Sannolikhetslära Albertus Pictor Lyckohjulet

Storlek: px
Starta visningen från sidan:

Download "Sannolikhetslära Albertus Pictor Lyckohjulet"

Transkript

1 Sannolikhetslära Albertus Pictor Lyckohjulet Regnabo. Regnaui. Sum sine Regno står det målat över Albertus Pictors lyckohjul i Härkeberga vapenhus. Det betyder jag skall ha makten, jag har makten, jag har haft makten och jag är utan makt. Det är en satirisk beskrivning av 1400-talets adel, som minst av allt var några pålitliga kämpar mot utländsk överhöghet. ( 1 Sannolikhetslärans grunder Relativa frekvenser.9 3 Oberoende händelser..12 Några sannolikhetsuppgifter utan svar.17 Matematiken i historien.18 Facit..22 Bilder: 2 Foton s.4, 7, av Arne Flink; bilder s.6 och 8 av Hans Hillerström; akvareller av Ramon Cavaller ; geometriska konstruktioner och diagram av Nils-Göran Mattsson Författarna och Bokförlaget Borken, 2011 Sannolikhetslära - 1

2 1 Sannolikhetslärans grunder Teori Grundläggande begrepp Exempel 1 Ett sockerbolag tillverkar bitsocker som förpackas i kiloförpackningar som rymmer vardera 306 bitar. Vägning av sockerbitarna i ett paket gav följande värden: Vikt Antal 3,05 3, ,15 3, ,25 3, ,35 3, ,45 3, ,55 3,65 7 Vi ser att vikten per sockerbit varierar. Det finns tydligen 96 sockerbitar som väger mellan 3,15 g och 3,25 g. 96/306 = 31 % av sockerbitarna finns alltså i detta intervall. Man säger att sannolikheten för att en sockerbit har en vikt i intervallet 3,15-3,25 är 0,31. Exempel 2 Vilken är sannolikheten för att man får minst två klave vid kast med två enkronor? Sannolikhetslära - 2

3 Att väga en på måfå vald sockerbit från paketet och att kasta två tärningar är exempel på slumpmässiga försök. Om vi bara tänker väga en sockerbit, så vet vi inget om vad vikten kommer att bli. Men om vi väger sockerbitarna i många paket så kan vi med stor säkerhet tala om hur många procent av sockerbitarna som har en vikt i ett givet intervall. Kastar man två mynt, så vet man inte om det kommer upp (krona, krona), (krona, klave), (klave, krona) eller (klave, klave). Kastar man däremot två mynt 1000 gånger, så kommer andelen (klave, klave) att bli ca 25%. Resultatet av ett försök kallar man försökets utfall. Vi kan tänka oss följande utfall i de två försöken ovan: (1) En sockerbit väger 3,17 g. (2) Vid ett kast med två mynt får vi (krona, krona). Mängden av möjliga utfall vid ett försök benämns utfallsrum och betecknas vanligen med Ω. (1) Antag att tillverkningen aldrig ger sockerbitar som väger mindre än 3,00 g och mer än 3,70 g. Vi skriver då Ω = [3,0; 3,70] (2) Utfallsrummet vid kast med två enkronor är: {(krona, krona), (krona, klave), (klave, krona),(klave, klave)} Sannolikhetslära - 3

4 En händelse är en delmängd av utfallsrummet. (i) I det ovan angivna utfallsrummet [3,00; 3,70] kan man beräkna sannolikheten för olika händelser t ex händelsen: vikten ligger i intervallet [3,25; 3,35]. (ii) Händelsen att man får [(krona, krona)]. Modell Kast med två tärningar Vi kastar två tärningar, en grön och en röd. Vart och ett av kasten kan anges med ett talpar, t ex (3, 5), där 3 är antalet ögon på den gröna tärningen och 5 på den röda tärningen. Detta är inte sam-ma kast som utfallet (5, 3). Varför? Utfallsrummet för två tärningar som kastas kan enkelt åskådliggöras med ett koordinatsystem, där den gröna tärningens värde avsätts på den horisontella axeln och den rödas värde på den vertikala axeln. Punkten (2, 6) i koordinatsystemet betyder alltså ett kast där den gröna tärningen visar 2 och den röda 6. Vi får på detta sätt ett utfallsrum med 36 utfall. I diagrammet ovan är några händelser markerade. A: Poängsumman är minst 10. B: Den första tärningen visar en etta. Sannolikhetslära - 4

5 Teori Sannolikhetsbegreppet De två utfallsrummen som vi betraktat har varit av två olika slag. I exemplet med sockerbitars vikt är utfallsrummet oändligt, eftersom vikten kan anta vilket tal som helst i utfallsrummet. I exemplet med kast av två tärningar är utfallsrummet ändligt. I vårt fall fanns 36 möjliga utfall. Vårt sannolikhetsbegrepp skall uppfylla två villkor: (1) För varje händelse, A, skall det finnas ett tal, P(A), som kallas sannolikheten för A och som ligger i intervallet 0 P(A) 1. (2) Varje utfall tillhör utfallsrummet P(Ω) = 1. Vid vissa symmetriska försök har alla utfall samma sannolikhet. Vi har s k likformig sannolikhetsfördelning. I vårt exempel med de två tärningarna har vi 36 utfall och varje enskilt utfall har alltså sannolikheten 1/36. Eftersom händelsen A = summan av antalet ögon hos de två tärningarna är minst 10 innehåller 6 utfall, så är P(A) = 6 1 ( = ) antalet med avseende på A gynnsamma utfall g P(A) = = totala antalet utfall n G1.1 Man drar ett kort ur en kortlek. Bestäm sannolikheten för att man får a) en knekt b) hjärter kung c) spader. G1.2 Man kastar två mynt. Beräkna sannolikheten för att man får a) exakt en klave b) åtminstone en krona c) högst en krona. Sannolikhetslära - 5

6 G1.3 Åskådliggör utfallsrummet vid kast med två tärningar och markera följande händelser samt beräkna händelsens sannolikhet: a) samma poäng på båda tärningarna b) poängsumman är åtminstone 8 c) poängsumman är högst 5 d) man får högst en poäng mer på den ena tärningen än på den andra. G1.4 Om man snurrar två gånger på lyckohjulet, vilken är då sannolikheten för att a) de båda talen är lika b) de båda talen är olika c) de båda talen är mindre än 6 d) summan av talen är minst 15? G1.5 Vad är sannolikheten för att en sockerbit, enligt tabellen tidigare väger minst 3,35 g? G1.6 Ikosaedern här bredvid är en slumptärning. Den är symmetrisk och har 20 trianglar som sidoytor. Var och en av siffrorna 1, 2, 3,..., 20 förekommer på två av dessa trianglar. Om man kastar en sådan tärning, vilken är då sannolikheten för att man får a) ett udda tal b) ett tal som är delbart med 3 c) ett tal som är mindre än 7? Sannolikhetslära - 6

7 G1.7 En urna innehåller två röda, tre blå kulor och två vita kulor. Man tar på måfå en kula ur urnan. Beräkna sannolikheten för att man får a) en röd kula. b) en blå kula. c) en vit kula. G1.8 Man väljer på måfå ett tal mellan ett och hundra. Vad är sannolikheten för att man väljer ett primtal? V1.9 Romarna använde sig vid tärningsspel ofta av en tärning kallad talus. Denna hade endast fyra plana sidor med respektive 1, 3, 4 och 6 ögon. Beräkna sannolikheten för att, vid kast med två symmetriska talus-tärningar a) båda tärningarna har samma antal ögon b) ögonsumman blir ett udda tal c) minst en av tärningarna får ett udda antal ögon. V1.10 En person säger: Jag har två barn; åtminstone ett av dem är en pojke. Vad är sannolikheten för att båda är pojkar? V1.11 Ur en kortlek dras efter varandra tre kort. a) Om det första blev en hjärter, vilken är då sannolikheten för att också det andra kortet blir en hjärter? b) Om de två första korten blev hjärter, vilken är då sannolikheten för att även det tredje blir en hjärter? Sannolikhetslära - 7

8 V1.12 Arletta äger tärningar utformade som platonska kroppar, dvs de har 4, 6, 8, 12 eller 20 sidor. På alla är samtliga sidor numrerade med på varandra följande siffror med 1 som första siffra. Hon kastar ett antal serier med en av dessa. Varje serie utförs med 120 kast. Hon får i genomsnitt 15 treor. Hur ser hennes tärning ut? V1.13 Arletta plockar fram en annan av sina tärningar. Även nu utför hon serier om 120 kast. Hon upptäcker då att tre på varandra följande tal kommer upp 18 gånger i genomsnitt. Vilken tärning har hon använt? Sannolikhetslära - 8

