Sannolikhetslära Albertus Pictor Lyckohjulet

Storlek: px
Starta visningen från sidan:

Download "Sannolikhetslära Albertus Pictor Lyckohjulet"

Transkript

1 Sannolikhetslära Albertus Pictor Lyckohjulet Regnabo. Regnaui. Sum sine Regno står det målat över Albertus Pictors lyckohjul i Härkeberga vapenhus. Det betyder jag skall ha makten, jag har makten, jag har haft makten och jag är utan makt. Det är en satirisk beskrivning av 1400-talets adel, som minst av allt var några pålitliga kämpar mot utländsk överhöghet. (www.satirarkivet.se) 1 Sannolikhetslärans grunder Relativa frekvenser.9 3 Oberoende händelser..12 Några sannolikhetsuppgifter utan svar.17 Matematiken i historien.18 Facit..22 Bilder: 2 Foton s.4, 7, av Arne Flink; bilder s.6 och 8 av Hans Hillerström; akvareller av Ramon Cavaller ; geometriska konstruktioner och diagram av Nils-Göran Mattsson Författarna och Bokförlaget Borken, 2011 Sannolikhetslära - 1

2 1 Sannolikhetslärans grunder Teori Grundläggande begrepp Exempel 1 Ett sockerbolag tillverkar bitsocker som förpackas i kiloförpackningar som rymmer vardera 306 bitar. Vägning av sockerbitarna i ett paket gav följande värden: Vikt Antal 3,05 3, ,15 3, ,25 3, ,35 3, ,45 3, ,55 3,65 7 Vi ser att vikten per sockerbit varierar. Det finns tydligen 96 sockerbitar som väger mellan 3,15 g och 3,25 g. 96/306 = 31 % av sockerbitarna finns alltså i detta intervall. Man säger att sannolikheten för att en sockerbit har en vikt i intervallet 3,15-3,25 är 0,31. Exempel 2 Vilken är sannolikheten för att man får minst två klave vid kast med två enkronor? Sannolikhetslära - 2

3 Att väga en på måfå vald sockerbit från paketet och att kasta två tärningar är exempel på slumpmässiga försök. Om vi bara tänker väga en sockerbit, så vet vi inget om vad vikten kommer att bli. Men om vi väger sockerbitarna i många paket så kan vi med stor säkerhet tala om hur många procent av sockerbitarna som har en vikt i ett givet intervall. Kastar man två mynt, så vet man inte om det kommer upp (krona, krona), (krona, klave), (klave, krona) eller (klave, klave). Kastar man däremot två mynt 1000 gånger, så kommer andelen (klave, klave) att bli ca 25%. Resultatet av ett försök kallar man försökets utfall. Vi kan tänka oss följande utfall i de två försöken ovan: (1) En sockerbit väger 3,17 g. (2) Vid ett kast med två mynt får vi (krona, krona). Mängden av möjliga utfall vid ett försök benämns utfallsrum och betecknas vanligen med Ω. (1) Antag att tillverkningen aldrig ger sockerbitar som väger mindre än 3,00 g och mer än 3,70 g. Vi skriver då Ω = [3,0; 3,70] (2) Utfallsrummet vid kast med två enkronor är: {(krona, krona), (krona, klave), (klave, krona),(klave, klave)} Sannolikhetslära - 3

4 En händelse är en delmängd av utfallsrummet. (i) I det ovan angivna utfallsrummet [3,00; 3,70] kan man beräkna sannolikheten för olika händelser t ex händelsen: vikten ligger i intervallet [3,25; 3,35]. (ii) Händelsen att man får [(krona, krona)]. Modell Kast med två tärningar Vi kastar två tärningar, en grön och en röd. Vart och ett av kasten kan anges med ett talpar, t ex (3, 5), där 3 är antalet ögon på den gröna tärningen och 5 på den röda tärningen. Detta är inte sam-ma kast som utfallet (5, 3). Varför? Utfallsrummet för två tärningar som kastas kan enkelt åskådliggöras med ett koordinatsystem, där den gröna tärningens värde avsätts på den horisontella axeln och den rödas värde på den vertikala axeln. Punkten (2, 6) i koordinatsystemet betyder alltså ett kast där den gröna tärningen visar 2 och den röda 6. Vi får på detta sätt ett utfallsrum med 36 utfall. I diagrammet ovan är några händelser markerade. A: Poängsumman är minst 10. B: Den första tärningen visar en etta. Sannolikhetslära - 4

5 Teori Sannolikhetsbegreppet De två utfallsrummen som vi betraktat har varit av två olika slag. I exemplet med sockerbitars vikt är utfallsrummet oändligt, eftersom vikten kan anta vilket tal som helst i utfallsrummet. I exemplet med kast av två tärningar är utfallsrummet ändligt. I vårt fall fanns 36 möjliga utfall. Vårt sannolikhetsbegrepp skall uppfylla två villkor: (1) För varje händelse, A, skall det finnas ett tal, P(A), som kallas sannolikheten för A och som ligger i intervallet 0 P(A) 1. (2) Varje utfall tillhör utfallsrummet P(Ω) = 1. Vid vissa symmetriska försök har alla utfall samma sannolikhet. Vi har s k likformig sannolikhetsfördelning. I vårt exempel med de två tärningarna har vi 36 utfall och varje enskilt utfall har alltså sannolikheten 1/36. Eftersom händelsen A = summan av antalet ögon hos de två tärningarna är minst 10 innehåller 6 utfall, så är P(A) = 6 1 ( = ) antalet med avseende på A gynnsamma utfall g P(A) = = totala antalet utfall n G1.1 Man drar ett kort ur en kortlek. Bestäm sannolikheten för att man får a) en knekt b) hjärter kung c) spader. G1.2 Man kastar två mynt. Beräkna sannolikheten för att man får a) exakt en klave b) åtminstone en krona c) högst en krona. Sannolikhetslära - 5

6 G1.3 Åskådliggör utfallsrummet vid kast med två tärningar och markera följande händelser samt beräkna händelsens sannolikhet: a) samma poäng på båda tärningarna b) poängsumman är åtminstone 8 c) poängsumman är högst 5 d) man får högst en poäng mer på den ena tärningen än på den andra. G1.4 Om man snurrar två gånger på lyckohjulet, vilken är då sannolikheten för att a) de båda talen är lika b) de båda talen är olika c) de båda talen är mindre än 6 d) summan av talen är minst 15? G1.5 Vad är sannolikheten för att en sockerbit, enligt tabellen tidigare väger minst 3,35 g? G1.6 Ikosaedern här bredvid är en slumptärning. Den är symmetrisk och har 20 trianglar som sidoytor. Var och en av siffrorna 1, 2, 3,..., 20 förekommer på två av dessa trianglar. Om man kastar en sådan tärning, vilken är då sannolikheten för att man får a) ett udda tal b) ett tal som är delbart med 3 c) ett tal som är mindre än 7? Sannolikhetslära - 6

7 G1.7 En urna innehåller två röda, tre blå kulor och två vita kulor. Man tar på måfå en kula ur urnan. Beräkna sannolikheten för att man får a) en röd kula. b) en blå kula. c) en vit kula. G1.8 Man väljer på måfå ett tal mellan ett och hundra. Vad är sannolikheten för att man väljer ett primtal? V1.9 Romarna använde sig vid tärningsspel ofta av en tärning kallad talus. Denna hade endast fyra plana sidor med respektive 1, 3, 4 och 6 ögon. Beräkna sannolikheten för att, vid kast med två symmetriska talus-tärningar a) båda tärningarna har samma antal ögon b) ögonsumman blir ett udda tal c) minst en av tärningarna får ett udda antal ögon. V1.10 En person säger: Jag har två barn; åtminstone ett av dem är en pojke. Vad är sannolikheten för att båda är pojkar? V1.11 Ur en kortlek dras efter varandra tre kort. a) Om det första blev en hjärter, vilken är då sannolikheten för att också det andra kortet blir en hjärter? b) Om de två första korten blev hjärter, vilken är då sannolikheten för att även det tredje blir en hjärter? Sannolikhetslära - 7

