Mekanik 2 f or F Obligatorisk del

Storlek: px
Starta visningen från sidan:

Download "Mekanik 2 f or F Obligatorisk del"

Transkript

1 Tentamen i Mekanik 2 för F, FFM521 och FFM520 Tisdagen 15 apri 2015, Examinator: Martin Cederwa Jour: Martin Cederwa, ankn. 3181, besöker tentamenssaarna c:a k och Tiåtna hjäpmede: Physics Handbook, Beta, Chamersgodkänd kakyator. Samma uppgifter och reger gäer för FFM520 och FFM521. Tentamen består av en obigatorisk de (uppg. 1 4) och en överbetygsde (uppg. 5 och 6). Varje uppgift ger maximat 10 poäng. För godkänt (betyg 3) krävs 16 poäng på den obigatoriska deen. Om betyg 3 uppnåtts rättas även överbetygsdeen. Gränser för betyg 4 och 5 är 36 resp. 48 poäng. Aa svar ska motiveras, införda storheter förkaras iksom va av metoder. Lösningarna förväntas vara västrukturerade och begripigt presenterade. Erhåna svar ska i förekommande fa anayseras m.a.p. dimension och rimighet. Även skisserade ösningar kan ge depoäng. Skriv och rita tydigt! Lycka ti! Obigatorisk de 1. En ste kropp med densiteten ρ är formad som ett rätbock med sidorna a, b och c. Bestäm kroppens huvudtröghetsaxar, och beräkna tröghetsmatrisen i ett ämpig system. (En uträkning krävs; ev. färdiga eer memorerade former får inte användas.) 2. Ett höghastighetståg har en inbyggd automatik som utar vagnarna i kurvorna så att ingen kraft i sided ska uppevas. Corioiskrafter kan dock inte kompenseras på detta sätt. Antag att en passagerare har en (horisonte) hastighet reativt vagnen på högst 5 m/s, då tåget kör med farten 360 km/h genom en kurva med krökningsradie 1.0 km. Viken utningsvinke har vagnen? Är Corioiseffekterna acceptaba, eer behöver man bygga om banan? Hur stora krökningsradier anser du vara acceptaba (ur denna synpunkt) för ett tänkt framtida tåg som håer en hastighet 1000 km/h? 3. En pende består av en iten massa m som sitter fast i ett ätt snöre med ängden. Snörets andra ända är fästad i en punkt i taket, som rör sig horisontet en periodisk rörese enigt x(t) = a sin ω 0 t. Penden rör sig endast i panet som spänns av x-axen och vertikaen. Kaa pendens utsagsvinke θ. Bestäm θ(t) för små svängningar om begynnesevikoren är θ(0) = 0, θ(0) = 0. Vad händer då ω 0 sammanfaer med pendens egenfrekvens? 4. Den ena änden av en rak homogen panka kan gida mot ett gatt gov och dess andra ände mot en gatt vägg. Pankan befinner sig hea tiden i ett vertikapan. Om pankan startar från via med en mycket iten vinke mot väggen (så gott som upprätt, atså), vad bir dess vinkehastighet då den bidar vinken θ mot väggen? Vid viken vinke ämnar pankans övre ände väggen?

2 Överbetygsde 5. En rotationssymmetrisk kropp är uppbyggd av en ätt axe med ängden, på viken en tunn homogen cirkeskiva med radie r och massa m är fästad vinkerätt mot axen. Axens ände är momentfritt fästad i en punkt O på ett horisontet pan, och cirkeskivan ruar utan gidning på panet så att precessionshastigheten runt vertikaen genom O är Ω. Bestäm kraften på kroppen från infästningen i punkten O samt kontaktkraften på cirkeskivan i kontaktpunkten med panet (det får förutsättas att den senare saknar horisonte komponent) ti storek och riktning! 6. Ett homogent kot ruar utan gidning på ett suttande pan (en ki). Det suttande panet kan i sin tur gida friktionsfritt mot ett horisontet underag. Vi kan inskränka oss ti att betrakta pan rörese, för både kotet och kien, i ett vertikat pan spänt av vertikaen och injen på kien med brantast utning. Inför reevanta storheter och använd Lagranges formaism för att beräkna kotets acceeration reativt det fixa underaget, samt dess vinkeacceeration. Göm inte att kontroera rimigheten, t.ex. genom att titta på några extrema parameteruppsättningar.