9 2 Relativa frekvenser Teori Relativa frekvenser Det hittills berörda sannolikhetsbegreppet kallas det klassiska. Vi inser att i en väl blandad kortlek är sannolikheten för att få ett hjärterkort 0,25. Detta kan tolkas på följande sätt. Om vi med återläggning drar ett stort antal kort ur kortleken och blandar den väl efter varje dragning så kommer antalet dragna hjärter dividerat med det totala antalet dragningar att bli ungefär 25 %. Detta är den s k relativa frekvensen. Diagrammet här bredvid visar resultatet, när en dator fått utföra kast med en 6-sidig tärning, ett s k simuleringsprogram. Diagrammet visar den relativa frekvensen för händelsen jämnt värde som en funktion av antalet kast. Vi ser i diagrammet att den relativa frekvensen kommer allt närmare värdet 0,50 när antalet kast ökar. Detta fenomen kallas de relativa frekvensernas stabilitet. Vid de tillfällen där sannolikheten går att bestämma med likformig sannolikhetsfördelning, stämmer denna överens med den relativa frekvensen. Om det inte är symmetri, så kan beräkningen av den relativa frekvensen vara den enda metod som ger ett värde på sannolikheten. Ju fler försök som gjörs desto bättre värde får vi på sannolikheten för en viss händelse. Sannolikhetslära - 9

10 G2.1 Under en lång tid har man studerat gymnasiebetygen, i gymnasieskolan före 2011, för individuella val vid en gymnasieskola och beräknat följande sannolikheter. Betyg IG G VG MVG Sannolikhet 0,05 0,15 0,45 0,35 Beräkna sannolikheten för a) G på ett individuellt val b) VG eller MVG på valet. G2.2 Tabellen visar de nio vanligaste tilltalsnamnen som getts till flickor år Namn Julia Emma Wilma Hanna Elin Linnéa Amanda Ida Antal per 1000 a) Vad är sannolikheten för att en flicka född detta år fick namnet Elin? b) Vad är sannolikheten för att en flicka född år 2000 fått ett av de åtta vanligaste tilltalsnamnen? G2.3 Frekvensen trafikolyckor i en medelstor stad har undersökts under en lång följd av fredagar. Resultatet framgår av tabellen: Antal olyckor Sannolikhet 0,793 0,151 0,034 0,021 0,001 Beräkna sannolikheten för att det en fredag ska inträffa a) precis en olycka b) högst en olycka c) åtminstone en olycka d) en eller två olyckor. G2.4 Tabellen på nästa sida visar andelen kvinnor som fått minst ett barn i september månad det år de uppnått en viss ålder. a) Vad är sannolikheten för att kvinnor födda 1950 hade fått minst ett barn när de var fyllda 25 år? (Vi antar att september månad är representativt för hela året.) b) Vad är samma värde för kvinnor födda 1970? c) Vad är sannolikheten för att kvinnor födda 1965 har fått minst ett barn vid uppnådda 20 år? d) Vad är sannolikheten för att kvinnor födda 1965 har fått minst ett barn vid uppnådda 25 år? e) Vad är sannolikheten för att kvinnor födda 1965 har fått sitt första barn vid en ålder mellan 20 och 25 år? Sannolikhetslära - 10

11 f) Vad är sannolikheten för att kvinnor födda 1965 har fått sitt första barn vid en ålder mellan 25 och 30 år? Andelen kvinnor som fått minst ett barn i september månad det år de uppnått en viss ålder. Sannolikhetslära - 11

12 3 Oberoende händelser Teori Oberoende händelser Antag att vi kastar en krona två gånger för att se om vi får krona eller klave. Vi inser att sannolikheten för att få krona vid första kastet är 0,5. Även vid andra kastet är sannolikheten för krona 0,5. Sannolikheten för att få krona även denna gång minskar inte, även om händelsen krona skulle ha inträffat vid första kastet. Kronan minns inte vad som hände vid första kastet. Man säger att de två händelserna är oberoende. Vi kan slå fast att om vi har två oberoende händelser A och B, så är sannolikheten för att både A och B inträffar: P(A och B) = P(A) P(B). Alltså är P(krona i första kastet och krona i andra kastet) = 0,5 0,5 (= 0,25). Vi tänker oss två trafikljus L 1 och L 2. Där L 1 befinner sig i en stad under det att L 2 finns i en helt annan stad. Om sannolikheten för att L 1 och L 2 var för sig skall visa rött är 0,4 så är sannolikheten 0,4 0,4 (= 0,16) för att de samtidigt visar rött. De är oberoende av varandra. Det finns inget orsakssamband mellan dem. Om vi däremot tänker oss att de två ljussignalerna befinner sig nära varandra och på samma genomfartsled i en stad, så är det inte säkert att sannolikheten för att bägge visar rött eller grönt är oberoende. Stadens trafiktekniker kan ha ordnat det så att en bilist som får grönt ljus vid en signal även med stor sannolikhet får grönt vid efterföljande signal. De vill undvika trafikstockningar och tomgångskörning. I detta fall är de två händelserna inte oberoende. Sannolikhetslära - 12

13 Teori Träddiagram Vi har en två år gammal telekatalog och vill bedöma hur användbar den är. Den uppgiften kan illustreras och lösa med ett träddiagram. Ett sådant brukar ritas upp och ned, med roten uppåt. Efter ett år är 70% av uppgifterna korrekta och resten, 30%, har förändrats. Det symboliseras i träddiagrammet här bredvid av grenarna SA och SB där SA anger sannolikheten att en slumpvis vald uppgift är oförändrad (70%) och SB anger att den har förändrats (30%). Till punkten A kommer vi om ett år har turen att använda någon av de 70% korrekta uppgifterna i katalogen. Men när vi efter två år använder samma telekatalog är sannolikheten att vi får korrekta uppgifter bara 0,7 0,7 = 0,49. Detta motsvarar grenen SAC. Det är tydligen mer sannolikt att en eller bägge av två slumpvis valda kataloguppgifter är felaktig(a) än att den (de) är korrekta. Grenen SAD symboliserar sannolikheten att få tag i en uppgift som bara ändrats det andra året. På samma sätt betyder gren SBE sannolikheten att en slumpvis vald uppgift bara ändrats det första, men inte det andra året. Grenen SBF till slut anger sannolikheten att en uppgift ändrats båda åren. Vi har antagit att händelsen att en kataloguppgift ändrats andra året är oberoende av om det ändrats första året. Händelse Sannolikhet Ingen förändring vare sig år 1 eller 2 (SAC) 0,7 0,7 = 0,49 = 49% Förändring år 1 men inte år 2 (SBE) 0,3 0,7 = 0,21 = 21% Förändring år 2 men inte år 1 (SAD) 0,7 0,3 = 0,21 = 21% Förändring både år 1 ochår 2 (SBF) 0,3 0,3 = 0,09 = 9% Hela utfallsrummet 1,00 = 100% Sannolikhetslära - 13

14 G3.1 William och Wilma kastar pil mot en tavla. William träffar med sannolikheten 3/5 och Wilma med sannolikheten 2/3. Beräkna sannolikheten för att minst en av dem träffar om de kastar en pil vardera. G3.2 Sara gör en subjektiv uppskattning av sannolikheten för att hon skall bli godkänd på ett större matematikprov till 0,8. Matematikläraren erbjuder henne att få göra ett omprov om hon inte blir godkänd. Eftersom Sara vid omprovstillfället känner till sina svagheter i matematik uppskattar hon sannolikheten för att klara detta prov till 0,9. Vilken är sannolikheten för att Sara blir godkänd på ett av proven? Varför har vi kallat sannolikheten subjektiv? G3.3 En urna innehåller tre svarta och två vita kulor. Man tar på måfå en kula ur urnan, antecknar färgen och lägger tillbaks den. Man tar ytterligare en kula, antecknar och lägger tillbaks. Beräkna sannolikheten för att man får a) två svarta kulor c) en svart och en vit. b) två vita kulor G3.4 Vid en gymnasieskola kan man läsa tyska och/eller spanska, steg 3, som individuellt val. Sannolikheten för att en elev har valt tyska eller spanska är 0,10 respektive 0,15. Kan man då vara säker på att sannolikheten för att en elev valt både tyska och spanska är 0,10 0,15? Sannolikhetslära - 14