8 V1.12 Arletta äger tärningar utformade som platonska kroppar, dvs de har 4, 6, 8, 12 eller 20 sidor. På alla är samtliga sidor numrerade med på varandra följande siffror med 1 som första siffra. Hon kastar ett antal serier med en av dessa. Varje serie utförs med 120 kast. Hon får i genomsnitt 15 treor. Hur ser hennes tärning ut? V1.13 Arletta plockar fram en annan av sina tärningar. Även nu utför hon serier om 120 kast. Hon upptäcker då att tre på varandra följande tal kommer upp 18 gånger i genomsnitt. Vilken tärning har hon använt? Sannolikhetslära - 8

9 2 Relativa frekvenser Teori Relativa frekvenser Det hittills berörda sannolikhetsbegreppet kallas det klassiska. Vi inser att i en väl blandad kortlek är sannolikheten för att få ett hjärterkort 0,25. Detta kan tolkas på följande sätt. Om vi med återläggning drar ett stort antal kort ur kortleken och blandar den väl efter varje dragning så kommer antalet dragna hjärter dividerat med det totala antalet dragningar att bli ungefär 25 %. Detta är den s k relativa frekvensen. Diagrammet här bredvid visar resultatet, när en dator fått utföra kast med en 6-sidig tärning, ett s k simuleringsprogram. Diagrammet visar den relativa frekvensen för händelsen jämnt värde som en funktion av antalet kast. Vi ser i diagrammet att den relativa frekvensen kommer allt närmare värdet 0,50 när antalet kast ökar. Detta fenomen kallas de relativa frekvensernas stabilitet. Vid de tillfällen där sannolikheten går att bestämma med likformig sannolikhetsfördelning, stämmer denna överens med den relativa frekvensen. Om det inte är symmetri, så kan beräkningen av den relativa frekvensen vara den enda metod som ger ett värde på sannolikheten. Ju fler försök som gjörs desto bättre värde får vi på sannolikheten för en viss händelse. Sannolikhetslära - 9

10 G2.1 Under en lång tid har man studerat gymnasiebetygen, i gymnasieskolan före 2011, för individuella val vid en gymnasieskola och beräknat följande sannolikheter. Betyg IG G VG MVG Sannolikhet 0,05 0,15 0,45 0,35 Beräkna sannolikheten för a) G på ett individuellt val b) VG eller MVG på valet. G2.2 Tabellen visar de nio vanligaste tilltalsnamnen som getts till flickor år Namn Julia Emma Wilma Hanna Elin Linnéa Amanda Ida Antal per 1000 a) Vad är sannolikheten för att en flicka född detta år fick namnet Elin? b) Vad är sannolikheten för att en flicka född år 2000 fått ett av de åtta vanligaste tilltalsnamnen? G2.3 Frekvensen trafikolyckor i en medelstor stad har undersökts under en lång följd av fredagar. Resultatet framgår av tabellen: Antal olyckor Sannolikhet 0,793 0,151 0,034 0,021 0,001 Beräkna sannolikheten för att det en fredag ska inträffa a) precis en olycka b) högst en olycka c) åtminstone en olycka d) en eller två olyckor. G2.4 Tabellen på nästa sida visar andelen kvinnor som fått minst ett barn i september månad det år de uppnått en viss ålder. a) Vad är sannolikheten för att kvinnor födda 1950 hade fått minst ett barn när de var fyllda 25 år? (Vi antar att september månad är representativt för hela året.) b) Vad är samma värde för kvinnor födda 1970? c) Vad är sannolikheten för att kvinnor födda 1965 har fått minst ett barn vid uppnådda 20 år? d) Vad är sannolikheten för att kvinnor födda 1965 har fått minst ett barn vid uppnådda 25 år? e) Vad är sannolikheten för att kvinnor födda 1965 har fått sitt första barn vid en ålder mellan 20 och 25 år? Sannolikhetslära - 10

11 f) Vad är sannolikheten för att kvinnor födda 1965 har fått sitt första barn vid en ålder mellan 25 och 30 år? Andelen kvinnor som fått minst ett barn i september månad det år de uppnått en viss ålder. Sannolikhetslära - 11

12 3 Oberoende händelser Teori Oberoende händelser Antag att vi kastar en krona två gånger för att se om vi får krona eller klave. Vi inser att sannolikheten för att få krona vid första kastet är 0,5. Även vid andra kastet är sannolikheten för krona 0,5. Sannolikheten för att få krona även denna gång minskar inte, även om händelsen krona skulle ha inträffat vid första kastet. Kronan minns inte vad som hände vid första kastet. Man säger att de två händelserna är oberoende. Vi kan slå fast att om vi har två oberoende händelser A och B, så är sannolikheten för att både A och B inträffar: P(A och B) = P(A) P(B). Alltså är P(krona i första kastet och krona i andra kastet) = 0,5 0,5 (= 0,25). Vi tänker oss två trafikljus L 1 och L 2. Där L 1 befinner sig i en stad under det att L 2 finns i en helt annan stad. Om sannolikheten för att L 1 och L 2 var för sig skall visa rött är 0,4 så är sannolikheten 0,4 0,4 (= 0,16) för att de samtidigt visar rött. De är oberoende av varandra. Det finns inget orsakssamband mellan dem. Om vi däremot tänker oss att de två ljussignalerna befinner sig nära varandra och på samma genomfartsled i en stad, så är det inte säkert att sannolikheten för att bägge visar rött eller grönt är oberoende. Stadens trafiktekniker kan ha ordnat det så att en bilist som får grönt ljus vid en signal även med stor sannolikhet får grönt vid efterföljande signal. De vill undvika trafikstockningar och tomgångskörning. I detta fall är de två händelserna inte oberoende. Sannolikhetslära - 12

13 Teori Träddiagram Vi har en två år gammal telekatalog och vill bedöma hur användbar den är. Den uppgiften kan illustreras och lösa med ett träddiagram. Ett sådant brukar ritas upp och ned, med roten uppåt. Efter ett år är 70% av uppgifterna korrekta och resten, 30%, har förändrats. Det symboliseras i träddiagrammet här bredvid av grenarna SA och SB där SA anger sannolikheten att en slumpvis vald uppgift är oförändrad (70%) och SB anger att den har förändrats (30%). Till punkten A kommer vi om ett år har turen att använda någon av de 70% korrekta uppgifterna i katalogen. Men när vi efter två år använder samma telekatalog är sannolikheten att vi får korrekta uppgifter bara 0,7 0,7 = 0,49. Detta motsvarar grenen SAC. Det är tydligen mer sannolikt att en eller bägge av två slumpvis valda kataloguppgifter är felaktig(a) än att den (de) är korrekta. Grenen SAD symboliserar sannolikheten att få tag i en uppgift som bara ändrats det andra året. På samma sätt betyder gren SBE sannolikheten att en slumpvis vald uppgift bara ändrats det första, men inte det andra året. Grenen SBF till slut anger sannolikheten att en uppgift ändrats båda åren. Vi har antagit att händelsen att en kataloguppgift ändrats andra året är oberoende av om det ändrats första året. Händelse Sannolikhet Ingen förändring vare sig år 1 eller 2 (SAC) 0,7 0,7 = 0,49 = 49% Förändring år 1 men inte år 2 (SBE) 0,3 0,7 = 0,21 = 21% Förändring år 2 men inte år 1 (SAD) 0,7 0,3 = 0,21 = 21% Förändring både år 1 ochår 2 (SBF) 0,3 0,3 = 0,09 = 9% Hela utfallsrummet 1,00 = 100% Sannolikhetslära - 13

14 G3.1 William och Wilma kastar pil mot en tavla. William träffar med sannolikheten 3/5 och Wilma med sannolikheten 2/3. Beräkna sannolikheten för att minst en av dem träffar om de kastar en pil vardera. G3.2 Sara gör en subjektiv uppskattning av sannolikheten för att hon skall bli godkänd på ett större matematikprov till 0,8. Matematikläraren erbjuder henne att få göra ett omprov om hon inte blir godkänd. Eftersom Sara vid omprovstillfället känner till sina svagheter i matematik uppskattar hon sannolikheten för att klara detta prov till 0,9. Vilken är sannolikheten för att Sara blir godkänd på ett av proven? Varför har vi kallat sannolikheten subjektiv? G3.3 En urna innehåller tre svarta och två vita kulor. Man tar på måfå en kula ur urnan, antecknar färgen och lägger tillbaks den. Man tar ytterligare en kula, antecknar och lägger tillbaks. Beräkna sannolikheten för att man får a) två svarta kulor c) en svart och en vit. b) två vita kulor G3.4 Vid en gymnasieskola kan man läsa tyska och/eller spanska, steg 3, som individuellt val. Sannolikheten för att en elev har valt tyska eller spanska är 0,10 respektive 0,15. Kan man då vara säker på att sannolikheten för att en elev valt både tyska och spanska är 0,10 0,15? Sannolikhetslära - 14