3 Lösningsförsag ti tentamen i Mekanik 2 för F, FFM521 och FFM520 Onsdagen 15 apri 2015, Examinator: Martin Cederwa 1. Av symmetriskä är huvudtröghetsaxarna genom masscentrum paraea med rätbockets sidor. Med avseende på den axe som är parae med sidan med ängden a ser kroppen ut som en rektange med sidorna b och c och täthet ρa. Motsvarande huvudtröghetsmoment bir b/2 b/2 De övriga fås genom permutation. c/2 dy dz ρa(y 2 + z 2 ) = 1 c/2 12 ρabc(b2 + c 2 ). 2. Lutningsvinken α fås genom tan α = v2 /R g. I exempet är detta ungefär 1, så utningen bir c:a 45. (Det verkar som att krökningsradien redan är i minsta aget för denna hastighet.) Corioisacceerationen vid en reativ horisonte hastighet u är 2ωu 1 m/s 2, en tionde av tyngdacceerationen. Kanske i högsta aget. Antag att hastigheten skaas upp med en faktor a och radien med en faktor b. Corioisacceerationen skaas då som a/b, medan tan α går som a 2 /b. Om man accepterar högre utningsvinkar kan man (m.a.p. Corioiseffekter) åta krökningsradien öka med samma faktor som tågets fart. 3. Man kan sätta upp pendens röreseekvationer antingen i ett inertiasystem, där { x = a sin ω0 t + sin θ, y = cos θ, eer i ett system med origo i den acceerade upphängningspunkten, och då inkudera en fiktiv kraft (det senare aternativet kan bi itet effektivare). Om man väjer det förra har man { ẍ = aω 2 0 sin ω 0 t + θ cos θ θ 2 sin θ, ÿ = θ sin θ + θ 2 cos θ. Insättning i mẍ = S sin θ, mÿ = S cos θ mg, och eiminering av snörkraften S ger ekvationen för θ: som för småvinkar approximeras av θ + g sin θ = aω2 0 θ + g θ = aω2 0 Denna differentiaekvation har den amänna ösningen θ(t) = sin ω 0 t cos θ, sin ω 0 t. aω 2 0 (ω 2 ω 2 0 ) sin ω 0t + A cos ωt + B sin ωt, där ω = g. Notera att partikuärösningens ampitud är större ju närmare egenfrekvensen ω 0 igger. Insättning av begynnesevikoren ger A = 0, aω 3 0 B = ω(ω 2 ω0 2).

4 Lämpig rimighetskontro: dimension; mycket stora och mycket små ω 0,... Om ω 0 = ω fås istäet en partikuärösning aω 2 t cos ωt. Den kan förstås bara använcas för små tider. 4. Låt pankans ängd vara och dess massa m. Pankans mittpunkt rör sig på en cirke med radie 2 med farten 2 θ, där θ är vinken mot väggen. Dess röreseenergi är då T = 1 2 m( 2 θ) m2 θ2 = 1 6 m2 θ2. Dess potentiea energi (reativt den vid θ = 0) är V = 1 2mg(cos θ 1). Energiprincipen, T + V = 0, ger farten vid vinken θ, θ 2 = 3g (1 cos θ). För att besvara den andra frågan behöver man betrakta krafter, och ta reda på när den horisontea kraften från väggen skue behöva bi negativ (en dragkraft) för att röresen ska försiggå som antaget. Masscentrum har en centripetaacceeration med beoppet θ 2 2 = 3g 2 (1 cos θ), och en tangentie acceeration θ 2 = 3g 2 sin θ. Den horisontea deen av acceerationen bir 3g 2 (1 cos θ) sin θ + 3g 2 sin θ cos θ = 3g 2 sin θ(2 cos θ 1). Pankan tappar kontakten med väggen då cos θ = 1 2, dvs. θ = Vi börjar med att bestämma rotationsvektorn. Precessionen Ω är given, vi tar den riktad uppåt i figuren. Ruvikoret ger att den momentana rotationsaxen går ängs panet. Spinnet ν är riktat ängs kroppens symmetriaxe, nedåt åt höger i figuren i tesen, och är så stor att dess vertikaa komponent är Ω (nedåt). Det kan vara praktiskt att införa en vinke α, som är vinken mean kroppens symmetriaxe och panet. Då är tan α = r/, och man har ν sin α = Ω. Sedan behöver man ta fram tröghetsmatrisen, för att kunna bida röresemängdsmomentet. Tröghetsmomentet m.a.p. O runt symmetriaxen är I ζ = 1 2 mr2 och runt vinkeräta axar I = 1 4 mr2 + m 2. Precessionsvektorn behöver deas upp i huvudtröghetsriktningar innan dearna mutipiceras med resp. tröghetsmoment. Med ζ-axen riktad ängs spinnvektorn får man då 1 L ζ = I ζ (ν Ω sin α) = I ζ Ω( sin α). sin α Den andra deen av Ω ger upphov ti L ξ, där ξ-axen är vinkerät mot ζ-axen och pekar snett uppåt ti höger, L ξ = I Ω cos α. Den horisontea komponenten av L transporteras av Ω. Med ˆη ut ur pappret: d dt L = ˆηΩ(L ζ cos α + L ξ sin α). Detta ska åstadkommas av de vridande momenten runt O. Tyngdkraften bidrager med mg cos αˆη och kontaktkraften F i panet med F cos α ˆη. Samar vi ihop detta får vi ekvationen F cos α mg cos α = I ζω 2 cos α sin α + (I ξ I ζ )Ω 2 sin α cos α. Här kan man förstås sätta in tröghetsmomenten och de trigonometriska funktionerna, men det bir inte speciet mycket mer uppysande.