15 V3.5 Antag att man i en kommun kommit fram till följande sannolikheter: (i) Om det är torrt väder en dag, så är sannolikheten för torrt väder nästa dag 2/3. (ii) Om det är blött väder en dag, är sannolikheten för torrt väder nästa dag 1/2. Beräkna sannolikheten för att det skall bli torrt väder i övermorgon, om det är torrt väder i dag. V3.6 Vår vän Sara, som är intresserad av sannolikhetsberäkningar, uppskattar sannolikheten till 0,8 för att hon skall korrekt besvara minst 70% av frågorna i ett engelskt ordtest. Testfrågorna kommer slumpmässigt från en engelsk-svensk ordlista. Vad är sannolikheten för att hon klarar tre test i rad med minst 70- procentigt korrekta svar? V3.7 Cathrine som är på semester på Madeira, tycker särskilt mycket om tre av deras räter. Det är espetada, ett grillspett av oxköttskuber smaksatt med vitlök, lagerblad och salt. Spetten grillas över öppen eld. Rätten serveras med friterade majsgrötskuber. Vidare är det espada en mycket populär djuphavsfisk tillagad med curry och banan och espadarte som är svärdfisk, som serveras med varmt sötpotatisbröd. Tre dagar i följd kastar hon tärning om vilken huvudrätt hon skall välja. Om tärningen visar 1, 2 eller 3 väljer hon espetada. Visar tärningen 4 eller 5 väljer hon espada. Till slut, om tärningen visar 6 väljer hon espadarte. a) Vad är sannolikheten för att hon får äta samma huvudrätt tre dagar i följd? b) Vad är sannolikheten för att hon får olika rätter var och en av de tre dagarna? V3.8 Henri tippar en stryktipsrad på måfå. Vilken är sannolikheten för att han får a) 13 rätt b) 0 rätt? Sannolikhetslära - 15

16 V3.9 Vilken är sannolikheten för att man får tre hjärter om man drar tre kort ur en kortlek och efter varje dragning lägger tillbaka kortet (dragning med återläggning)? V3.10 En urna innehåller fyra kulor numrerade 1, 2, 3 och 4. a) Man tar på måfå och utan återläggning tre kulor ur urnan. Rita ett träddiagram och beräkna sannolikheten för att summan av de erhållna talen är 8. b) Man tar på måfå och med återläggning tre kulor ur urnan. Rita ett träddiagram och beräkna sannolikheten för att summan av de erhållna talen är 8. V3.11 Vid tärningsspelet Yatsy kastar man fem vanliga tärningar samtidigt. Beräkna sannolikheten för att man därvid får a) yatsy, dvs alla tärningar lika b) liten straight eller stor straight dvs (1, 2, 3, 4, 5) eller (2, 3, 4, 5, 6) V3.12 Romarna använde sig vid tärningsspel ofta av en tärning kallad talus. Denna hade endast fyra plana sidor med respektive 1, 3, 4 och 6 ögon. Beräkna sannolikheten för att, vid kast med fyra talus-tärningar få a) Venus, dvs olika siffror på alla tärningarna b) Canis, ettor på alla tärningarna. Sannolikhetslära - 16

17 Några sannolikhetsuppgifter utan svar En apparat innehåller två mekaniska komponenter, A och B: Sannolikheten för att A går sönder under ett år är 0,4 och för att B går sönder är 0,1. A och B går sönder oberoende av varandra. Vad är sannolikheten att a) både A och B går sönder b) A men inte B går sönder c) exakt en av komponenterna går sönder? I en låda finns kulor i två storlekar och med ett flertal färger. Av kulorna är 1/3 små och 2/5 röda. Beräkna sannolikheten att en slumpvis vald kula är antingen liten eller röd, förutsatt att hälften av de små kulorna är röda. Ulla åker bil till skolan varje morgon. På vägen dit passerar hon två trafikljus som hon tycker alltid visar rött. Det första trafikljuset visar rött ljus i 68 sekunder och någonting annat än rött ljus i 34 sekunder. Det andra trafikljuset visar rött ljus i 78 sekunder och någonting annat än rött ljus i 32 sekunder. Trafikljusen slår om helt oberoende av varandra. a) Hur stor är sannolikheten att hon får rött ljus vid det första trafikljuset? b) Hur stor är sannolikheten att hon får rött ljus vid båda trafikljusen? (Np B ht 98) Penninglotten har funnits cirka 100 år i Sverige. Den har numera en dragningsdel och en skrapdel. Dragningsdelen har högsta vinsten kr och skrapdelen kr. En lott kostar 50 kr. Nedanstående vinstplan är baserad på lotter. Dragningsvinster Skrapvinster Antal vinster Värde(kr) Totalt(kr) Antal vinster Värde(kr) Totalt(kr) a) Vad är sannolikheten för att få en vinst vid dragningen? b) Vad är sannolikheten för att få en skrapvinst? c) Vad är sannolikheten att få en vinst vid dragningen eller en skrapvinst? d) Vad är sannolikheten för att få högsta vinsten vid dragningen eller högsta skrapvinsten? e) Vad är sannolikheten för att vinna mer än 1000 kr? f) Vad är sannolikheten för att få en vinst som räcker till att köpa en ny lott? Sannolikhetslära - 17

18 M atematiken i historien Blaise Pascal och Pierre de Fermat brukar nämnas som de första matematikerna som utvecklade sannolikhetslärans grunder. Men redan den italienske matematikern Gerolamo Cardano ( ) hade lämnat viktiga bidrag till sannolikhetsbegreppet. Många av de uppgifter som vi löst tidigare tillhör den typ av uppgifter som intresserade dessa matematiker. Sannolikhetsläran har också anknytningar till statistiken. Exempel: Vad är sannolikheten för att få exakt 5 treor och åtminstone 4 sexor, om vi kastar en tärning 50 gånger? Sannolikhetsteorin har fått stor användning i naturvetenskapliga och samhällsvetenskapliga ämnen, i industri och handel. Den används på så skilda fält som genetik, kvantfysik och försäkringsfrågor. V3.13 Ett problem som sysselsatte Pascal och Fermat var frågan om vilket av följande två alternativ som är mest sannolikt: a) att få minst en sexa vid fyra kast med en tärning b) att få minst en dubbelsexa vid 24 kast med två tärningar. Lös deras problem när du läst om komplementaritet. Blaise Pascal ( ) kom tidigt med sina föräldrar till Paris. Han fick vid 12 års ålder en kopia av Euklides geometri av sin far sedan denne upptäckt sin sons förmåga för matematiska abstraktioner. Vid 14 års ålder började han följa fadern till matematikern Mersennes möten. Här träffades många kända matematiker och filosofer t ex Gassendi och Desargues, och snart kunde Pascal presentera ett antal teorem inom den projektiva geometrin. När familjen flyttar till Rouen, kommer Pascal att hjälpa fadern i dennes arbete som skatteuppbördsman och uppfinner som hjälpmedel den första digitala räknaren, kallad Pascaline. Den hade stora likheter med de mekaniska räknare som tillverkades på 1940 talet. Det var Pascal som upptäckte lufttryckets avtagande med höjden över havsytan. Pascal arbetade hela sitt liv intensivt med matematiska, naturvetenskapliga och filosofiska frågor. Pascal kom under slutet av sitt korta liv att ansluta sig till jansenisterna. Denna rörelse hade sitt centrum i klostret Port Royal i Paris. Hans filosofiska och religiösa tankar publicerades efter hans död i verket Pensées (Tankar). Utan Gud är människan intet, och utan tro på Gud har livet ingen mening, menar Pascal. Sannolikhetslära - 18

19 V3.14 Monty Hall - Öppna dörr och vinn en bil. I USA har förekommit TV-program, ledda av Monty Hall som givit namn åt ett problem som uppstår. Du ställs inför valet att få öppna en av tre dörrar. Bakom två av dörrarna finns en get och bakom den tredje en lyxbil. När du valt en dörr, som du ännu inte får öppna, väljer programledaren en dörr bakom vilken det finns en get. Ditt problem är nu, skall du hålla fast vid din först valda dörr, eller skall du välja den dörr som återstår? Vad är sannolikheten för att få en lyxbil genom att stanna kvar, och vad är den om du byter dörr? När du bestämt dig, öppnar ledaren den dörr du valt och där finner du din lyxbil eller din get. Sannolikhetslära - 19

