Statistisk analys av komplexa data

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Statistisk analys av komplexa data"

Transkript

1 Statistisk analys av komplexa data Kategoriska data Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 18, 2016 Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

2 Översikt kategoriska data Kategoriska data oordnade data (nominal) ja eller nej, vilken yrkesgrupp en individ tillhör, en kunds val av tvättmedel ordnade data (ordinal) betyg, preferenser för olika frågor Korstabeller: goodness-of-t test för att testa om samband föreligger mellan variabler som antar olika kategorier Multinomialfördelning: generalisering av binomialfördelning Qualitative response (QR) models: beroende variabeln i en regressionsmodell antar diskreta utfall. Logit och probit modeller: binär beroende variabel Multinomial logit modell: beroende variabeln antar era oordnade kategorier Ordnad logit modell: beroende variabeln antar era ordnade kategorier Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

3 Oordnade data (nominal) Försäljning av ett samlarmynt på en auktion: försäljning sker om det högsta budet blir högre än säljarens hemliga reservationspris. Kodas med värdet 1 vid försäljning och 0 vid ingen försäljning. Frågeställning: hur påverkas sannolikheten för försäljning av specika auktionsegenskaper? Yrkesgrupp för ett urval av alumnistudenter vid LIU. Låt 0 vara revisor, 1 ingenjör, 2 advokat, 3 politiker, o.s.v. Frågeställning: vad är sannolikheten för ett visst antal LIU-studenter i respektive yrkesgrupp utifrån skattade proportioner av alumnistudenter i varje yrkesgrupp från tidigare undersökningar? Konsumenters val av tandkräm i en livsmedelsbutik en viss dag. Frågeställning: vad beror val av tandkräm på? Ålder? Kön? Utbildning? Lön? TV-tittande? Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

4 Ordnade data (ordinal) Inställning om en utbyggnad av kommunens tennishall. Låt 5 vara mycket positiv, 4 positiv, 3 neutral, 2 negativ, 1 mycket negativ. Inställningarna kan rankas gentemot varandra, men skillnaderna mellan nivåerna behöver inte vara samma. Frågeställning: kan grad av inställning förklaras med hjälp av andra variabler? Betyg på en kurs. Kategorierna VG, G och U kan kodas till numeriska värden och rankas gentemot varandra. Frågeställning: vad beror betyget på en kurs av? Tidigare kursbetyg? Förkunskaper? Intelligens? Ålder? Akademisk ålder? Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

5 Korstabeller - goodness-of-t test (nominal el. ordinal) Exempel: test av nollhypotes om inget samband mellan kön och ygplansreservationer. Kvinna Man TOTALT Resebyrå Internet Telefon TOTALT Urvalet om n st. individer har kors-klassicerats inom r = 3 st. olika kategorier av ygplansreservationer och k = 2 kategorier för kön. Under nollhypotesen förväntar vi oss inget samband mellan dessa egenskaper. Antalet förväntade observationer i varje cell (i, j) under nollhypotesen ges av E ij = R ik j n, där R i och K j är antalet observationer i respektive i:te rad och j:te kolumn. Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

6 Korstabeller - goodness-of-t test forts. Ett goodness-of-t test ger att nollhypotesen förkastas om r k i=1 j=1 (O ij E ij ) 2 E ij > χ 2 (r 1)(k 1),α där O ij är den observerade frekvensen i cell (i, j). Enligt data från tabellen förkastas nollhypotesen på alla rimliga signikansnivåer, eftersom χ 2 obs = 26.8 > χ2 (3 1)(2 1),0.005 = Alltså nns det stöd i data att kön och ygplansreservationer är associerade med varandra. Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

7 Multinomialfördelningen Generaliserar binomialfördelningen för 2 st. kategorier till k > 2 st. kategorier. Exempel: vad är sannolikheten för att (x 1, x 2,..., x k ) st. tvättmedelsförpackningar köps utav n = x 1 + x x k st. kunder i en butik en viss månad? Om man känner till sannolikheterna (p 1, p 2,..., p k ) för att en kund väljer respektive tvättmedel av totalt k st. olika tvättmedel, så ges sannolikheten från multinomialfördelningen som ( ) n P(x 1, x 2,..., x k ) = p x 1 1 x 1, x 2,..., x px 2 2 px k k k Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