15 V3.5 Antag att man i en kommun kommit fram till följande sannolikheter: (i) Om det är torrt väder en dag, så är sannolikheten för torrt väder nästa dag 2/3. (ii) Om det är blött väder en dag, är sannolikheten för torrt väder nästa dag 1/2. Beräkna sannolikheten för att det skall bli torrt väder i övermorgon, om det är torrt väder i dag. V3.6 Vår vän Sara, som är intresserad av sannolikhetsberäkningar, uppskattar sannolikheten till 0,8 för att hon skall korrekt besvara minst 70% av frågorna i ett engelskt ordtest. Testfrågorna kommer slumpmässigt från en engelsk-svensk ordlista. Vad är sannolikheten för att hon klarar tre test i rad med minst 70- procentigt korrekta svar? V3.7 Cathrine som är på semester på Madeira, tycker särskilt mycket om tre av deras räter. Det är espetada, ett grillspett av oxköttskuber smaksatt med vitlök, lagerblad och salt. Spetten grillas över öppen eld. Rätten serveras med friterade majsgrötskuber. Vidare är det espada en mycket populär djuphavsfisk tillagad med curry och banan och espadarte som är svärdfisk, som serveras med varmt sötpotatisbröd. Tre dagar i följd kastar hon tärning om vilken huvudrätt hon skall välja. Om tärningen visar 1, 2 eller 3 väljer hon espetada. Visar tärningen 4 eller 5 väljer hon espada. Till slut, om tärningen visar 6 väljer hon espadarte. a) Vad är sannolikheten för att hon får äta samma huvudrätt tre dagar i följd? b) Vad är sannolikheten för att hon får olika rätter var och en av de tre dagarna? V3.8 Henri tippar en stryktipsrad på måfå. Vilken är sannolikheten för att han får a) 13 rätt b) 0 rätt? Sannolikhetslära - 15

16 V3.9 Vilken är sannolikheten för att man får tre hjärter om man drar tre kort ur en kortlek och efter varje dragning lägger tillbaka kortet (dragning med återläggning)? V3.10 En urna innehåller fyra kulor numrerade 1, 2, 3 och 4. a) Man tar på måfå och utan återläggning tre kulor ur urnan. Rita ett träddiagram och beräkna sannolikheten för att summan av de erhållna talen är 8. b) Man tar på måfå och med återläggning tre kulor ur urnan. Rita ett träddiagram och beräkna sannolikheten för att summan av de erhållna talen är 8. V3.11 Vid tärningsspelet Yatsy kastar man fem vanliga tärningar samtidigt. Beräkna sannolikheten för att man därvid får a) yatsy, dvs alla tärningar lika b) liten straight eller stor straight dvs (1, 2, 3, 4, 5) eller (2, 3, 4, 5, 6) V3.12 Romarna använde sig vid tärningsspel ofta av en tärning kallad talus. Denna hade endast fyra plana sidor med respektive 1, 3, 4 och 6 ögon. Beräkna sannolikheten för att, vid kast med fyra talus-tärningar få a) Venus, dvs olika siffror på alla tärningarna b) Canis, ettor på alla tärningarna. Sannolikhetslära - 16

17 Några sannolikhetsuppgifter utan svar En apparat innehåller två mekaniska komponenter, A och B: Sannolikheten för att A går sönder under ett år är 0,4 och för att B går sönder är 0,1. A och B går sönder oberoende av varandra. Vad är sannolikheten att a) både A och B går sönder b) A men inte B går sönder c) exakt en av komponenterna går sönder? I en låda finns kulor i två storlekar och med ett flertal färger. Av kulorna är 1/3 små och 2/5 röda. Beräkna sannolikheten att en slumpvis vald kula är antingen liten eller röd, förutsatt att hälften av de små kulorna är röda. Ulla åker bil till skolan varje morgon. På vägen dit passerar hon två trafikljus som hon tycker alltid visar rött. Det första trafikljuset visar rött ljus i 68 sekunder och någonting annat än rött ljus i 34 sekunder. Det andra trafikljuset visar rött ljus i 78 sekunder och någonting annat än rött ljus i 32 sekunder. Trafikljusen slår om helt oberoende av varandra. a) Hur stor är sannolikheten att hon får rött ljus vid det första trafikljuset? b) Hur stor är sannolikheten att hon får rött ljus vid båda trafikljusen? (Np B ht 98) Penninglotten har funnits cirka 100 år i Sverige. Den har numera en dragningsdel och en skrapdel. Dragningsdelen har högsta vinsten kr och skrapdelen kr. En lott kostar 50 kr. Nedanstående vinstplan är baserad på lotter. Dragningsvinster Skrapvinster Antal vinster Värde(kr) Totalt(kr) Antal vinster Värde(kr) Totalt(kr) a) Vad är sannolikheten för att få en vinst vid dragningen? b) Vad är sannolikheten för att få en skrapvinst? c) Vad är sannolikheten att få en vinst vid dragningen eller en skrapvinst? d) Vad är sannolikheten för att få högsta vinsten vid dragningen eller högsta skrapvinsten? e) Vad är sannolikheten för att vinna mer än 1000 kr? f) Vad är sannolikheten för att få en vinst som räcker till att köpa en ny lott? Sannolikhetslära - 17

18 M atematiken i historien Blaise Pascal och Pierre de Fermat brukar nämnas som de första matematikerna som utvecklade sannolikhetslärans grunder. Men redan den italienske matematikern Gerolamo Cardano ( ) hade lämnat viktiga bidrag till sannolikhetsbegreppet. Många av de uppgifter som vi löst tidigare tillhör den typ av uppgifter som intresserade dessa matematiker. Sannolikhetsläran har också anknytningar till statistiken. Exempel: Vad är sannolikheten för att få exakt 5 treor och åtminstone 4 sexor, om vi kastar en tärning 50 gånger? Sannolikhetsteorin har fått stor användning i naturvetenskapliga och samhällsvetenskapliga ämnen, i industri och handel. Den används på så skilda fält som genetik, kvantfysik och försäkringsfrågor. V3.13 Ett problem som sysselsatte Pascal och Fermat var frågan om vilket av följande två alternativ som är mest sannolikt: a) att få minst en sexa vid fyra kast med en tärning b) att få minst en dubbelsexa vid 24 kast med två tärningar. Lös deras problem när du läst om komplementaritet. Blaise Pascal ( ) kom tidigt med sina föräldrar till Paris. Han fick vid 12 års ålder en kopia av Euklides geometri av sin far sedan denne upptäckt sin sons förmåga för matematiska abstraktioner. Vid 14 års ålder började han följa fadern till matematikern Mersennes möten. Här träffades många kända matematiker och filosofer t ex Gassendi och Desargues, och snart kunde Pascal presentera ett antal teorem inom den projektiva geometrin. När familjen flyttar till Rouen, kommer Pascal att hjälpa fadern i dennes arbete som skatteuppbördsman och uppfinner som hjälpmedel den första digitala räknaren, kallad Pascaline. Den hade stora likheter med de mekaniska räknare som tillverkades på 1940 talet. Det var Pascal som upptäckte lufttryckets avtagande med höjden över havsytan. Pascal arbetade hela sitt liv intensivt med matematiska, naturvetenskapliga och filosofiska frågor. Pascal kom under slutet av sitt korta liv att ansluta sig till jansenisterna. Denna rörelse hade sitt centrum i klostret Port Royal i Paris. Hans filosofiska och religiösa tankar publicerades efter hans död i verket Pensées (Tankar). Utan Gud är människan intet, och utan tro på Gud har livet ingen mening, menar Pascal. Sannolikhetslära - 18