20 Problemlösning i grupp Kort i müslipaket Antag att det finns ett djurkort i varje paket av din favoritmüsli. Det finns sex olika sorters djurkort. Dessa förekommer med lika sannolikhet och är slumpmässigt fördelade på paketen. Hur många paket måste du köpa för att få alla sex djurkorten? Materiel: Tärning, papper och penna. Metod och uppgift: I stället för att köpa müslipaket med bilder gör vi en modell av verkligheten. De olika antalet ögon på en tärning får motsvara de sex korten. Kasta tärningen tills du fått upp alla möjliga antal ögon; ett öga motsvarar kort 1, två ögon motsvarar kort 2, och så vidare. Fyll i dina resultat i en tabell. Första raden i tabellen nedan visar att det behövdes 15 kast för att kort 3 till slut skulle dyka upp. Kort 1 Kort 2 Kort 3 Kort 4 Kort 5 Kort 6 Antal kast Exemplet ovan Försök 2 Försök 3 Försök 4 Försök 5 Försök 6 Försök 7 Försök 8 Försök 9 Försök 10 Försök 12 Försök 13 Försök 14 Försök 15 Försök 16 Försök 17 Försök 18 Försök 19 Försök 20 Försök 21 Försök 22 Försök 23 Försök 24 Försök 25 Beräkna därefter medelvärdet av antalet kast som krävdes. Detta är det experimentellt bestämda väntevärdet. Teori och uppgift: Det kan visas teoretiskt att det i genomsnitt krävs att man köper = 14,7 müslipaket för att få en komplett samling av sex djurkort. Detta är det teoretiskt bestämda väntevärdet. Hur stämmer detta med dina försöksresultat? Sannolikhetslära - 20

21 Modell Komplementhändelser Ett lyckohjul har fyra målade lika stora sektorer, röd, gul, grön och blå. Vi vet bara att sektorn röd är 45. Vad är sannolikheten för att man hamnar på gult, grönt eller blått? P(röd) + P(gul) +P(grön) + P(blå) = 1. Alltså är P(gul) +P(grön) + P(blå) = 1 P(A) = 1 0,25 = 0,75. Om vi definierar komplementet till A, A, som alla de utfall som inte finns i händelsen A, så får vi följande regel: P( A) = 1 P(A) V3.15 Vad är sannolikheten för att två tärningar som kastas visar olika? V3.16 I en urna ligger 5 röda och 4 blå kulor. a) Vad är sannolikheten för att minst en kula är blå, om vi plockar upp två kulor? b) Vad är sannolikheten för att högst en kula är röd, om vi plockar upp två kulor? V3.17 Vad är sannolikheten för att få minst en sexa vid kast med a) två tärningar b) tre tärningar c) fyra tärningar? V3.18 Utanför en affär finns tre parkeringsplatser för kunder. Var och en av platserna är under affärstid ledig i genomsnitt sex minuter per timme. Beräkna sannolikheten för att a) alla tre platserna är upptagna när man kommer för att handla b) åtminstone en av platserna är ledig c) endast en av platserna är ledig. Sannolikhetslära - 21

22 Facit 1.1 a) Eftersom det finns 4 knektar så är P(knekt) = 1/13. b) P(hjärter kung) = 1/52. c) Eftersom det finns 13 spader så är P(spader) = 1/ a) Två av utfallen i figuren på sid har exakt en klave. Alltså är P(exakt en klave) = 1/2. b) Tre av utfallen har minst en krona. Alltså är P(minst en krona) = 3/4. c) Tre av utfallen har högst en krona. Alltså är P(högst en krona) = 3/ a) 6 av punkterna i utfallsrummet visar samma poängtal. P = 6/36 = 1/6. b) 15 av punkterna i utfallsrummet visar att poängsumman är åtminstone 8. P = 15/36 = 5/12. c) 10 av punkterna i utfallsrummet visar att poängsumman är högst 5. P = 10/36 = 5/18. d) 16 av punkterna i utfallsrummet visar att man får högst en poäng mer på den ena tärningen än den andra P = 16/36 = 4/ a) 10/100 = 1/10 b) 90/100 = 9/10 c) 21/100 = 9/25 d) 1/ ( )/306 = 0,32 1.6a) 1/2 b) 3/10 c)3/10 1.7a) 2/7 b) 3/7 c)2/7 1.8 Det finns 25 primtal mellan 1 och 100. Alltså är P(primtal)= 1/4. Sannolikhetslära - 22

23 1.9 a) 4/16 = 1/4 b) 8/16 = 1/2 c) 12/16 = 3/ / a) Det finns 12 hjärter och 51 kort kvar. Alltså P = 12/51 = 4/17. b) Det finns 11 hjärter och 50 kort kvar. Alltså P = 11/ Sannolikheten för en trea är 15/120 = 1/8. Tärningen är alltså en oktaaeder Det verkar rimligt att varje antal ögon kommer upp 6 gånger av 120. Alltså är P = 6/120 = 1/20. Det verkar vara en ikosaeder. 2.1a) 0,15 b) 0,80 2.2a) 0,022 b) 0, a) 0,151 b) 0, a) 0,55 b) 0,32 c) 0, = c) 0,207 d) 0,185 d) 0,36 e) 0,31 f) 0,66 0,36 = 0, ,8 + 0,2 0,9 = 0,98 Sannolikhetslära - 23

24 3.3 Sannolikheten för att ta en svart kula är 3/5 = 0,6. Sannolikheten för att ta en vit kula är 2/5 = 0,4. a) 0,6 0,6 = 0,36 b) 0,4 0,4 = 0,16 c) 0,6 0,4 + 0,4 0,6 = 0, ,10 0,15 gäller bara om händelserna är oberoende. Det skulle kunna vara så att en språkintresserad elev vill ha flera språk. I detta fall är inte båda valen oberoende och inte heller om valet gäller för elever med få språk som vill pröva ett enda nytt språk. 3.5 P(torrt väder i övermorgon) = = + = + = ,8 0,8 0,8 = 0, P(espetada) =1/2 P(espada) = 1/3 P(espadarte) = 1/6 a) (1/2) 3 + (1/3) 3 + (1/6) 3 = 0,17 b) (1/2)(1/3)(1/6) + (1/2)(1/6)(1/3) + (1/3)(1/2)(1/6) + (1/3)(1/6)(1/2) (1/6)(1/2)(1/3) + (1/6)(1/3)(1/2) = 6 = 1/ a) (1/3) 13 = 6, b) (2/3) 13 = 0, ( ) = 0, a) Summan 8 kan fås på 6 olika sätt vid dragning utan återläggning: 1+3+4, 1+4+3, 3+1+4, 3+4+1, 4+1+3, Totala antalet möjliga utfall vid dragning av 3 6 kulor av 4 är 4 3 2=24. Den sökta sannolikheten blir alltså = 0, b) Vid dragning med återläggning tillkommer 6 möjligheter att få summan 8, nämligen 2+2+4, 2+4+2, 4+2+2, 2+3+3, 3+2+3, Antalet gynnsamma utfall är alltså 6+6=12. Totala antalet utfall är nu 4 3 =64. Sannolikheten blir alltså 12 3 = = 0, Sannolikhetslära - 24

25 3.11 a) Totala antalet utfall är 6 5. Antalet gynnsamma utfall = 6. P(Alla siffror 6 1 lika) = = = 7, ,08% b) Totala antalet utfall är 6 5. Antalet gynnsamma utfall = 2. P( liten straight eller 2 1 stor straight ) = 5 6 = 3888 = 2, ,03% a) Totala antalet utfall = 4 4 = 256. Antalet för Venus gynnsamma fall = =24. Den första tärningen har 4 möjligheter, den andra 3 och så vidare. P(olika siffror på alla tärningarna) = = b) Antalet gynnsamma fall är = 1. P(ettor på alla tärningarna) = Händelsen minst en sexa är komplementet till händelsen ingen sexa. P(ingen sexa) = I fyra kast blir denna sannolikhet = P(minst en sexa) = 1 1 0,518. P(två sexor) =. P(inte två 6 36 sexor) = 1 1 = 35. Sannolikheten för händelsen minst en dubbelsexa vid kast med två tärningar = 1 0,491. Det är tydligen lite mer 36 sannolikt att få en sexa vid 4 kast med en tärning (6 utfall vid varje kast) än två sexor vid 24 kast med två tärningar (36 utfall vid varje kast) trots att antalet kast i båda fallen är två tredjedelar av antalet utfall. Den flitige tärningsspelaren och adelsmannen Chevalier de Méré ansåg att sannolikheterna borde vara lika, men han hade upptäckt att de inte var det och ville ha en förklaring på detta. Han skrev därför år 1654 ett brev till matematikern Blaise Pascal ( ) och lade fram problemet. Pascal och matematikern Pierre de Fermat ( ) började brevväxla och utredde tillsammans saken. Denna brevväxling anses lägga grunden till den moderna sannolikhetsläran Vi vet från början att sannolikheten för att bilen finns bakom den dörr som jag väljer är 1/3 och att sannolikheten för att den är bakom någon av de två andra är 2/3. Vi vet också att bakom minst en av dessa dörrar är det en get. När så programledaren öppnar dörren med en get bakom, så vet vi nu att bilen inte är bakom just den dörren. Därför är det 2/3 chans att den är bakom den tredje dörren, och därför bör vi byta Komplementet är att de två tärningarna visar lika. P(De två tärningarna visar lika) = 1/6. Alltså är P(De två tärningarna visar olika) = 5/6. Sannolikhetslära - 25