8 Regressionsmodell för binära val Den beroende variabeln Y är binär, d.v.s. antingen är Y = 0 eller Y = 1. Vi vill förklara hur det förväntade värdet på Y beror på olika förklaringsvariabler i en regressionsmodell. Det förväntade värdet för Y är E [Y ] = P(Y = 1). Exempel: hur påverkas sannolikheten för försäljning, P(Y = 1), av specika auktionsegenskaper? Vi vill alltså förklara sannolikheten för den ena kategorin utifrån förklaringsvariablerna i regressionsmodellen. Detta kan uppnås med hjälp av olika funktioner, F (βx ), av parametervektorn β = (β 0, β 1, β 2,..., β k ) till vektorn med förklaringsvariabler x = (1, x 1, x 2,..., x k ), d.v.s. P(Y = 1) = F (βx ) Linjär regressionsmodell, F (βx ) = βx, är inte lämplig för detta ändamål, eftersom det måste gälla att 0 βx 1. Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

9 Probit och logit modellerna Normalfördelningen ger upphov till probit modellen där P(Y = 1) = βx φ(t) dt = Φ(βx ), där Φ( ) är fördelningsfunktionen för standard normalfördelningen. Logit modellen kommer från log-oddset ) som linjär ) funktion av förklaringsvariablerna, ln = ln = βx, vilket ger ( P(Y =1) P(Y =0) P(Y = 1) = ( P(Y =1) 1 P(Y =1) e βx = Λ(βx ), 1 + e βx där Λ( ) är den logistiska fördelningsfunktionen. Den logistiska fördelningsfunktionen liknar fördelningsfunktionen för standard normalfördelningen, förutom i svansarna nära sannolikheterna 0 och 1 där den är tjockare. Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

10 Marginella eekten från förklaringsvariablerna I logit modellen är den marginella eekten på log-oddset β j från respektive förklaringsvariabel x j, givet att (x 1,..., x j 1, x j+1,..., x k ) hålls konstanta. Marginell eekt på log-oddset är svårtolkat! Vad är den marginella eekten på P(Y = 1) = E [y]? Generellt, Logit modellen: E [y] x j = Probit modellen: E [y] x j = { dλ (βx } ) d (βx β j = ) E [y] x j = { df (βx } ) d (βx β j = f ( βx ) β j ) e βx ( 1 + e βx ) 2 β j = Λ(βx ) ( 1 Λ(βx ) ) β j { dφ (βx } ) d (βx β j = φ ( βx ) β j ) Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

11 Maximum likelihood estimation i binära valmodeller iid Y i Bernoulli (P(Yi = 1) = F (βx )). Likelihoodfunktionen ges som i [ P (Y 1 = y 1, Y 2 = y 2,..., Y n = y n ) = 1 F (βx )] i F (βx ) i y i =0 y i =1 = n i=1 Log Likelihoodfunktionen blir då ln L = [ F (βx i )] y i [ 1 F (βx i )] 1 y i n [ yi ln F (βx ) + i (1 y i) ln ( 1 F (βx ))] i i=1 Maximum likelihood skattningen fås genom att maximera log-likelihooden numeriskt. Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

12 Exempel: skattning av logit och probit modellerna Spector och Mazzeo (1980) analyserade eekten av en ny undervisningsmetod i nationalekonomi. Datamaterialet bestod av beroende variabel GRADE, en indikator med värdet 1 om studentens betyg förbättrades och 0 annars. förklaringsvariabel GPA: genomsnittsbetyg för varje individ i urvalet. förklaringsvariabel TUCE: poäng på ett test om förkunskaper. förklaringsvariabel PSI antar värdet 1 om den nya undervisningsmetoden användes och 0 annars. Skattning av probit och logit modellerna kan utföras m.h.a. statistiska programvaran R: mylogit<-glm(grade~gpa+tuce+psi,family="binomial") summary(mylogit) myp<-glm(grade~gpa+tuce+psi,family="binomial"(link="probit")) summary(myp) Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

13 Hypotestest av koecienter i probit och logit modellerna z-test för att testa om varje koecient för sig är skild från noll, koecienternas skattade standardavvikelser ges från asymptotiska kovariansmatrisen. Wald test kan användas för mera komplicerade restriktioner på formen H 0 : Rβ = q med Walds teststatistika (appr. χ 2 fördelad med antalet restriktioner som f.g. under nollhypotesen.) W = ( R ˆβ q ) { R ( S [ ˆβ ]) R } 1 ( R ˆβ q ), där S [ ˆβ ] är den skattade kovariansmatrisen för skattningarna ˆβ. Följande denitioner gäller för Walds teststatistika: r 10 r 11 r 1k β 0 q 1 r 20 r 21 r 2k R =......, β = β 1., q = q 2., r n0 r n1 r nk q n där r ij, q i är reella tal och n är antalet restriktioner under nollhypotesen. Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23 β k