19 V3.14 Monty Hall - Öppna dörr och vinn en bil. I USA har förekommit TV-program, ledda av Monty Hall som givit namn åt ett problem som uppstår. Du ställs inför valet att få öppna en av tre dörrar. Bakom två av dörrarna finns en get och bakom den tredje en lyxbil. När du valt en dörr, som du ännu inte får öppna, väljer programledaren en dörr bakom vilken det finns en get. Ditt problem är nu, skall du hålla fast vid din först valda dörr, eller skall du välja den dörr som återstår? Vad är sannolikheten för att få en lyxbil genom att stanna kvar, och vad är den om du byter dörr? När du bestämt dig, öppnar ledaren den dörr du valt och där finner du din lyxbil eller din get. Sannolikhetslära - 19

20 Problemlösning i grupp Kort i müslipaket Antag att det finns ett djurkort i varje paket av din favoritmüsli. Det finns sex olika sorters djurkort. Dessa förekommer med lika sannolikhet och är slumpmässigt fördelade på paketen. Hur många paket måste du köpa för att få alla sex djurkorten? Materiel: Tärning, papper och penna. Metod och uppgift: I stället för att köpa müslipaket med bilder gör vi en modell av verkligheten. De olika antalet ögon på en tärning får motsvara de sex korten. Kasta tärningen tills du fått upp alla möjliga antal ögon; ett öga motsvarar kort 1, två ögon motsvarar kort 2, och så vidare. Fyll i dina resultat i en tabell. Första raden i tabellen nedan visar att det behövdes 15 kast för att kort 3 till slut skulle dyka upp. Kort 1 Kort 2 Kort 3 Kort 4 Kort 5 Kort 6 Antal kast Exemplet ovan Försök 2 Försök 3 Försök 4 Försök 5 Försök 6 Försök 7 Försök 8 Försök 9 Försök 10 Försök 12 Försök 13 Försök 14 Försök 15 Försök 16 Försök 17 Försök 18 Försök 19 Försök 20 Försök 21 Försök 22 Försök 23 Försök 24 Försök 25 Beräkna därefter medelvärdet av antalet kast som krävdes. Detta är det experimentellt bestämda väntevärdet. Teori och uppgift: Det kan visas teoretiskt att det i genomsnitt krävs att man köper = 14,7 müslipaket för att få en komplett samling av sex djurkort. Detta är det teoretiskt bestämda väntevärdet. Hur stämmer detta med dina försöksresultat? Sannolikhetslära - 20

21 Modell Komplementhändelser Ett lyckohjul har fyra målade lika stora sektorer, röd, gul, grön och blå. Vi vet bara att sektorn röd är 45. Vad är sannolikheten för att man hamnar på gult, grönt eller blått? P(röd) + P(gul) +P(grön) + P(blå) = 1. Alltså är P(gul) +P(grön) + P(blå) = 1 P(A) = 1 0,25 = 0,75. Om vi definierar komplementet till A, A, som alla de utfall som inte finns i händelsen A, så får vi följande regel: P( A) = 1 P(A) V3.15 Vad är sannolikheten för att två tärningar som kastas visar olika? V3.16 I en urna ligger 5 röda och 4 blå kulor. a) Vad är sannolikheten för att minst en kula är blå, om vi plockar upp två kulor? b) Vad är sannolikheten för att högst en kula är röd, om vi plockar upp två kulor? V3.17 Vad är sannolikheten för att få minst en sexa vid kast med a) två tärningar b) tre tärningar c) fyra tärningar? V3.18 Utanför en affär finns tre parkeringsplatser för kunder. Var och en av platserna är under affärstid ledig i genomsnitt sex minuter per timme. Beräkna sannolikheten för att a) alla tre platserna är upptagna när man kommer för att handla b) åtminstone en av platserna är ledig c) endast en av platserna är ledig. Sannolikhetslära - 21

22 Facit 1.1 a) Eftersom det finns 4 knektar så är P(knekt) = 1/13. b) P(hjärter kung) = 1/52. c) Eftersom det finns 13 spader så är P(spader) = 1/ a) Två av utfallen i figuren på sid har exakt en klave. Alltså är P(exakt en klave) = 1/2. b) Tre av utfallen har minst en krona. Alltså är P(minst en krona) = 3/4. c) Tre av utfallen har högst en krona. Alltså är P(högst en krona) = 3/ a) 6 av punkterna i utfallsrummet visar samma poängtal. P = 6/36 = 1/6. b) 15 av punkterna i utfallsrummet visar att poängsumman är åtminstone 8. P = 15/36 = 5/12. c) 10 av punkterna i utfallsrummet visar att poängsumman är högst 5. P = 10/36 = 5/18. d) 16 av punkterna i utfallsrummet visar att man får högst en poäng mer på den ena tärningen än den andra P = 16/36 = 4/ a) 10/100 = 1/10 b) 90/100 = 9/10 c) 21/100 = 9/25 d) 1/ ( )/306 = 0,32 1.6a) 1/2 b) 3/10 c)3/10 1.7a) 2/7 b) 3/7 c)2/7 1.8 Det finns 25 primtal mellan 1 och 100. Alltså är P(primtal)= 1/4. Sannolikhetslära - 22

23 1.9 a) 4/16 = 1/4 b) 8/16 = 1/2 c) 12/16 = 3/ / a) Det finns 12 hjärter och 51 kort kvar. Alltså P = 12/51 = 4/17. b) Det finns 11 hjärter och 50 kort kvar. Alltså P = 11/ Sannolikheten för en trea är 15/120 = 1/8. Tärningen är alltså en oktaaeder Det verkar rimligt att varje antal ögon kommer upp 6 gånger av 120. Alltså är P = 6/120 = 1/20. Det verkar vara en ikosaeder. 2.1a) 0,15 b) 0,80 2.2a) 0,022 b) 0, a) 0,151 b) 0, a) 0,55 b) 0,32 c) 0, = c) 0,207 d) 0,185 d) 0,36 e) 0,31 f) 0,66 0,36 = 0, ,8 + 0,2 0,9 = 0,98 Sannolikhetslära - 23

24 3.3 Sannolikheten för att ta en svart kula är 3/5 = 0,6. Sannolikheten för att ta en vit kula är 2/5 = 0,4. a) 0,6 0,6 = 0,36 b) 0,4 0,4 = 0,16 c) 0,6 0,4 + 0,4 0,6 = 0, ,10 0,15 gäller bara om händelserna är oberoende. Det skulle kunna vara så att en språkintresserad elev vill ha flera språk. I detta fall är inte båda valen oberoende och inte heller om valet gäller för elever med få språk som vill pröva ett enda nytt språk. 3.5 P(torrt väder i övermorgon) = = + = + = ,8 0,8 0,8 = 0, P(espetada) =1/2 P(espada) = 1/3 P(espadarte) = 1/6 a) (1/2) 3 + (1/3) 3 + (1/6) 3 = 0,17 b) (1/2)(1/3)(1/6) + (1/2)(1/6)(1/3) + (1/3)(1/2)(1/6) + (1/3)(1/6)(1/2) (1/6)(1/2)(1/3) + (1/6)(1/3)(1/2) = 6 = 1/ a) (1/3) 13 = 6, b) (2/3) 13 = 0, ( ) = 0, a) Summan 8 kan fås på 6 olika sätt vid dragning utan återläggning: 1+3+4, 1+4+3, 3+1+4, 3+4+1, 4+1+3, Totala antalet möjliga utfall vid dragning av 3 6 kulor av 4 är 4 3 2=24. Den sökta sannolikheten blir alltså = 0, b) Vid dragning med återläggning tillkommer 6 möjligheter att få summan 8, nämligen 2+2+4, 2+4+2, 4+2+2, 2+3+3, 3+2+3, Antalet gynnsamma utfall är alltså 6+6=12. Totala antalet utfall är nu 4 3 =64. Sannolikheten blir alltså 12 3 = = 0, Sannolikhetslära - 24