26 3.16 a) Komplementet till att minst en kula är blå är att ingen är blå. Sannolikheten för två röda är 5 4 = 5. Alltså är P(minst en kula är blå) = = b) Komplementet till att högst en kula är röd är att två är röda som enligt a) är =. Alltså är svaret = Komplementet är ingen sexa. a) 1 (5/6) 2 = 11/36 b) 1 (5/6) 3 = 91/216 c) 1 (5/6) 4 = 671/ Var och en av platserna är upptagen 54 min/h = 0,9. a) Den sökta sannolikheten är 0,9 3 = 0,73 = 73%. b) Händelsen att åtminstone en av platserna är ledig är komplementet till a). P(en plats ledig) = 1 0,9 3 = 0,271 27% c) Sannolikheten att en speciell plats och endast den är ledig är 0,1 0,9 0,9 = 0,081. Detta kan ske på tre olika sätt. P(en och endast en plats ledig) = 3 0,081 = 0,243 24% Sannolikhetslära - 26

Sannolikhetsbegreppet

Sannolikhetsbegreppet Kapitel 3 Sannolikhetsbegreppet Betrakta följande försök: Ett symmetriskt mynt kastas 100 gånger och antalet krona observeras. Antal kast 10 20 30 40 50 60 70 80 90 100 Antal krona 6 12 16 21 25 30 34

Läs mer

7-1 Sannolikhet. Namn:.

7-1 Sannolikhet. Namn:. 7-1 Sannolikhet. Namn:. Inledning Du har säkert hört ordet sannolikhet förut. Hur sannolikt är det att få 13 rätt på tipset eller 7 rätt på lotto? I detta kapitel skall du lära dig vad sannolikhet är för

Läs mer

5Chans och risk. Mål. Grunddel K 5. Ingressen

5Chans och risk. Mål. Grunddel K 5. Ingressen Chans och risk ål När eleverna har studerat det här kapitlet ska de kunna: förklara vad som menas med begreppet sannolikhet räkna ut sannolikheten för att en händelse ska inträffa känna till hur sannolikhet

Läs mer

Kombinatorik. Bilder: Akvareller gjorda av Ramon Cavallers, övriga diagram och foton av Nils-Göran. Nils-Göran Mattsson och Bokförlaget Borken, 2011

Kombinatorik. Bilder: Akvareller gjorda av Ramon Cavallers, övriga diagram och foton av Nils-Göran. Nils-Göran Mattsson och Bokförlaget Borken, 2011 Kombinatorik Teori Multiplikationsprincipen..2 Teori Permutationer 3 Teori Kombinationer...5 Modell Dragning utan återläggning & sannolikheter 8 Teori Duvslageprincipen 11 Teori Pascals triangel & Mosertal...13

Läs mer

händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar.

händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar. Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. 1 Grundläggande begrepp 1.01 När vi singlar slant eller kastar tärning

Läs mer

5.3 Sannolikhet i flera steg

5.3 Sannolikhet i flera steg 5.3 Sannolikhet i flera steg När man singlar slant kan man få utfallen krona eller klave. Sannolikheten att få klave är - och krona ^. Vad är sannolikheten att fä krona två. kast i rad? Träddlagram För

Läs mer

Betingad sannolikhet och oberoende händelser

Betingad sannolikhet och oberoende händelser Kapitel 5 Betingad sannolikhet och oberoende händelser Betrakta ett försök med ett ändligt utfallsrum Ω och en händelse A vid detta försök. Definitionsmässigt gäller att A Ω och försökets utfall ligger

Läs mer

Kombinatorik och sannolikhetslära

Kombinatorik och sannolikhetslära Grunder i matematik och logik (2018) Kombinatorik och sannolikhetslära Marco Kuhlmann Sannolikhetslära Detta avsnitt är för det mesta en kompakt sammanfattning av momentet sannolikhetslära som ingår i

Läs mer

7-2 Sammansatta händelser.

7-2 Sammansatta händelser. Namn: 7-2 Sammansatta händelser. Inledning Du vet nu vad som menas med sannolikhet. Det lärde du dig i kapitlet om just sannolikhet. Nu skall du tränga lite djupare i sannolikhetens underbara värld och

Läs mer

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. I slutet av dokumentet hittar du uppgifter med vilka du kan testa om

Läs mer

Matematisk statistik - Slumpens matematik

Matematisk statistik - Slumpens matematik Matematisk Statistik Matematisk statistik är slumpens matematik. Började som en beskrivning av spel, chansen att få olika utfall. Brevväxling mellan Fermat och Pascal 1654. Modern matematisk statistik

Läs mer

Sannolikhetslära till pdf.notebook. May 04, 2012. Sannolikhetslära. Kristina.Wallin@kau.se

Sannolikhetslära till pdf.notebook. May 04, 2012. Sannolikhetslära. Kristina.Wallin@kau.se May 0, 0 Sannolikhetslära Kristina.Wallin@kau.se May 0, 0 Centralt innehåll Sannolikhet Åk Slumpmässiga händelser i experiment och spel. Åk 6 Sannolikhet, chans och risk grundat på observationer, experiment

Läs mer

Föreläsning 2. Kapitel 3, sid Sannolikhetsteori

Föreläsning 2. Kapitel 3, sid Sannolikhetsteori Föreläsning 2 Kapitel 3, sid 47-78 Sannolikhetsteori 2 Agenda Mängdlära Kombinatorik Sannolikhetslära 3 Mängdlära Används för att hantera sannolikheter Viktig byggsten inom matematik och logik Utfallsrummet,

Läs mer

F2 SANNOLIKHETSLÄRA (NCT )

F2 SANNOLIKHETSLÄRA (NCT ) Stat. teori gk, ht 2006, JW F2 SANNOLIKHETSLÄRA (NCT 4.1-4.2) Ordlista till NCT Random experiment Outcome Sample space Event Set Subset Union Intersection Complement Mutually exclusive Collectively exhaustive

Läs mer

Sannolikhet DIAGNOS SA3

Sannolikhet DIAGNOS SA3 Sannolikhet DIAGNOS SA3 Grundläggande sannolikhet Diagnosen omfattar 9 uppgifter där eleverna ska ges möjlighet att visa om de förstår innebörden av begreppet sannolikhet och slump samt om de har strategier

Läs mer

Kap 2: Några grundläggande begrepp

Kap 2: Några grundläggande begrepp Kap 2: Några grundläggande begrepp Varför sannolikhetslära är viktigt? Vad menar vi med sannolikhetslära? Träddiagram? Vad är den klassiska, empiriska och subjektiva sannolikheten? Vad menar vi med de

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07 Bengt Ringnér August 31, 2007 1 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Händelser och sannolikheter

Läs mer

Kombinatorik. Författarna och Bokförlaget Borken, 2011. Kombinatorik - 1

Kombinatorik. Författarna och Bokförlaget Borken, 2011. Kombinatorik - 1 Kombinatorik Teori Multiplikationsprincipen..2 Teori Permutationer 3 Teori Kombinationer...5 Modell Dragning utan återläggning & sannolikheter 8 Teori Duvslageprincipen 11 Teori Pascals triangel & Mosertal...13

Läs mer

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik Jörgen Säve-Söderbergh Information om kursen Kom ihåg att

Läs mer

Introduktion till sannolikhetslära. Människor talar om sannolikheter :