14 Hypotestest av koecienter i probit och logit modellerna Detta ger att Rβ = q r 10 β 0 + r 11 β r 1k β k = q 1 r 20 β 0 + r 21 β r 2k β k = q r n0 β 0 + r n1 β r nk β k = q n Skattade koecienter och kovariansmatris för logit modellen i R: coef(mylogit), vcov(mylogit) Wald test för att både GPA och TUCE inte bidrar som förklaringsvariabler i logit modellen: wald.test(b = coef(mylogit), Sigma = vcov(mylogit), Terms = 2:3) Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

15 Hypotestest av koecienter i probit och logit modellerna Likelihood kvottest för allmänna restriktioner under nollhypotesen: LR = 2 [ ln ˆL r ln ˆL ], där ˆL r och ˆL är log-likelihood funktionerna utvärderade i de respektive restriktade (under nollhypotesen) och icke-restriktade skattade koecienterna. Sannolikhetsfördelningen för teststatistikan är appr. χ 2 fördelad med antalet restriktioner som f.g. under nollhypotesen. Likelihood kvottest för att både GPA och TUCE inte bidrar som förklaringsvariabler i logit modellen: modelunrestricted <- glm(grade~gpa+tuce+psi,family="binomial") modelrestricted <- glm(grade~psi,family="binomial") lrtest(modelunrestricted,modelrestricted) Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

16 Likheter/olikheter för Wald test och Likelihood kvottest Ger testen samma resultat? Varför eller varför inte? Dokumentation om detta nns här... Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

17 Goodness-of-t test i probit och logit modellerna Analogt till förklaringsgraden i den linjära regressionsmodellen är likelihood kvotindexet LRI = 1 ln L ln L 0, där ln L 0 = n [P ln P + (1 P) ln(1 P)] är log-likelihooden då alla lutningskoecienter är lika med noll och P är andelen 1:or eller 0:or för responsvariabeln. Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

18 Modeller för era val Ett beslut tas mellan er än två alternativ. Vi skiljer mellan ordnade och icke-ordnade beslutsalternativ. Exempel på icke-ordnade alternativ: transportsätt till jobbet, val av tvättmedel, val av kandidatprogram, o.s.v. Exempel på ordnade alternativ: inställningsfrågor i surveys, grad av anställning, nivå av försäkringsskydd Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

19 Multinomial logit modell Beräkning av multipla integraler för normalfördelningen innebär att en multinomial probit modell inte är särskilt lämplig. Multinomial logit modellen kan denieras som e β j x i P(Y i = j) = 1 + J, j = 1, 2,..., J, k=1 e β k x i där β j är vektorn av parametrar för kategori j av totalt J + 1 kategorier och x i är vektorn av förklaringsvariabler för en individ i. 1 P(Y i = 0) = 1 + J. k=1 e β k x i Koecienterna är svårtolkade! Marginella eekten från förklaringsvariablerna på sannolikheterna ges som [ ] P j = P j β j P k β k, x i J k=0 där β 0 = 0 och P j är proportionen individer i kategori j. Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

20 Log-odds kvoter och log likelihood Modellen ger log-odds kvoten för en individ i som [ ] Pij ln = x i (β j β k ) P ik Log-likelihooden för multinomiala logit modellen generaliserar den binomiala logit modellen: ln L = i J j=0 d ij ln P (Y i = j), där d ij = 1 om alternativ j väljs av individ i, och 0 annars. Test av alla lutningskoecienter lika med noll: ln L 0 = J n j ln P j. j=0 Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

21 Exempel: multinomial logistisk regression Studenter väljer ett av följande tre studieprogram: akademiskt (academic), allmänt (general) eller yrkesprogram (vocation). Deras val kan bero på skrivningspoäng på ett test (write) och deras socioekonomiska status (ses). I exemplet på har data samlats in för variablerna ovan. En multinomial logit modell ska anpassas till datamaterialet, se dokumentationen i exemplet. Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