25 3.11 a) Totala antalet utfall är 6 5. Antalet gynnsamma utfall = 6. P(Alla siffror 6 1 lika) = = = 7, ,08% b) Totala antalet utfall är 6 5. Antalet gynnsamma utfall = 2. P( liten straight eller 2 1 stor straight ) = 5 6 = 3888 = 2, ,03% a) Totala antalet utfall = 4 4 = 256. Antalet för Venus gynnsamma fall = =24. Den första tärningen har 4 möjligheter, den andra 3 och så vidare. P(olika siffror på alla tärningarna) = = b) Antalet gynnsamma fall är = 1. P(ettor på alla tärningarna) = Händelsen minst en sexa är komplementet till händelsen ingen sexa. P(ingen sexa) = I fyra kast blir denna sannolikhet = P(minst en sexa) = 1 1 0,518. P(två sexor) =. P(inte två 6 36 sexor) = 1 1 = 35. Sannolikheten för händelsen minst en dubbelsexa vid kast med två tärningar = 1 0,491. Det är tydligen lite mer 36 sannolikt att få en sexa vid 4 kast med en tärning (6 utfall vid varje kast) än två sexor vid 24 kast med två tärningar (36 utfall vid varje kast) trots att antalet kast i båda fallen är två tredjedelar av antalet utfall. Den flitige tärningsspelaren och adelsmannen Chevalier de Méré ansåg att sannolikheterna borde vara lika, men han hade upptäckt att de inte var det och ville ha en förklaring på detta. Han skrev därför år 1654 ett brev till matematikern Blaise Pascal ( ) och lade fram problemet. Pascal och matematikern Pierre de Fermat ( ) började brevväxla och utredde tillsammans saken. Denna brevväxling anses lägga grunden till den moderna sannolikhetsläran Vi vet från början att sannolikheten för att bilen finns bakom den dörr som jag väljer är 1/3 och att sannolikheten för att den är bakom någon av de två andra är 2/3. Vi vet också att bakom minst en av dessa dörrar är det en get. När så programledaren öppnar dörren med en get bakom, så vet vi nu att bilen inte är bakom just den dörren. Därför är det 2/3 chans att den är bakom den tredje dörren, och därför bör vi byta Komplementet är att de två tärningarna visar lika. P(De två tärningarna visar lika) = 1/6. Alltså är P(De två tärningarna visar olika) = 5/6. Sannolikhetslära - 25

26 3.16 a) Komplementet till att minst en kula är blå är att ingen är blå. Sannolikheten för två röda är 5 4 = 5. Alltså är P(minst en kula är blå) = = b) Komplementet till att högst en kula är röd är att två är röda som enligt a) är =. Alltså är svaret = Komplementet är ingen sexa. a) 1 (5/6) 2 = 11/36 b) 1 (5/6) 3 = 91/216 c) 1 (5/6) 4 = 671/ Var och en av platserna är upptagen 54 min/h = 0,9. a) Den sökta sannolikheten är 0,9 3 = 0,73 = 73%. b) Händelsen att åtminstone en av platserna är ledig är komplementet till a). P(en plats ledig) = 1 0,9 3 = 0,271 27% c) Sannolikheten att en speciell plats och endast den är ledig är 0,1 0,9 0,9 = 0,081. Detta kan ske på tre olika sätt. P(en och endast en plats ledig) = 3 0,081 = 0,243 24% Sannolikhetslära - 26

Sannolikhetsbegreppet

Sannolikhetsbegreppet Kapitel 3 Sannolikhetsbegreppet Betrakta följande försök: Ett symmetriskt mynt kastas 100 gånger och antalet krona observeras. Antal kast 10 20 30 40 50 60 70 80 90 100 Antal krona 6 12 16 21 25 30 34

Läs mer

7-1 Sannolikhet. Namn:.

7-1 Sannolikhet. Namn:. 7-1 Sannolikhet. Namn:. Inledning Du har säkert hört ordet sannolikhet förut. Hur sannolikt är det att få 13 rätt på tipset eller 7 rätt på lotto? I detta kapitel skall du lära dig vad sannolikhet är för

Läs mer

händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar.

händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar. Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. 1 Grundläggande begrepp 1.01 När vi singlar slant eller kastar tärning

Läs mer

Kombinatorik. Bilder: Akvareller gjorda av Ramon Cavallers, övriga diagram och foton av Nils-Göran. Nils-Göran Mattsson och Bokförlaget Borken, 2011

Kombinatorik. Bilder: Akvareller gjorda av Ramon Cavallers, övriga diagram och foton av Nils-Göran. Nils-Göran Mattsson och Bokförlaget Borken, 2011 Kombinatorik Teori Multiplikationsprincipen..2 Teori Permutationer 3 Teori Kombinationer...5 Modell Dragning utan återläggning & sannolikheter 8 Teori Duvslageprincipen 11 Teori Pascals triangel & Mosertal...13

Läs mer

5Chans och risk. Mål. Grunddel K 5. Ingressen

5Chans och risk. Mål. Grunddel K 5. Ingressen Chans och risk ål När eleverna har studerat det här kapitlet ska de kunna: förklara vad som menas med begreppet sannolikhet räkna ut sannolikheten för att en händelse ska inträffa känna till hur sannolikhet

Läs mer

Betingad sannolikhet och oberoende händelser

Betingad sannolikhet och oberoende händelser Kapitel 5 Betingad sannolikhet och oberoende händelser Betrakta ett försök med ett ändligt utfallsrum Ω och en händelse A vid detta försök. Definitionsmässigt gäller att A Ω och försökets utfall ligger

Läs mer

5.3 Sannolikhet i flera steg

5.3 Sannolikhet i flera steg 5.3 Sannolikhet i flera steg När man singlar slant kan man få utfallen krona eller klave. Sannolikheten att få klave är - och krona ^. Vad är sannolikheten att fä krona två. kast i rad? Träddlagram För

Läs mer

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. I slutet av dokumentet hittar du uppgifter med vilka du kan testa om

Läs mer

Sannolikhetslära till pdf.notebook. May 04, 2012. Sannolikhetslära. Kristina.Wallin@kau.se

Sannolikhetslära till pdf.notebook. May 04, 2012. Sannolikhetslära. Kristina.Wallin@kau.se May 0, 0 Sannolikhetslära Kristina.Wallin@kau.se May 0, 0 Centralt innehåll Sannolikhet Åk Slumpmässiga händelser i experiment och spel. Åk 6 Sannolikhet, chans och risk grundat på observationer, experiment

Läs mer

Kombinatorik. Författarna och Bokförlaget Borken, 2011. Kombinatorik - 1

Kombinatorik. Författarna och Bokförlaget Borken, 2011. Kombinatorik - 1 Kombinatorik Teori Multiplikationsprincipen..2 Teori Permutationer 3 Teori Kombinationer...5 Modell Dragning utan återläggning & sannolikheter 8 Teori Duvslageprincipen 11 Teori Pascals triangel & Mosertal...13

Läs mer

Sannolikhet DIAGNOS SA3

Sannolikhet DIAGNOS SA3 Sannolikhet DIAGNOS SA3 Grundläggande sannolikhet Diagnosen omfattar 9 uppgifter där eleverna ska ges möjlighet att visa om de förstår innebörden av begreppet sannolikhet och slump samt om de har strategier

Läs mer

Kap 2: Några grundläggande begrepp

Kap 2: Några grundläggande begrepp Kap 2: Några grundläggande begrepp Varför sannolikhetslära är viktigt? Vad menar vi med sannolikhetslära? Träddiagram? Vad är den klassiska, empiriska och subjektiva sannolikheten? Vad menar vi med de

Läs mer

7-2 Sammansatta händelser.