Introduktion till sannolikhetslära. Människor talar om sannolikheter : F9 Introduktion till sannolikhetslära Introduktion till sannolikhetslära Människor talar om sannolikheter : Sannolikheten att få sju rätt på Lotto Sannolikheten att få stege på en pokerhand Sannolikheten

Läs mer

Tema Förväntat värde. Teori Förväntat värde

Tema Förväntat värde. Teori Förväntat värde Tema Förväntat värde Teori Förväntat värde Begreppet förväntat värde används flitigt i diskussioner om olika pokerstrategier. För att kunna räkna ut det förväntade värdet så tar du alla möjliga resultat,

Läs mer

Utfall, Utfallsrummet, Händelse. Sannolikhet och statistik. Utfall, Utfallsrummet, Händelse. Utfall, Utfallsrummet, Händelse

Utfall, Utfallsrummet, Händelse. Sannolikhet och statistik. Utfall, Utfallsrummet, Händelse. Utfall, Utfallsrummet, Händelse Utfall, Utfallsrummet, Händelse Sannolikhet och statistik Sannolikhetsteorins grunder HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Denition 2.1 Resultatet av ett slumpmässigt försök kallas

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Grundbegrepp, axiomsystem, betingad sannolikhet, oberoende händelser, total sannolikhet, Bayes sats Uwe Menzel uwe.menzel@slu.se 23 augusti 2017 Slumpförsök Ett försök

Läs mer

Slumpförsök för åk 1-3

Slumpförsök för åk 1-3 Modul: Sannolikhet och statistik Del 3: Att utmana elevers resonemang om slump Slumpförsök för åk 1-3 Cecilia Kilhamn, Göteborgs Universitet Andreas Eckert, Linnéuniversitetet I följande text beskrivs

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 01.09.2008 Jan Grandell & Timo Koski () Matematisk statistik 01.09.2008 1 / 48 Inledning Vi ska först ge några exempel på

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann

Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann Marco Kuhlmann Detta kapitel behandlar grundläggande begrepp i sannolikhetsteori: enkel sannolikhet, betingad sannolikhet, lagen om total sannolikhet och Bayes lag. 1 Enkel sannolikhet Den klassiska sannolikhetsteorin,

Läs mer

Uppgifter 6: Kombinatorik och sannolikhetsteori

Uppgifter 6: Kombinatorik och sannolikhetsteori Grunder i matematik och logik (2017) Uppgifter 6: Kombinatorik och sannolikhetsteori Marco Kuhlmann Kombinatorik Nivå A 6.01 En meny består av tre förrätter, fem huvudrätter och två efterrätter. På hur

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

1 Föreläsning I, Mängdlära och elementär sannolikhetsteori,

1 Föreläsning I, Mängdlära och elementär sannolikhetsteori, 1 Föreläsning I, Mängdlära och elementär sannolikhetsteori, LMA201, LMA521 1.1 Mängd (Kapitel 1) En (oordnad) mängd A är en uppsättning av element. En sådan mängd kan innehålla ändligt eller oändlligt

Läs mer

PLANERING MATEMATIK - ÅK 8. Bok: Y (fjärde upplagan) Kapitel : 5 Ekvationer Kapitel : 6 Sannolikhet och statistik. Elevens namn: Datum för prov

PLANERING MATEMATIK - ÅK 8. Bok: Y (fjärde upplagan) Kapitel : 5 Ekvationer Kapitel : 6 Sannolikhet och statistik. Elevens namn: Datum för prov PLANERING MATEMATIK - ÅK 8 Bok: Y (fjärde upplagan) Kapitel : 5 Ekvationer Kapitel : 6 Sannolikhet och statistik Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ

Läs mer

Statistisk slutledning (statistisk inferens): Sannolikhetslära: GRUNDLÄGGANDE SANNOLIKHETSLÄRA. Med utgångspunkt från ett stickprov

Statistisk slutledning (statistisk inferens): Sannolikhetslära: GRUNDLÄGGANDE SANNOLIKHETSLÄRA. Med utgångspunkt från ett stickprov OSÄKERHET Sannolikhetslära: Om det i ett område finns 32 % med universitetsexamen, vad är sannolikheten att ett stickprov kommer att innehålla 31-33 % med universitetsexamen? Om medelåldern i en population

Läs mer

F3 SANNOLIKHETSLÄRA (NCT ) För komplementhändelsen A till händelsen A gäller att

F3 SANNOLIKHETSLÄRA (NCT ) För komplementhändelsen A till händelsen A gäller att Stat. teori gk, ht 2006, JW F3 SANNOLIKHETSLÄRA (NCT 4.3-4.4) Ordlista till NCT Complement rule Addition rule Conditional probability Multiplication rule Independent Komplementsatsen Additionssatsen Betingad

Läs mer

Kolmogorovs Axiomsystem Kolmogorovs Axiomsystem Varje händelse A tilldelas ett tal : slh att A inträar Sannolikheten måste uppfylla vissa krav: Kolmog

Kolmogorovs Axiomsystem Kolmogorovs Axiomsystem Varje händelse A tilldelas ett tal : slh att A inträar Sannolikheten måste uppfylla vissa krav: Kolmog Slumpvariabel (Stokastisk variabel) Resultat av ett slumpförsök - utgången kann inte kontrolleras Sannolikhet och statistik Sannolikhetsteorins grunder VT 2009 Resultatet kan inte förutspås, men vi vet

Läs mer

1 Mätdata och statistik

1 Mätdata och statistik Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt

Läs mer

Arbetsblad 5:1. Tolka diagram. 1 a) Vilket var kilopriset år 2003? 2 a) Vad kallas den här typen av

Arbetsblad 5:1. Tolka diagram. 1 a) Vilket var kilopriset år 2003? 2 a) Vad kallas den här typen av Arbetsblad 5:1 Tolka diagram Besvara frågorna med hjälp av diagrammen 1 a) Vilket var kilopriset år 2003? b) Hur mycket ökade priset mellan 1991 och 2001? c) Mellan vilka år var ökningen st? Pris (kr/kg)

Läs mer

MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus

MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus STATISTIK/DIAGRAM VAD ÄR STATISTIK? En titt på youtube http://www.youtube.com/watch?v=7civnkawope Statistik omfattar

Läs mer

TAMS79: Föreläsning 1 Grundläggande begrepp

TAMS79: Föreläsning 1 Grundläggande begrepp TMS79: Föreläsning 1 Grundläggande begrepp Johan Thim 31 oktober 2018 1.1 Begrepp Ett slumpförsök är ett försök där resultatet ej kan förutsägas deterministiskt. Slumpförsöket har olika möjliga utfall.

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 5 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

14.1 Diskret sannolikhetslära

14.1 Diskret sannolikhetslära 14.1 Diskret sannolikhetslära 14.1.1 Utfallsrum och händelser Vi ska här studera slumpmässiga försök med ändligt många utfall, resultat. Mängden av utfall kallas försökets utfallsrum. Varje delmängd av

Läs mer

Kapitel 2. Grundläggande sannolikhetslära

Kapitel 2. Grundläggande sannolikhetslära Sannolikhetslära och inferens II Kapitel 2 Grundläggande sannolikhetslära 1 Att beräkna en sannolikhet I många slumpförsök gäller att alla utfall i S är lika sannolika. Exempel: Tärningskast, slantsingling.