22 Ordnad logit modell Multinomial logit och probit modellerna kan inte hantera ordnade data för den beroende variabeln. Linjär regression fungerar inte heller. Exempel: survey om inställning till en fråga där svaren rankas och kodas med 0, 1, 2, 3, 4. Linjär regression behandlar skillnaden mellan 4 och 3 p.s.s. som skillnaden mellan 3 och 2, även om värdena bara är en ranking mellan dem. Ordnad logit bygger på latent regression. Deniera y = βx + ɛ, där y är icke-observerat, men det gäller att y = 0 om y µ 1, = 1 om µ 1 < y µ 2, = 2 om µ 2 < y µ 3,. = J om µ J 1 y. Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

23 Ordnad logit modell Sannolikheterna för respektive kategori ges som P(y = 0) = P(y µ 1 ) = P(βx + ɛ µ 1 ) = Λ ( µ 1 βx ), P(y = 1) = Λ ( µ 2 βx ) Λ ( µ 1 βx ), P(y = 2) = Λ ( µ 3 βx ) Λ ( µ 2 βx ), där µ 1 < µ 2 < < µ J 1. P(y = J) = 1 Λ ( µ J 1 βx ), Log-likelihood funktionen är en generalisering av logit modellen och maximering av log-likelihood funktionen ger skattade värden på β, µ 1, µ 2,..., µ J 1. Bertil Wegmann (statistik, LiU) Kategoriska data November 18, / 23

Statistisk analys av komplexa data

Statistisk analys av komplexa data Statistisk analys av komplexa data Kategoriska data Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 28, 2012 Bertil Wegmann (statistik, LiU) Kategoriska data November 28, 2012

Läs mer

Statistisk analys av komplexa data

Statistisk analys av komplexa data Statistisk analys av komplexa data Kategoriska data Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 12, 2013 Bertil Wegmann (statistik, LiU) Kategoriska data November 12, 2013

Läs mer

Statistisk analys av komplexa data

Statistisk analys av komplexa data Statistisk analys av komplexa data Kategoriska data, ht 2017 Bertil Wegmann STIMA, IDA, Linköpings universitet Bertil Wegmann (STIMA, IDA, LiU) Kategoriska data 1 / 28 Översikt kategoriska data Kategoriska

Läs mer

Statistisk analys av komplexa data

Statistisk analys av komplexa data Statistisk analys av komplexa data Trunkerade data och Tobitregression Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 10, 2015 Bertil Wegmann (statistik, LiU) Trunkerade data

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar

Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar ICKE-LINJÄRA MODELLER Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Y i = 1 + 2 X 2i + u i Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar cov(x i,u i )

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013 Föreläsning 9 Logistisk regression och Indexteori Patrik Zetterberg 7 januari 2013 1 / 33 Logistisk regression I logistisk regression har vi en binär (kategorisk) responsvariabel Y i som vanligen kodas

Läs mer

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 3 Bertil Wegmann IDA, Linköpings universitet November 4, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 4, 2015 1 / 22 Kap. 4.8, interaktionsvariabler Ibland

Läs mer

Formler och tabeller till kursen MSG830

Formler och tabeller till kursen MSG830 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller.

Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller. Multinominella modeller Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller. Möjligt att, genom olika modellformuleringar, beakta att vissa regressorer varierar mellan

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när

Läs mer

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk)

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk) Poissonregression En lämplig utgångspunkt om vi har en beroende variabel som är en count variable, en variabel som antar icke-negativa heltalsvärden med ganska liten variation E(y x1, x2,.xn) = exp( 0

Läs mer

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Till ampad statistik (A5) Förläsning 13: Logistisk regression

Till ampad statistik (A5) Förläsning 13: Logistisk regression Till ampad statistik (A5) Förläsning 13: Logistisk regression Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2016-03-08 Exempel 1: NTU2015 Exempel 2: En jobbannons Exempel 3 1 1 Klofstad, C.

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Härledning av Black-Littermans formel mha allmänna linjära modellen

Härledning av Black-Littermans formel mha allmänna linjära modellen Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem

Läs mer

Sannolikheter och kombinatorik

Sannolikheter och kombinatorik Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F3 1 / 21 Interaktion Ibland ser sambandet mellan en

Läs mer

ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test?

ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test? ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test? Mikael Eriksson Specialistläkare CIVA Karolinska Universitetssjukhuset, Solna Grund för hypotestestning 1. Definiera noll- och alternativhypotes,

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet November 6, 2013 Wänström (Linköpings universitet) F3 November 6, 2013 1 / 22 Interaktion

Läs mer

Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT

Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Regressionsanalys handlar om att estimera hur medelvärdet för en variabel (y) varierar med en eller flera oberoende variabler (x). Exempel: Hur

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att

Läs mer

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en

Läs mer

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F10: Intensiteter och Poissonmodeller Frågeställningar Konstant V.v.=Var Cyklister Poissonmodeller för frekvensdata Vi gör oberoende observationer av de (absoluta) frekvenserna n 1, n 2,..., n k från den

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

8 Inferens om väntevärdet (och variansen) av en fördelning

8 Inferens om väntevärdet (och variansen) av en fördelning 8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 14:E AUGUSTI 2017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

F23 forts Logistisk regression + Envägs-ANOVA

F23 forts Logistisk regression + Envägs-ANOVA F23 forts Logistisk regression + Envägs-ANOVA Repetition Detta går inteattbeskriva på någotrimligtsättmed en linjär funktion PY Xx) β 0 +β x Den skattade linjen går utanför intervallet0, ): Y ärenbinärvariabel0-,dikotom)manvillmodellera,

Läs mer

3 Maximum Likelihoodestimering

3 Maximum Likelihoodestimering Lund Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 Parameterestimation och linjär tidsserieanalys Denna laborationen ger en introduktion till

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 15 januari 2016, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel

Läs mer

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka. Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 12 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 12 December 1 / 12 Explorativ Faktoranalys

Läs mer

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL)

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL) Innehåll: 1. Risk & Odds 1.1 Risk Ratio 1.2 Odds Ratio 2. Logistisk Regression 2.1 Ln Odds 2.2 SPSS Output 2.3 Estimering (ML) 2.4 Multipel 3. Survival Analys 3.1 vs. Logistisk 3.2 Censurerade data 3.3

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

χ 2, chi-två Test av anpassning: sannolikheter specificerade Data: n observationer klassificerade i K olika kategorier:

χ 2, chi-två Test av anpassning: sannolikheter specificerade Data: n observationer klassificerade i K olika kategorier: Stat. teori gk, ht 006, JW F1 χ -TEST (NCT 16.1-16.) Ordlista till NCT Goodness-of-fit-test χ, chi-square Test av anpassning χ, chi-två Test av anpassning: sannolikheter specificerade i förväg Data: n

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 8 Statistiska metoder 1 Dagens föreläsning o Chi-två-test Analys av enkla frekvenstabeller Analys av korstabeller (tvåvägs-tabeller) Problem med detta test o Fishers exakta test 2 Analys av

Läs mer

Regressions- och Tidsserieanalys - F4

Regressions- och Tidsserieanalys - F4 Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1

Läs mer

Resursfördelningsmodellen

Resursfördelningsmodellen PCA/MIH Johan Löfgren Rapport 25-6-26 (6) Resursfördelningsmodellen Växjös skolor våren 25 Inledning Underlag för analyserna utgörs av ett register som innehåller elever som gått ut årskurs nio 2 24. Registret

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning

Läs mer

TMS136: Dataanalys och statistik Tentamen

TMS136: Dataanalys och statistik Tentamen TMS136: Dataanalys och statistik Tentamen 013-08-7 Examinator och jour: Mattias Sunden, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkänd räknare och formelsamling (formelsamling delas ut med tentan). Betygsgränser:

Läs mer

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1(6) PCA/MIH Johan Löfgren 2016-11-10 Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1 Inledning Sveriges kommuner och landsting (SKL) presenterar varje år statistik över elevprestationer

Läs mer

Tentamen i Matematisk Statistik, 7.5 hp

Tentamen i Matematisk Statistik, 7.5 hp Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.

Läs mer

3:e perioden - en statistisk analys av utfallet i jämna ishockeymatcher

3:e perioden - en statistisk analys av utfallet i jämna ishockeymatcher 3:e perioden - en statistisk analys av utfallet i jämna ishockeymatcher Niklas Warren Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2016:29 Matematisk

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 9 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 9 December 1 / 43 Longitudinella data

Läs mer

Tenta i Statistisk analys, 15 december 2004

Tenta i Statistisk analys, 15 december 2004 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, ML 15 december 004 Lösningar Tenta i Statistisk analys, 15 december 004 Uppgift 1 Vi har två stickprov med n = 5 st.