7-2 Sammansatta händelser. Namn: 7-2 Sammansatta händelser. Inledning Du vet nu vad som menas med sannolikhet. Det lärde du dig i kapitlet om just sannolikhet. Nu skall du tränga lite djupare i sannolikhetens underbara värld och

Läs mer

Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann

Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann Marco Kuhlmann Detta kapitel behandlar grundläggande begrepp i sannolikhetsteori: enkel sannolikhet, betingad sannolikhet, lagen om total sannolikhet och Bayes lag. 1 Enkel sannolikhet Den klassiska sannolikhetsteorin,

Läs mer

Tema Förväntat värde. Teori Förväntat värde

Tema Förväntat värde. Teori Förväntat värde Tema Förväntat värde Teori Förväntat värde Begreppet förväntat värde används flitigt i diskussioner om olika pokerstrategier. För att kunna räkna ut det förväntade värdet så tar du alla möjliga resultat,

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv

Läs mer

Statistisk slutledning (statistisk inferens): Sannolikhetslära: GRUNDLÄGGANDE SANNOLIKHETSLÄRA. Med utgångspunkt från ett stickprov

Statistisk slutledning (statistisk inferens): Sannolikhetslära: GRUNDLÄGGANDE SANNOLIKHETSLÄRA. Med utgångspunkt från ett stickprov OSÄKERHET Sannolikhetslära: Om det i ett område finns 32 % med universitetsexamen, vad är sannolikheten att ett stickprov kommer att innehålla 31-33 % med universitetsexamen? Om medelåldern i en population

Läs mer

1 Mätdata och statistik

1 Mätdata och statistik Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 5 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

Kolmogorovs Axiomsystem Kolmogorovs Axiomsystem Varje händelse A tilldelas ett tal : slh att A inträar Sannolikheten måste uppfylla vissa krav: Kolmog

Kolmogorovs Axiomsystem Kolmogorovs Axiomsystem Varje händelse A tilldelas ett tal : slh att A inträar Sannolikheten måste uppfylla vissa krav: Kolmog Slumpvariabel (Stokastisk variabel) Resultat av ett slumpförsök - utgången kann inte kontrolleras Sannolikhet och statistik Sannolikhetsteorins grunder VT 2009 Resultatet kan inte förutspås, men vi vet

Läs mer

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet Stokastisk geometri Lennart Råde Chalmers Tekniska Högskola och Göteborgs Universitet Inledning. I geometrin studerar man geometriska objekt och deras inbördes relationer. Exempel på geometriska objekt

Läs mer

Kapitel 2. Grundläggande sannolikhetslära

Kapitel 2. Grundläggande sannolikhetslära Sannolikhetslära och inferens II Kapitel 2 Grundläggande sannolikhetslära 1 Att beräkna en sannolikhet I många slumpförsök gäller att alla utfall i S är lika sannolika. Exempel: Tärningskast, slantsingling.

Läs mer

MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus

MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus STATISTIK/DIAGRAM VAD ÄR STATISTIK? En titt på youtube http://www.youtube.com/watch?v=7civnkawope Statistik omfattar

Läs mer

3 Grundläggande sannolikhetsteori

3 Grundläggande sannolikhetsteori 3 Grundläggande sannolikhetsteori Ämnet sannolikhetsteori har sin grund i studier av hasardspel utförda under 1500- och 1600-talen av bland andra Gerolamo Cardano, Pierre de Fermat och Blaise Pascal. Mycket

Läs mer

1.5 Vad är sannolikheten för att ett slumpvis draget spelkort ska vara femma eller lägre eller knekt, dam, kung eller äss?

1.5 Vad är sannolikheten för att ett slumpvis draget spelkort ska vara femma eller lägre eller knekt, dam, kung eller äss? 1 ÖVNINGAR I INDUKTIV LOGIK 1.1 En tärning kastas. Ange sannolikheten för att antalet ögon är a) 3 b) inte 3 c) 3 eller 5 d) jämnt e) mindre än 4 f) jämnt och mindre än 4 g) jämnt eller mindre än 4 h)

Läs mer

Vidare får vi S 10 = 8,0 10 4 = 76, Och då är 76

Vidare får vi S 10 = 8,0 10 4 = 76, Och då är 76 Ellips Sannolikhet och statistik lösningar till övningsprov sid. 38 Övningsprov.. i) P(:a äss och :a äss och 3:e äss och 4:e äss ) P(:a äss) P(:a äss :a äss) P(3:e äss :a och :a äss) antal P(4:a äss :a

Läs mer

18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 )

18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 ) epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver

Läs mer

Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor

Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor Våren 010 PRÖVNINGSANVISNINGAR Prövning i Matematik B Kurskod MA 10 Gymnasiepoäng 50 Läromedel Prov Muntligt prov Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag Skriftligt

Läs mer

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik Statistik Statistik betyder ungefär sifferkunskap om staten Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information. Verkligheten

Läs mer

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi

Läs mer

Vad kan hända? strävorna

Vad kan hända? strävorna strävorna 4D Vad kan hända? föra, följa och värdera matematiska resonemang sannolikhet Avsikt och matematikinnehåll Innebörden i sannolikhet är en viktig kunskap för alla. Det finns gott om exempel på

Läs mer

Hur stor är sannolikheten att någon i klassen har en katt? Hur stor är

Hur stor är sannolikheten att någon i klassen har en katt? Hur stor är Karin Landtblom Hur sannolikt är det? Uttrycket Hur sannolikt är det på en skala? använder många till vardags, ofta med viss ironi. I denna artikel om grunder för begreppet sannolikhet åskådliggör författaren

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 1

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 1 Här presenteras förslag på lösningar och tips till många uppgifter i läroboken Matematik 3000 kurs B som vi hoppas kommer att vara till hjälp när du arbetar dig framåt i kursen. Vi har valt att inte göra

Läs mer

Sannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott?

Sannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott? Sannolikhetslära 19 februari 009 Vad är en sannolikhet? I vardagen: Vad är sannolikheten att vinna om jag köper en lott? Borde jag ta paraply med mig till jobbet idag? Vad är sannolikheten att det kommer

Läs mer

Sannolikhetsteori. Måns Thulin. Uppsala universitet Statistik för ingenjörer 23/ /14

Sannolikhetsteori. Måns Thulin. Uppsala universitet Statistik för ingenjörer 23/ /14 1/14 Sannolikhetsteori Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 23/1 2013 2/14 Dagens föreläsning Relativa frekvenser Matematik för händelser Definition av sannolikhet

Läs mer

Föreläsning 1, Matematisk statistik för M

Föreläsning 1, Matematisk statistik för M Föreläsning 1, Matematisk statistik för M Erik Lindström 23 mars 2015 Erik Lindström - erikl@maths.lth.se FMS035 F1 1/30 Tillämpningar Praktiska detaljer Matematisk statistik slumpens matematik Sannolikhetsteori:

Läs mer

5. BERÄKNING AV SANNOLIKHETER

5. BERÄKNING AV SANNOLIKHETER 5. BERÄKNING V SNNOLIKHETER 5.1 dditionssatsen Viharnukommitframtilldetstegdärvikanbörjaatträknapraktisktmed sannolikheter. Vi skall utveckla olika regler och begrepp som är nödvändiga för att praktiskt

Läs mer

TMS136. Föreläsning 1

TMS136. Föreläsning 1 TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill vi modellera och kvantifiera de risker som finns

Läs mer

Lösningar och lösningsskisser

Lösningar och lösningsskisser Lösningar och lösningsskisser Diskret matematik för gymnasiet, :a upplagan, Liber AB Kapitel, Sannolikhetslära och Kombinatorik 0. a) ( ) ( ) h!! ( )!!! 9!! 9!!! h! ( h)!! h! ( h)!! h! ( h)! Likheten är

Läs mer

Sannolikhet och statistik. S

Sannolikhet och statistik. S Sannolikhet och statistik. S Området består av två delar sannolikhet och statistik. Diagnoserna i delområdet sannolikhet avser att kartlägga elevernas förmåga att arbeta med enkel kombinatorik, att använda

Läs mer

Sannolihhet. och statistik. Vad är möjligt och vad är inte möjligt? Kommer tåget fram i tid? Blir det regn imorgon? Vi bedömer ständigt risker eller

Sannolihhet. och statistik. Vad är möjligt och vad är inte möjligt? Kommer tåget fram i tid? Blir det regn imorgon? Vi bedömer ständigt risker eller - ^^s^^^^'^^ Sannolihhet och statistik Vad är möjligt och vad är inte möjligt? Kommer tåget fram i tid? Blir det regn imorgon? Vi bedömer ständigt risker eller chanser för att olika händelser ska inträffa.