Läs mer

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet Stokastisk geometri Lennart Råde Chalmers Tekniska Högskola och Göteborgs Universitet Inledning. I geometrin studerar man geometriska objekt och deras inbördes relationer. Exempel på geometriska objekt

Läs mer

Sannolikheten att vinna ett spel med upprepade myntkast

Sannolikheten att vinna ett spel med upprepade myntkast Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg Del 7: Matematiska undersökningar med kalkylprogram Sannolikheten att vinna ett spel med upprepade myntkast Håkan Sollervall, Malmö

Läs mer

Experimentera i sannolikhet från teoretisk sannolikhet till data

Experimentera i sannolikhet från teoretisk sannolikhet till data Modul: Sannolikhet och statistik Del 3. Sannolikhet kopplingen mellan teoretisk modell och data Experimentera i sannolikhet från teoretisk sannolikhet till data Per Nilsson, Örebro universitet Sannolikhet

Läs mer

Matematisk statistik 9hp för: C,D,I, Pi

Matematisk statistik 9hp för: C,D,I, Pi Matematisk statistik 9hp för: C,D,I, Pi Föreläsning 1, Sannolikhet Stas Volkov September 12, 2017 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F1: Sannolikhet 1/27 Tillämpningar Praktiska detaljer Matematisk

Läs mer

STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017

STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017 MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017 Räknestuga 2 Förberedelser: Lyssna på föreläsningarna F4, F5 och

Läs mer

Kurs: HF1012, Matematisk statistik Lärare: Armin Halilovic Datum: Tisdag 12 april 2016 Skrivtid: 8:15-10:00

Kurs: HF1012, Matematisk statistik Lärare: Armin Halilovic Datum: Tisdag 12 april 2016 Skrivtid: 8:15-10:00 KONTROLLSKRIVNING 1 Kurs: HF1012, Matematisk statistik Lärare: Armin Halilovic Datum: Tisdag 12 april 2016 Skrivtid: 8:15-10:00 Tillåtna hjälpmedel: Miniräknare av vilken typ som helst. Förbjudna hjälpmedel:

Läs mer

Namn: Hundradelar. 4 tiondelar 0, 4 17 tiondelar 1, tiondelar 298 hundradelar. Hundradelar. 98 hundradelar 875 hundradelar

Namn: Hundradelar. 4 tiondelar 0, 4 17 tiondelar 1, tiondelar 298 hundradelar. Hundradelar. 98 hundradelar 875 hundradelar arbetsblad 1:1 Positionssystemet > > Skriv talen med siffror. Glöm inte decimaltecknet. Ental Tiondelar Hundradelar 1 tiondel 0, 1 52 hundradelar 0, 5 2 tiondelar 0, 17 tiondelar 1, 7 9 tiondelar 0, 9

Läs mer

Föreläsning 1, Matematisk statistik Π + E

Föreläsning 1, Matematisk statistik Π + E Introduktion Sannolikhetsteori Beroende Föreläsning 1, Matematisk statistik Π + E Sören Vang Andersen 4 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F1 1/26 Introduktion Sannolikhetsteori

Läs mer

Kurs: HF1012, Matematisk statistik Lärare: Armin Halilovic Datum: Tisdag 12 april 2016 Skrivtid: 8:15-10:00

Kurs: HF1012, Matematisk statistik Lärare: Armin Halilovic Datum: Tisdag 12 april 2016 Skrivtid: 8:15-10:00 KONTROLLSKRIVNING 1 Kurs: HF1012, Matematisk statistik Lärare: Armin Halilovic Datum: Tisdag 12 april 2016 Skrivtid: 8:15-10:00 Tillåtna hjälpmedel: Miniräknare av vilken typ som helst. Förbjudna hjälpmedel:

Läs mer

Vidare får vi S 10 = 8,0 10 4 = 76, Och då är 76

Vidare får vi S 10 = 8,0 10 4 = 76, Och då är 76 Ellips Sannolikhet och statistik lösningar till övningsprov sid. 38 Övningsprov.. i) P(:a äss och :a äss och 3:e äss och 4:e äss ) P(:a äss) P(:a äss :a äss) P(3:e äss :a och :a äss) antal P(4:a äss :a

Läs mer

Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet

Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet Anna Lindgren 30+31 augusti 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F1: Sannolikhet 1/27 Praktiska

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Diskreta fördelningar Uwe Menzel, 2018 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

3 Grundläggande sannolikhetsteori

3 Grundläggande sannolikhetsteori 3 Grundläggande sannolikhetsteori Ämnet sannolikhetsteori har sin grund i studier av hasardspel utförda under 1500- och 1600-talen av bland andra Gerolamo Cardano, Pierre de Fermat och Blaise Pascal. Mycket

Läs mer

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik Statistik Statistik betyder ungefär sifferkunskap om staten Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information. Verkligheten

Läs mer

Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning

Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning Slumpen och hur vi uppfattar den - med och utan tärning Ingemar Holgersson Högskolan Kristianstad grupper elever Gr, 7, 9 och. grupp lärarstudenter inriktning matematik Ca i varje grupp Gjord i Israel

Läs mer

Dagens Teori. A) Försöket att kasta en tärning har sex utfall, vilka vi kan beteckna 1, 2, 3, 4, 5, 6. Utfallsrummet

Dagens Teori. A) Försöket att kasta en tärning har sex utfall, vilka vi kan beteckna 1, 2, 3, 4, 5, 6. Utfallsrummet Dagens Teori 8.1 Diskret sannolikhetslära 8.1.1 Utfallsrum och händelser Vi ska här studera slumpmässiga försök med ändligt många utfall, resultat. Mängden av alla utfall kallas försökets utfallsrum. Varje

Läs mer

STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017

STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017 MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017 Räknestuga 2 Förberedelser: Lyssna på föreläsningarna F4, F5 och

Läs mer

Exempelprov. Matematik Del A, muntlig del. 1abc

Exempelprov. Matematik Del A, muntlig del. 1abc Exempelprov Matematik Del A, muntlig del 1abc 2 DEL A, EXEMPELPROV MATEMATIK 1ABC Innehållsförteckning 1. Instruktioner för att genomföra del A... 5 2. Uppgifter för del A... 6 Version 1 Sten, sax och

Läs mer

Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor

Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor Våren 010 PRÖVNINGSANVISNINGAR Prövning i Matematik B Kurskod MA 10 Gymnasiepoäng 50 Läromedel Prov Muntligt prov Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag Skriftligt

Läs mer

Sannolihhet. och statistik. Vad är möjligt och vad är inte möjligt? Kommer tåget fram i tid? Blir det regn imorgon? Vi bedömer ständigt risker eller

Sannolihhet. och statistik. Vad är möjligt och vad är inte möjligt? Kommer tåget fram i tid? Blir det regn imorgon? Vi bedömer ständigt risker eller - ^^s^^^^'^^ Sannolihhet och statistik Vad är möjligt och vad är inte möjligt? Kommer tåget fram i tid? Blir det regn imorgon? Vi bedömer ständigt risker eller chanser för att olika händelser ska inträffa.

Läs mer

REPETITION 3 A. en femma eller en sexa?

REPETITION 3 A. en femma eller en sexa? REPETITION 3 A 1 Du kastar en vanlig tärning en gång. Hur stor är sannolikheten att du får en femma eller en sexa? 2 Eleverna i klass 8C fick ge betyg på en bok som de hade läst. Diagrammet visar resultatet.

Läs mer

1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt , 2.5

1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt , 2.5 1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt 2.1-2.2, 2.5 Introduktion till kursen. Grundläggande sannolikhetslära. Mängdlära, händelser, sannolikhetsmått Händelse följer samma räkneregler

Läs mer

5. BERÄKNING AV SANNOLIKHETER

5. BERÄKNING AV SANNOLIKHETER 5. BERÄKNING V SNNOLIKHETER 5.1 dditionssatsen Viharnukommitframtilldetstegdärvikanbörjaatträknapraktisktmed sannolikheter. Vi skall utveckla olika regler och begrepp som är nödvändiga för att praktiskt

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1b Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

1.5 Vad är sannolikheten för att ett slumpvis draget spelkort ska vara femma eller lägre eller knekt, dam, kung eller äss?

1.5 Vad är sannolikheten för att ett slumpvis draget spelkort ska vara femma eller lägre eller knekt, dam, kung eller äss? 1 ÖVNINGAR I INDUKTIV LOGIK 1.1 En tärning kastas. Ange sannolikheten för att antalet ögon är a) 3 b) inte 3 c) 3 eller 5 d) jämnt e) mindre än 4 f) jämnt och mindre än 4 g) jämnt eller mindre än 4 h)

Läs mer

TMS136. Föreläsning 1

TMS136. Föreläsning 1 TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi kunna modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill kunna modellera och kvantifiera de risker

Läs mer

Aktiviteten, (Vad är mina chanser?), parvis, alla har allt material,

Aktiviteten, (Vad är mina chanser?), parvis, alla har allt material, Aktiviteten, (Vad är mina chanser?), parvis, alla har allt material, Hur stor är chansen? NAMN Ni kommer att utvärdera olika spel för att hjälpa er förstå sannolikheten. För varje spel, förutsäga vad som

Läs mer

Statistikens grunder HT, dagtid Statistiska institutionen

Statistikens grunder HT, dagtid Statistiska institutionen Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen Orsak och verkan N Kap 2 forts. Annat ord: kausalitet Något av det viktigaste för varje vetenskap. Varför? Orsakssamband ger oss möjlighet

