Läs mer

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje.

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje. En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 7 = + + 7 Siffran 6 betyder 6 tusental = 6 tusental hundratal 4 8 7 6 9 tiotal ental Siffran 9 betyder 9 tiotal

Läs mer

Bedömning. Formativ bedömning - en väg till bättre lärande. Formativ bedömning. Formativ bedömning. Visible teaching - visible learning

Bedömning. Formativ bedömning - en väg till bättre lärande. Formativ bedömning. Formativ bedömning. Visible teaching - visible learning Formativ bedömning - en väg till bättre lärande Inger Ridderlind Stina Hallén www.prim-gruppen.se Bedömning Bedömning av kunskap - summativ Bedömning för kunskap - formativ Från att mäta kunskap till pedagogisk

Läs mer

Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar

Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar Matematikplanering 7B Läsår 15/16 Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar på att bli upptäckt. Mönster, statistik, överlevnad, evolution, mopeder

Läs mer

2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter.

2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter. Bedömning för lärande i matematik Dagens innehåll Biennette i Malmö 15 mars 2015 Katarina Kjellström Olika bedömningsstöd i matematik Vad är syftet med bedömningsstödet för åk 1-9 Vilka har arbeta med

Läs mer

Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa

Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa Åsa Brorsson Algebra för lågstadiet I denna artikel beskriver en lärare hur hon arbetar med algebra redan i de tidiga skolåren. Det är ett arbete som hjälper elever att förstå likhetstecknets betydelse,

Läs mer

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.

Läs mer

Mattestegens matematik

Mattestegens matematik höst Decimaltal pengar kr 0 öre,0 kr Rita 0,0 kr på olika sätt. räkna,0,0 storleksordna decimaltal Sub för lite av två talsorter 7 00 0 tallinjer heltal 0 0 Add med tiotalsövergångar 0 7 00 0 Sub för lite

Läs mer

Positionssystemet och enheter

Positionssystemet och enheter Strävorna 3B Positionssystemet och enheter... inser värdet av och använder matematikens uttrycksformer.... olika metoder, måttsystem och mätinstrument för att jämföra, uppskatta och bestämma storleken

Läs mer

Centralt innehåll som vi arbetar med inom detta område:

Centralt innehåll som vi arbetar med inom detta område: BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp

Läs mer

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter: Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. 1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd

Läs mer

Bedömning för lärande. Sundsvall 2012-05-21

Bedömning för lärande. Sundsvall 2012-05-21 Bedömning för lärande Sundsvall 2012-05-21 Inbjudan: Nyckelstrategier: Skapa aktiviteter som synliggör lärandet, Att ge feedback som utvecklar lärandet. Anders Ullberg visar oss IT-baserade pedagogiska

Läs mer

NOKflex. Smartare matematikundervisning

NOKflex. Smartare matematikundervisning NOKflex Smartare matematikundervisning Med NOKflex får du tillgång till ett heltäckande interaktivt matematikläromedel som ger stöd både för elevens individuella lärande och för lärarledd undervisning.

Läs mer

Vad skall en matematiklärare kunna? Översikt. Styrdokument. Styrdokument. Problemlösning

Vad skall en matematiklärare kunna? Översikt. Styrdokument. Styrdokument. Problemlösning Vad skall en matematiklärare kunna? Andreas Ryve Stockholms universitet och Mälardalens Högskola. Översikt 1. Vad skall en elev kunna? 2. Matematik genom problemlösning ett exempel. 3. Skapa matematiska

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

matematiska förmågor Per Berggren och Maria Lindroth 2013-05-21

matematiska förmågor Per Berggren och Maria Lindroth 2013-05-21 Varierad undervisning och bedömning av matematiska förmågor Per Berggren och Maria Lindroth 2013-05-21 5x5-spel Vad är mönstret värt? Kul Matematik Per Berggren och Maria Lindroth Matematiska förmågor

Läs mer

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna

Läs mer

Kommentarmaterial, Skolverket 1997

Kommentarmaterial, Skolverket 1997 Att utveckla förstf rståelse för f r hela tal Kommentarmaterial, Skolverket 1997 Att lära sig matematik handlar om att se sammanhang och att kunna föra logiska resonemang genom att känna igen, granska

Läs mer

DIAMANT. NaTionella DIAgnoser i Matematik. Ett diagnosmaterial i matematik för skolåren årskurs F- 9. Anpassat till Lgr 11. Löwing januari 2013

DIAMANT. NaTionella DIAgnoser i Matematik. Ett diagnosmaterial i matematik för skolåren årskurs F- 9. Anpassat till Lgr 11. Löwing januari 2013 DIAMANT NaTionella DIAgnoser i Matematik Ett diagnosmaterial i matematik för skolåren årskurs F- 9 Anpassat till Lgr 11 Diamantmaterialets uppbyggnad 6 Områden 22 Delområden 127 Diagnoser Till varje Område

Läs mer

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2014-06-17

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2014-06-17 Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2014-06-17 Vad är mönstret värt? Lika eller olika Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika

Läs mer

Wiggo Kilborn. Om tal i bråkoch decimalform en röd tråd

Wiggo Kilborn. Om tal i bråkoch decimalform en röd tråd Wiggo Kilborn Om tal i bråkoch decimalform en röd tråd Tal i bråkoch decimalform en röd tråd Wiggo Kilborn Nationellt centrum för matematikutbildning Göteborgs universitet 20 Detta verk är licensierad

Läs mer

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll. ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,

Läs mer

Bedömning av matematiska förmågor. Per Berggren och Maria Lindroth 2012-01-26

Bedömning av matematiska förmågor. Per Berggren och Maria Lindroth 2012-01-26 Bedömning av matematiska förmågor Per Berggren och Maria Lindroth 2012-01-26 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla

Läs mer

Rapport av genomförd lesson study av en lektion med temat bråk i gymnasiets A-kurs

Rapport av genomförd lesson study av en lektion med temat bråk i gymnasiets A-kurs Rapport av genomförd lesson study av en lektion med temat bråk i gymnasiets A-kurs Klippa gräset Jenny klipper gräsmattan hos Bo på 2 timmar. Måns gör det på 4 timmar. Förberedelser Utifrån en diskussion

Läs mer

Boken Förstå och använda tal en handbok behandlar 22 områden av elevers

Boken Förstå och använda tal en handbok behandlar 22 områden av elevers Marie Mäkiranta Att diagnostisera elevers kunskaper och missuppfattningar Författaren har i ett fördjupningsarbete under en kurs i Lärarlyftet arbetat med boken Förstå och använda tal en handbok av Alistair

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå

Läs mer

Studieguide till Matematik för lärande och undervisning för F-3 och 4-6 del 1 ht 2015

Studieguide till Matematik för lärande och undervisning för F-3 och 4-6 del 1 ht 2015 Umeå Universitet NMD Naturvetenskapernas och Matematikens Didaktik Studieguide till Matematik för lärande och undervisning för F-3 och 4-6 del 1 ht 2015 1 Kursnamn: Matematik för lärande och undervisning

Läs mer

Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt

Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt Bedömning för lärande i matematik Mullsjö 16 juni 2014 Katarina Kjellström Inger Ridderlind Anette Skytt PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet

Läs mer

Nationella strävansmål i matematik. Skolan skall i sin undervisning i matematik sträva efter att eleven

Nationella strävansmål i matematik. Skolan skall i sin undervisning i matematik sträva efter att eleven Nationella strävansmål i matematik Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära

Läs mer

Matematiklyftet 2013/2014

Matematiklyftet 2013/2014 Matematiklyftet 2013/2014 Didaktiskt kontrakt Ruc 140522 AnnaLena Åberg 79 Matematiklärare 9 skolor? Elever 10 Rektorer 1 Förvaltningschef 2 Skolområdschefer 5 Matematikhandledare Hur ser ni på det didaktiska

Läs mer

Lokal studieplan matematik åk 1-3

Lokal studieplan matematik åk 1-3 Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen

Läs mer

Observationsprotokoll för lektionsbesök

Observationsprotokoll för lektionsbesök Observationsprotokoll för lektionsbesök Datum och tidpunkt för observationen: Observerad lärare: Skola: Antal närvarande elever i klassen/gruppen: Årskurs/årskurser: Lektionens ämne: Lektionens huvudsakliga

Läs mer

Tummen upp! Matte Kartläggning åk 5

Tummen upp! Matte Kartläggning åk 5 Tryck.nr 47-11064-3 4711064_t_upp_ma_5_omsl.indd Alla sidor 2014-01-27 12.29 TUMMEN UPP! Ç I TUMMEN UPP! MATTE KARTLÄGGNING ÅK 5 finns övningar som är direkt kopplade till kunskapskraven i åk 6. Kunskapskraven

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

1Mer om tal. Mål. Grunddel K 1

1Mer om tal. Mål. Grunddel K 1 Mer om tal Mål När eleverna har studerat det här kapitlet ska de: kunna multiplicera och dividera med positiva tal mi ndre än veta vad ett negativt tal är kunna addera och subtrahera negativa tal kunna

Läs mer

"Läsårs-LPP med kunskapskraven för matematik"

Läsårs-LPP med kunskapskraven för matematik "Läsårs-LPP med kunskapskraven för matematik" Grundskola 4 6 1 LPP för hela läsåret med tillhörande kunskapskrav i matrisform Skapad 2016-08-17 av Charlotte Steinwig i Lerbäckskolan 4-6, Lund Grundskolor

Läs mer

En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden.

En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden. En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden. Man ser en jämn ström av uppseendeväckande scenarier. Man undviker nog

Läs mer

Tummen upp! Matte Kartläggning åk 4

Tummen upp! Matte Kartläggning åk 4 Tryck.nr 47-11063-6 4711063_Omsl_T_Upp_Matte_4.indd Alla sidor 2014-01-27 07.32 TUMMEN UPP! Ç I TUMMEN UPP! MATTE KARTLÄGGNING ÅK 4 finns övningar som är direkt kopplade till kunskapskraven i åk 6. Kunskapskraven

Läs mer

Intervjuguide. Del 1. Att göra inför intervjun: Kort om intervjuguiden: a. Uppfattningar och intentioner. [8 min / 8 min]

Intervjuguide. Del 1. Att göra inför intervjun: Kort om intervjuguiden: a. Uppfattningar och intentioner. [8 min / 8 min] Intervjuguide Att göra inför intervjun: Tänk igenom den besökta lektionen så att du kan beskriva den kort och neutralt. Titta på den använda läroboken så att du kan diskutera den med läraren. Ha ett anteckningspapper

Läs mer

Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3

Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3 Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3 2 Innehåll Inledning... 5 Skriftliga räknemetoder... 7 Huvudräkning, multiplikation och division... 9 Huvudräkning,

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

Ekvationen. www.grul.se

Ekvationen. www.grul.se Ekvationen Ekvationen Speldesign: Niklas Lindblad Carl Heath Version 1.0 Tack till: Alexander Hallberg Tidsåtgång: Ca 50 minuter inklusive efterdiskussion Antal deltagare Fungerar bäst i grupper om 2-4

Läs mer

Del B, C och D samt gruppuppgifter

Del B, C och D samt gruppuppgifter Del A: Du och matematiken Information om Del A Beskrivning: I Del A ska eleverna bedöma hur säkra de känner sig i vissa situationer då de ska använda matematik. Det är en fördel att börja med Del A innan

Läs mer