Läs mer

MATEMATIKSPELET TAR DU RISKEN

MATEMATIKSPELET TAR DU RISKEN MATEMATIKSPELET TAR DU RISKEN 1. Kasta en tärning 20 gånger. Målet är att minst 10 gånger få ögontalet 4, 5 eller 6. Om du lyckas, får du 300 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar 2. Kasta

Läs mer

Studiehandledning, LMN100, Del 3 Matematikdelen

Studiehandledning, LMN100, Del 3 Matematikdelen Studiehandledning, LMN100, Del 3 Matematikdelen Kurslitteratur Staffan Stukat: Statistikens grunder (c:a 150:-) Vretblad: Algebra och geometri, utdrag (Delas ut på marsträffen) Britton-Garmo: Sannolikhet

Läs mer

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U. Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna

Läs mer

SANNOLIKHET OCH SPEL

SANNOLIKHET OCH SPEL SANNOLIKHET OCH SPEL I ÖVNINGEN INGÅR ATT: Formulera, analysera och lösa matematiska problem samt värdera valda strategier, metoder och resultat (MA) Tolka en realistisk situation och utforma en matematisk

Läs mer

Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning

Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning Slumpen och hur vi uppfattar den - med och utan tärning Ingemar Holgersson Högskolan Kristianstad grupper elever Gr, 7, 9 och. grupp lärarstudenter inriktning matematik Ca i varje grupp Gjord i Israel

Läs mer

MATEMATIK 5 veckotimmar

MATEMATIK 5 veckotimmar EUROPEISK STUDENTEXAMEN 2010 MATEMATIK 5 veckotimmar DATUM : 4 Juni 2010 SKRIVNINGSTID : 4 timmar (240 minuter) TILLÅTNA HJÄLPMEDEL : Skolans formelsamling Icke-programmerbar, icke-grafritande räknedosa

Läs mer

1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik

1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik 1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik Beskriver några projekt, laborationer och alternativa arbetsformer som gett goda resultat. Diskussion om tillvägagångssätt

Läs mer

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid

Läs mer

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data Geometri och statistik Blandade övningar Sannolikhetsteori och statistik 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data 27, 30, 32, 25, 41, 52, 39, 21, 29, 34, 55,

Läs mer

Procent 1, 50 % är hälften

Procent 1, 50 % är hälften Innehåll Procent -7 Bråkform decimalform procentform 8-9 Sannolikhet 10-1 Kombinatorik 13-1 Medelvärde, median och typvärde 1-16 Negativa tal 17-18 Koordinatsystem 19- Proportionella samband 3- Geometriska

Läs mer

Högstadiets matematikorientering

Högstadiets matematikorientering Högstadiets matematikorientering STARTKORT MATEMATIKORIENTERING KONTROLLER FYLL I DINA SVAR FRÅN DE OLIKA KONTROLLERNA. HITTA OCH LÖS SÅ MÅNGA KONTROLLER DU HINNER. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Läs mer

Lutande torn och kluriga konster!

Lutande torn och kluriga konster! Lutande torn och kluriga konster! Aktiviteter för barn under Vetenskapsfestivalens skolprogram 2001 Innehåll 1 Bygga lutande torn som inte faller 2 2 Om konsten att vinna betingat godis i spel 5 3 Den

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1b Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

Sannerligen synnerligen osannolikt

Sannerligen synnerligen osannolikt Sannerligen synnerligen osannolikt åkan Johansson och ennart Skoogh I en nation som Sverige, som så totalt har gripits av speldjävulen, behöver både lärare och elever vettiga vardagskunskaper om sannolikhet

Läs mer

Oberoende stokastiska variabler

Oberoende stokastiska variabler Kapitel 6 Oberoende stokastiska variabler Betrakta ett försök med ett ändligt (eller högst numrerbart) utfallsrum Ω samt två stokastiska variabler ξ och η med värdemängderna Ω ξ och Ω η. Vi bildar funktionen

Läs mer

S0007M Statistik2: Slumpmodeller och inferens. Inge Söderkvist

S0007M Statistik2: Slumpmodeller och inferens. Inge Söderkvist Föreläsning 1 4.1 Slumpässighet 4.2 Sannolikhetsmodeller Viktiga grundbegrepp Slumpmässig (eng: random) Ett fenomen är slumpmässigt om individuella resultat är osäkra, men resultat alltid förekommer med

Läs mer

4. Stokastiska variabler

4. Stokastiska variabler 4. Stokastiska variabler En stokastisk variabel (s.v.) är en funktion som definieras i utfallsrummet. Varje stokastisk variabel har en viss sannolikhetsstruktur. Ex: Man kastar två tärningar. Låt X = summan

Läs mer

TMS136. Föreläsning 2

TMS136. Föreläsning 2 TMS136 Föreläsning 2 Sannolikheter För en händelse E skriver vi sannolikheten att E inträffar som P(E) För en händelse E skriver vi sannolikheten att E inte inträffar som P(E ) Exempel Låt E vara händelsen

Läs mer

STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år.

STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. STYRANDE SATSER 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. Vilket år är du född? 1971 Då har du bara 35 år kvar

Läs mer

Procent 1, 50 % är hälften

Procent 1, 50 % är hälften Innehåll (Facit) Procent -7 Bråkform decimalform procentform 8-9 Sannolikhet 10-1 Kombinatorik 13-1 Medelvärde, median och typvärde 1-16 Negativa tal 17-18 Koordinatsystem 19- Proportionella samband 3-

Läs mer

Öppna frågor (ur Good questions for math teaching)

Öppna frågor (ur Good questions for math teaching) Här är öppna frågor som jag hämtat från boken Good questions for math teaching som jag läste i våras när jag gick Lärarlyftet. Frågorna är sorterade efter ämne/tema och förhoppningsvis kan fler ha nytta

Läs mer

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 1 1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta

Läs mer

Matteklubben Vårterminen 2015, lektion 6

Matteklubben Vårterminen 2015, lektion 6 Matteklubben Vårterminen 2015, lektion 6 Regler till Matematisk Yatzy Matematisk Yatzy är en tävling där man tävlar i att lösa matematikproblem. Målet i tävlingen är att få så mycket poäng som möjligt

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1a Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

Känguru 2013 Junior sida 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium

Känguru 2013 Junior sida 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium Känguru 2013 Junior sida 1 / 8 NAMN KLASS / GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 69, 1986 Årgång 69, 1986 Första häftet 3420. Två ljus av samma längd är gjorda av olika material så att brinntiden är olika. Det ena brinner upp på tre timmar och det andra på fyra timmar.

Läs mer

Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18

Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18 Innehåll 1 Allmän information Seriens uppbyggnad Lärobokens struktur 6 Kapitelinledning 7 Avsnitten 7 Pratbubbleuppgifter Aktivitet Taluppfattning och huvudräkning 9 Resonera och utveckla 9 Räkna och häpna

Läs mer

Känguru 2011 Cadet (Åk 8 och 9)

Känguru 2011 Cadet (Åk 8 och 9) sida 1 / 7 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Gissa inte, felaktigt

Läs mer

UPPGIFT 1 V75 FIGUR 1.

UPPGIFT 1 V75 FIGUR 1. UPPGIFT 1 V75 FIGUR 1. Varje lördag året om spelar tusentals svenskar på travspelet V75. Spelet går ut på att finna sju vinnande hästar i lika många lopp. Lopp 1: 5 7 Lopp 2: 1 3 5 7 8 11 Lopp 3: 2 9 Lopp

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1c Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

Känguru 2012 Benjamin sid 1 / 8 (åk 6 och 7)

Känguru 2012 Benjamin sid 1 / 8 (åk 6 och 7) Känguru 2012 Benjamin sid 1 / 8 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt

Läs mer

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013 Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter

Läs mer

Varje deluppgift ger 1 poäng. Det är även utskrivet vilken förmåga du kan visa på varje uppgift. Till exempel betyder EB, begreppsförmåga på E-nivå.

Varje deluppgift ger 1 poäng. Det är även utskrivet vilken förmåga du kan visa på varje uppgift. Till exempel betyder EB, begreppsförmåga på E-nivå. Övningsuppgifter statistik Varje deluppgift ger 1 poäng. Det är även utskrivet vilken förmåga du kan visa på varje uppgift. Till exempel betyder EB, begreppsförmåga på E-nivå. Hjälpmedel: papper och penna.