Läs mer

Hur stor är sannolikheten att någon i klassen har en katt? Hur stor är

Hur stor är sannolikheten att någon i klassen har en katt? Hur stor är Karin Landtblom Hur sannolikt är det? Uttrycket Hur sannolikt är det på en skala? använder många till vardags, ofta med viss ironi. I denna artikel om grunder för begreppet sannolikhet åskådliggör författaren

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 1

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 1 Här presenteras förslag på lösningar och tips till många uppgifter i läroboken Matematik 3000 kurs B som vi hoppas kommer att vara till hjälp när du arbetar dig framåt i kursen. Vi har valt att inte göra

Läs mer

Föreläsning 1: Introduktion

Föreläsning 1: Introduktion Föreläsning 1: Introduktion Matematisk statistik David Bolin Chalmers University of Technology March 22, 2014 Lärare och kurslitteratur David Bolin: Rum: E-mail: Fredrik Boulund: Rum: E-mail: Kursansvarig,

Läs mer

Något om sannolikheter, slumpvariabler och slumpmässiga urval

Något om sannolikheter, slumpvariabler och slumpmässiga urval LINKÖPINGS UNIVERSITET Matematiska institutionen Statistik Stig Danielsson 004-0-3 Något om sannolikheter, slumpvariabler och slumpmässiga urval 1. Inledning Observerade data innehåller ofta någon form

Läs mer

Sannolikhetsteori. Måns Thulin. Uppsala universitet Statistik för ingenjörer 23/ /14

Sannolikhetsteori. Måns Thulin. Uppsala universitet Statistik för ingenjörer 23/ /14 1/14 Sannolikhetsteori Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 23/1 2013 2/14 Dagens föreläsning Relativa frekvenser Matematik för händelser Definition av sannolikhet

Läs mer

matematik Hanna Almström Pernilla Tengvall

matematik Hanna Almström Pernilla Tengvall 3 matematik Hanna lmström Pernilla Tengvall Sanoma Utbildning INNEHÅLL KPITEL 7 6 Talet 10 000 8 Positionssystemet ddition, subtraktion strategier 10 Räknare 12 ddition och subtraktion talfamiljer, se

Läs mer

SF1901: SANNOLIKHETSTEORI OCH GRUNDLÄGGANDE SANNOLIKHETSTEORI, STATISTIK BETINGADE SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH GRUNDLÄGGANDE SANNOLIKHETSTEORI, STATISTIK BETINGADE SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 2 GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGADE SANNOLIKHETER, OBEROENDE HÄNDELSER Tatjana Pavlenko 30 augusti, 2016 SANNOLIKHETSGRUNDER (REPETITION) Slumpförsöket

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1 Sannolikhetslära (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi

Läs mer

Högstadiets matematikorientering

Högstadiets matematikorientering Högstadiets matematikorientering STARTKORT MATEMATIKORIENTERING KONTROLLER FYLL I DINA SVAR FRÅN DE OLIKA KONTROLLERNA. HITTA OCH LÖS SÅ MÅNGA KONTROLLER DU HINNER. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Läs mer

SANNOLIKHET OCH SPEL

SANNOLIKHET OCH SPEL SANNOLIKHET OCH SPEL I ÖVNINGEN INGÅR ATT: Formulera, analysera och lösa matematiska problem samt värdera valda strategier, metoder och resultat (MA) Tolka en realistisk situation och utforma en matematisk

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1a Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

Kapitel 2. Grundläggande sannolikhetslära

Kapitel 2. Grundläggande sannolikhetslära Sannolikhetslära och inferens II Kapitel 2 Grundläggande sannolikhetslära 1 Kursinformation 13 föreläsningar: Måns Thulin, mans.thulin@statistik.uu.se 3 h: normalt 2 h föreläsning + 1 h räknestuga 7 räkneövningar:

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2011. Anvisningar Provtid

Läs mer

Problembanken - utmanande problem. Gymnasieskolan, modul: Undervisa matematik utifrån problemlösning

Problembanken - utmanande problem. Gymnasieskolan, modul: Undervisa matematik utifrån problemlösning Problembanken - utmanande problem Gymnasieskolan, modul: Undervisa matematik utifrån problemlösning Modul: Undervisa matematik utifrån problemlösning Problembank Utmanande problem Vissa problem kan användas

Läs mer

STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år.

STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. STYRANDE SATSER 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. Vilket år är du född? 1971 Då har du bara 35 år kvar

Läs mer

Studiehandledning, LMN100, Del 3 Matematikdelen

Studiehandledning, LMN100, Del 3 Matematikdelen Studiehandledning, LMN100, Del 3 Matematikdelen Kurslitteratur Staffan Stukat: Statistikens grunder (c:a 150:-) Vretblad: Algebra och geometri, utdrag (Delas ut på marsträffen) Britton-Garmo: Sannolikhet

Läs mer

18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 )

18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 ) epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver

Läs mer

Sannolikhetslära. Uppdaterad:

Sannolikhetslära. Uppdaterad: Sannolikhetslära Uppdaterad: 8 Har jag använt någon bild som jag inte får använda? Låt mig veta så tar jag bort den. christian.karlsson@ckfysik.se [] Ex : Singla slant två gånger [] Ex : Två tärningar

Läs mer

Sannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott?

Sannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott? Sannolikhetslära 19 februari 009 Vad är en sannolikhet? I vardagen: Vad är sannolikheten att vinna om jag köper en lott? Borde jag ta paraply med mig till jobbet idag? Vad är sannolikheten att det kommer

Läs mer

Sannolikhet och statistik. S

Sannolikhet och statistik. S Sannolikhet och statistik. S Området består av två delar sannolikhet och statistik. Diagnoserna i delområdet sannolikhet avser att kartlägga elevernas förmåga att arbeta med enkel kombinatorik, att använda

Läs mer

samma sätt. Spara varje uppgift som separat Excelfil. För att starta Excel med Resampling-pluginet, välj Resampling Stats for Excel i Start-menyn.

samma sätt. Spara varje uppgift som separat Excelfil. För att starta Excel med Resampling-pluginet, välj Resampling Stats for Excel i Start-menyn. LABORATION 1: SANNOLIKHETER Lös Uppgift 1-8 nedan. Första uppgiften har ledning steg för steg, resterande uppgifter löser du på samma sätt. Spara varje uppgift som separat Excelfil. För att starta Excel

Läs mer

ÄMNESPROV I MATEMATIK Skolår 9 Delprov B

ÄMNESPROV I MATEMATIK Skolår 9 Delprov B ÄMNESPROV I MATEMATIK Skolår 9 Delprov B Till uppgifterna krävs fullständiga lösningar. Din redovisning ska vara så klar att en annan person ska kunna läsa och förstå vad du menar. Det är viktigt att du

Läs mer

Exempel: Väljarbarometern. Föreläsning 1: Introduktion. Om Väljarbarometern. Statistikens uppgift

Exempel: Väljarbarometern. Föreläsning 1: Introduktion. Om Väljarbarometern. Statistikens uppgift Exempel: Väljarbarometern Föreläsning 1: Introduktion Matematisk statistik Det som typiskt karakteriserar ett statistiskt problem är att vi har en stor grupp (population) som vi vill analysera. Vi kan

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR KOMBINATORIK I kombinatoriken sysslar man huvudsakligen med beräkningar av antalet sätt på vilket element i en given lista kan arrangeras i dellistor. Centrala frågor i kombinatoriken är: " Bestäm antalet..."

Läs mer

SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende

SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 14.01.2013 Jan Grandell & Timo Koski () Matematisk statistik 14.01.2013 1 / 25 Repetition:

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

Fira Pi-dagen med Liber!

Fira Pi-dagen med Liber! Fira Pi-dagen med Liber! Specialuppdrag från Uppdrag: Matte o Kul-diagram o Geometri med färg UPPDRAG: MATTE Mattedetektiverna Mattespanarna Hej! Den 14 mars är det Pi-dagen (3.14). Det är värt att uppmärksammas

Läs mer

Vad kan hända? strävorna

Vad kan hända? strävorna strävorna 4D Vad kan hända? föra, följa och värdera matematiska resonemang sannolikhet Avsikt och matematikinnehåll Innebörden i sannolikhet är en viktig kunskap för alla. Det finns gott om exempel på

Läs mer

Något om kombinatorik

Något om kombinatorik Något om kombinatorik 1. Inledning Kombinatoriken är den gren av matematiken som försöker undersöka på hur många olika sätt något kan utföras. Det kan vara fråga om mycket olika slag av problem. Kombinatoriska

Läs mer