Läs mer

Statistik analys av tidstrender i arbetslöshet

Statistik analys av tidstrender i arbetslöshet Statistik analys av tidstrender i arbetslöshet Yuqi Ma Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2017:3 Matematisk statistik Juni 2017 www.math.su.se

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 15 Januari 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Kalkylator

Läs mer

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2016-12-13, 8-12 Bertil Wegmann

Läs mer

Tillämpad statistik. Jesper Rydén

Tillämpad statistik. Jesper Rydén Tillämpad statistik Jesper Rydén 2 Förord Detta kompendium kompletterar kursinnehållet i kursen Tillämpad statistik 1MS026. Uppsala, februari 2014 Jesper Rydén i ii Innehåll Förord i 1 Något om konfidensintervall

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar

Läs mer

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl 4.00-9.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p)

b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p) Avd. Matematisk statistik TENTAMEN I SF90 OCH SF905 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 4:E MARS 204 KL 4.00 9.00. Kursledare: För D och Media: Gunnar Englund, 073 32 37 45 Kursledare: För F:

Läs mer

732G71 Statistik B. Föreläsning 9. Bertil Wegmann. December 1, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 9. Bertil Wegmann. December 1, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 9 Bertil Wegmann IDA, Linköpings universitet December 1, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B December 1, 2016 1 / 20 Metoder för att analysera tidsserier Tidsserieregression

Läs mer

Repetitionsföreläsning

Repetitionsföreläsning Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson

Läs mer

Föreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 5 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Andelar (kap 24) o Binomialfördelning (kap 24.1) o Test och konfidensintervall för en andel (kap 24.5, 24.6, 24.8) o Test

Läs mer

Uppgift a b c d e f (vet ej) Poäng

Uppgift a b c d e f (vet ej) Poäng TENTAMEN: Statistisk modellering för I3, TMS161, lördagen den 22 Oktober kl 8.30-11.30 på V. Jour: John Gustafsson, ankn. 5316. Hjälpmedel: På hemsidan tillgänglig ordlista och formelsamling med tabeller,

Läs mer

PROGRAMFÖRKLARING III

PROGRAMFÖRKLARING III Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING III Matematisk statistik, Lunds universitet stik för modellval och prediktion p./22 Statistik

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

TMS136. Föreläsning 11

TMS136. Föreläsning 11 TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för

Läs mer

(a) Lära sig beräkna sannolikheter för binomial- och normalfördelade variabler (b) Lära sig presentera binomial- och normalfördelningen gra skt

(a) Lära sig beräkna sannolikheter för binomial- och normalfördelade variabler (b) Lära sig presentera binomial- och normalfördelningen gra skt Datorövning 2 Statistikens Grunder 1 Syfte 1. Lära sig presentera data i tabeller 2. Lära sig beskriva data numeriskt 3. Lära sig presentera data i grafer Exempel (a) Lära sig beräkna sannolikheter för

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,

Läs mer

Enkel och multipel linjär regression

Enkel och multipel linjär regression TNG006 F3 25-05-206 Enkel och multipel linjär regression 3.. Enkel linjär regression I det här avsnittet kommer vi att anpassa en rät linje till mätdata. Betrakta följande värden från ett försök x 4.0

Läs mer

Lösningar till SPSS-övning: Analytisk statistik

Lösningar till SPSS-övning: Analytisk statistik UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Anna Lindgren 28+29 november, 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F15: multipel regression 1/22 Linjär regression

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts. Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:

Läs mer

Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A/STA A4 (8 poäng) 5 augusti 4, klokan 8.5-3.5 Tillåtna hjälpmedel: Bifogad formelsamling

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Korrelation och regression Innehåll 1 Korrelation och regression Spridningsdiagram Då ett datamaterial består av två (eller era) variabler är man ofta intresserad av att veta om det nns ett

Läs mer

Regressionsanalys av lägenhetspriser i Spånga

Regressionsanalys av lägenhetspriser i Spånga Regressionsanalys av lägenhetspriser i Spånga Mahamed Saeid Ali Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2016:11 Matematisk statistik Juni 2016

Läs mer

Några extra övningsuppgifter i Statistisk teori

Några extra övningsuppgifter i Statistisk teori Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,

Läs mer

Föreläsning 8: Konfidensintervall

Föreläsning 8: Konfidensintervall Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga

Läs mer