Läs mer

Lgr 11 - Centralt innehåll och förmågor som tränas:

Lgr 11 - Centralt innehåll och förmågor som tränas: SIDAN 1 Författare: Carsten Flink Vad handlar boken om? Boken handlar om Alvin som hjälper sin farfar att flytta. Alvin hittar en vas på vinden. På vasen finns en bild av ett lejon. Alvins farfar ville

Läs mer

Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att...

Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att... Innehållsförteckning 2 Innehåll 3 Mina matematiska minnen 4 Korsord - Lodrätt - Vågrätt 5 Chiffer med bokstäver 6 Lika med 8 Formel 1 10 Konsumera mera? 12 Potenser 14 Omkretsen 16 Lista ut mönstret 18

Läs mer

getsmart Grå Regler för:

getsmart Grå Regler för: (x²) 1 2 Regler för: getsmart Grå Algebra 8 _ (x²) 1 2 Algebra 4 (2 2³) 1 4 _ xy (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy 4 Algebra Algebra _ 8 Det rekommenderas att man börjar

Läs mer

Resurscentrums matematikleksaker

Resurscentrums matematikleksaker Resurscentrums matematikleksaker Aktiviteter för barn och vuxna Innehåll 1 Bygga lutande torn som inte faller 2 2 Om konsten att vinna betingat godis i spel 5 3 Den snåle grosshandlarens våg 6 4 Tornen

Läs mer

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2014-06-17

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2014-06-17 Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2014-06-17 Vad är mönstret värt? Lika eller olika Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika

Läs mer

050504/AE. Regler för Pick n Click

050504/AE. Regler för Pick n Click 050504/AE Regler för Pick n Click Gäller fr o m den 23 maj 2005 1 INNEHÅLLSFÖRTECKNING 1. ALLMÄNNA REGLER... 3 2. SPELPLAN OCH SPELFORMER... 3 3. DELTAGANDE I LOTTERIET... 4 4. KVITT ELLER DUBBELT 5 5.

Läs mer

Reliability analysis in engineering applications

Reliability analysis in engineering applications Reliability analysis in engineering applications Fredrik Carlsson Sannolikhetsteorins grunder Fördelningar och stokastiska variabler Extremvärdesfördelningar Simulering Structural Engineering - Lund University

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2011. Anvisningar Provtid

Läs mer

2 Dataanalys och beskrivande statistik

2 Dataanalys och beskrivande statistik 2 Dataanalys och beskrivande statistik Vad är data, och vad är statistik? Data är en samling fakta ur vilken man kan erhålla information. Statistik är vetenskapen (vissa skulle kalla det konst) om att

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del II

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2010. Anvisningar Provtid

Läs mer

Tentamen LMA 200 Matematisk statistik, data/elektro

Tentamen LMA 200 Matematisk statistik, data/elektro Tentamen LMA 00 Matematisk statistik, data/elektro 039 Tentamen består av åtta uppgiter motsvarande totalt 50 poäng. Det krävs minst 0 poäng ör betyg 3, minst 30 poäng ör 4 och minst 40 ör 5. Examinator:

Läs mer

Bedömningsexempel från ämnesprovet i matematik årskurs 6, 2013

Bedömningsexempel från ämnesprovet i matematik årskurs 6, 2013 Bedömningsexempel från ämnesprovet i matematik årskurs 6, 2013 Innehåll Ämnesprovet i matematik i årskurs 6 läsåret 2012/2013, exempel på provuppgifter... 3 Inledning... 3 Skriftliga delprov... 5 Miniräknare

Läs mer

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT 1 2 3 4 5 6 7 8 9 10 SVAR UPPGIFT 11 12 13 14 15 16 17 18 19 20 SVAR

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT 1 2 3 4 5 6 7 8 9 10 SVAR UPPGIFT 11 12 13 14 15 16 17 18 19 20 SVAR Känguru 2010 Junior (gymnasiet åk 1) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

Fira Pi-dagen med Liber!

Fira Pi-dagen med Liber! Fira Pi-dagen med Liber! Specialuppdrag från Uppdrag: Matte o Kul-diagram o Geometri med färg UPPDRAG: MATTE Mattedetektiverna Mattespanarna Hej! Den 14 mars är det Pi-dagen (3.14). Det är värt att uppmärksammas

Läs mer

Kap 3: Diskreta fördelningar

Kap 3: Diskreta fördelningar Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 TERMINSPLAN HÖSTTERMINEN ÅK 9: 1 1.1 TALMÄNGDER 2 1.2 NEGATIVA TAL 3 FORTS. 1.2 NEGATIVA TAL 4 1.3 POTENSER 5 1.4 RÄKNA MED POTENSER 6 TALUPPFATTNING + RESONERA 7

Läs mer

Övningstentamen 3. Uppgift 5: Anta att ξ är en kontinuerlig stokastisk variabel med följande frekvensfunktion: f(x) = 0

Övningstentamen 3. Uppgift 5: Anta att ξ är en kontinuerlig stokastisk variabel med följande frekvensfunktion: f(x) = 0 Övningstentamen Uppgift 1: Bill och Georg har gått till puben tillsammans. De beslutar sig för att spela dart (vilket betyder kasta pil mot en tavla). Sedan gammalt vet de att Bill träffar tavlan med sannolikheten.7

Läs mer

Förberedande Sannolikhet DIAGNOS SAF

Förberedande Sannolikhet DIAGNOS SAF Förberedande Sannolikhet DIAGNOS SAF Diagnosen är muntlig och omfattar ett antal försök med tillhörande frågor kring resultaten av försöken. Eleverna ges möjligheter att visa vilken uppfattning de har

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2005

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2005 Anvisningar Provtid Hjälpmedel Provmaterialet NpMaB vt 2005 Version 1 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material

Läs mer

STOKASTIK Sannolikhetsteori och statistikteori med tillämpningar

STOKASTIK Sannolikhetsteori och statistikteori med tillämpningar 2007-10-08 sida 1 # 1 STOKASTIK Sannolikhetsteori och statistikteori med tillämpningar Sven Erick Alm och Tom Britton Typsatt med liber1ab 2007-10-08 1 2007-10-08 sida 2 # 2 2007-10-08 sida i # 3 Innehåll

Läs mer

15 Tomtemor är född 1953 och äldsta nissen är född 1981. Tomtemor vet därför att när hon fyller 81 år fyller nissen 53. Gammeltomten är född 1922 och

15 Tomtemor är född 1953 och äldsta nissen är född 1981. Tomtemor vet därför att när hon fyller 81 år fyller nissen 53. Gammeltomten är född 1922 och 1 Barnen ska göra snölyktor av snöbollar. I det nedersta lagret lägger de 15 snöbollar, i nästa 14, i nästa 13 osv upp till det översta lagret med 3 snöbollar. När de har tänt lyktan lägger de på en sista

Läs mer

Ungefär lika stora tal

Ungefär lika stora tal Bilaga 2:1 Arbeta med jämförelser mellan tal Ungefär lika stora tal Jämför de tre talen här nedan: 234567 234566 234568 Alla siffrorna i talen är lika utom den sista, den högra, där siffrorna är 7,6 och

Läs mer

geometri och statistik

geometri och statistik Svikten geometri och statistik Innehåll Mönster Geometriska figurer Del av Matematiska ord Längd runt om Tredimensionella figurer Tabeller och diagram Problemlösning Kan du? Hur gick det? 2-3 4-5 6-7 8-9

Läs mer

ÄNDLIGT OCH OÄNDLIGT AVSNITT 4

ÄNDLIGT OCH OÄNDLIGT AVSNITT 4 VSNITT ÄNDLIGT OCH OÄNDLIGT Är det möjligt att jämföra storleken av olika talmängder? Har det någon mening om man säger att det finns fler irrationella tal än rationella? Är det överhuvudtaget möjligt

Läs mer

Högskoleverket NOG 2007-10-27

Högskoleverket NOG 2007-10-27 Högskoleverket NOG 2007-10-27 Uppgifter 1. En kock försöker att skala en potatis i så långa remsor som möjligt. Hur lång är den längsta remsa som kocken lyckas åstadkomma? (1) Medianlängden av de tre längsta

Läs mer