5 Den vertikaa kraften i O ska baansera övriga, och är atså mg F. Den horisontea kraften i O ska åstadkomma masscentrums centripetaacceeration, och är mω 2 cos α. 6. Inför några reevanta storheter: Kiens massa: M, kotets massa: m, kotets radie: r, kiens utningsvinke: α. Det finns två frihetsgrader, som kan parametriseras med x, en horisonte koordinat för kien, och θ, en rotationsvinke för kotet. Väj x positiv åt det hå där kien är högre, och θ positiv då kotet ruar uppför. Nu kan vi skriva ned kinetiska och potentiea energier. Det enda som kräver eftertanke är kotets transationshastighet, som har en vertika komponent r θ sin α och en horisonte komponent ẋ + r θ cos α. Lagrangefunktionen bir L = T V = 1 2 Mẋ2 + 1 [ 2 m (r θ sin α) 2 + (ẋ + r θ cos α) 2] mr2 θ2 mgrθ sin α Lagranges ekvationer är Härur kan man ösa för θ och ẍ: = 1 2 (M + m)ẋ2 + mr cos αẋ θ mr2 θ2 mgr sin αθ. 0 = d L dt ẋ L x = (M + m)ẍ + mr cos α θ, 0 = d L L dt θ θ = mr cos αẍ mr2 θ + mgr sin α. 5g sin α θ = 7r ẍ = 5g sin α cos α m 7 M+m cos2 α, m 1 M + m 1 5 m 7 M+m cos2 α. Tecknen verkar bra: kotet acceererar nedåt och trycker kien åt sidan. Uttrycket i nämnaren kan inte bi no. Förutom dimensionskontro kan man koa några extremfa. Om α = 0 händer ingenting, som väntat. Om M >> m bir ẍ = 0, och θ stämmer med ett kot som ruar nedför ett pan. Om α = π 2 fås inte fritt fa, utan runing ängs en odrät vägg, och ẍ = 0.

Tentamen i SG1140 Mekanik II, Inga hjälpmedel. Lycka till! Problem

Tentamen i SG1140 Mekanik II, Inga hjälpmedel. Lycka till! Problem Institutionen för Mekanik Nichoas paidis te: 79 748 epost: nap@mech.kth.se hemsida: http://www.mech.kth.se/~nap/ Institutionen för Mekanik Erik Lindborg te: 79 7583 epost: erik@mech.kth.se Tentamen i SG4

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll. Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 1 september 2012 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, typgodkänd kalkylator, lexikon, samt en egenhändigt skriven A4-sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, typgodkänd kalkylator, lexikon, samt en egenhändigt skriven A4-sida med valfritt innehåll. Tentamen i Mekanik för F, del 2 (gäller även som tentamen i Mekanik F, del B) Tisdagen 16 augusti 2005, 14.00-18.00, V-huset Examinator: Martin Cederwall Jour: NN, tel. 772???? Tillåtna hjälpmedel: Physics

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen 2015-06-12 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med

Läs mer

" e n och Newtons 2:a lag

 e n och Newtons 2:a lag KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4-sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4-sida med valfritt innehåll. Tentamen i Mekanik förf, del B Måndagen 12 januari 2004, 8.45-12.45, V-huset Examinator och jour: Martin Cederwall, tel. 7723181, 0733-500886 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)

Läs mer

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning). STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 19 januari 2013 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016 Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Övningar Arbete, Energi, Effekt och vridmoment

Övningar Arbete, Energi, Effekt och vridmoment Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,

Läs mer

Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik

Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik Måndagen den 8 April 2013, kl. 8-13 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av 5 uppgifter. Kontrollera

Läs mer

Lösning. (1b) θ 2 = L R. Utgå nu från. α= d2 θ. dt 2 (2)

Lösning. (1b) θ 2 = L R. Utgå nu från. α= d2 θ. dt 2 (2) Lösningar till dugga för kursen Mekanik II, FA02, GyLärFys, KandFys, F, Q, W, ES Tekn-Nat Fak, Uppsala Universitet Tid: 7 april 2009, kl 4.00 7.00. Plats: Skrivsalen, Polacksbacken, Uppsala. Tillåtna hjälpmedel:

Läs mer

hela rapporten: www.ls.aland.fi/utbildning_kultur/utbildningsbehov.pbs

hela rapporten: www.ls.aland.fi/utbildning_kultur/utbildningsbehov.pbs hea rapporten: www.s.aand.fi/utbidning_kutur/utbidningsbehov.pbs Utbidningsbehov vem vad hur var Nuvarande utbidningsnivå Kort sammanfattning Hur ser åänningarnas framtida utbidningsbehov ut? Vika har

Läs mer

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del (FFM50) Tid och plats: Tisdagen den 5 maj 010 klockan 08.30-1.30 i V. Lösningsskiss: Per Salomonsson och Christian Forssén. Obligatorisk del 1. Rätt svar på de fyra deluppgifterna

Läs mer

NEWTONS 3 LAGAR för partiklar

NEWTONS 3 LAGAR för partiklar wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar

Läs mer

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13. Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Mekanik III Tentamen den 19 december 2008 Skrivtid 5 tim De som klarat dugga räknar ej uppgift m/2

Mekanik III Tentamen den 19 december 2008 Skrivtid 5 tim De som klarat dugga räknar ej uppgift m/2 Mekanik III Tentamen den 19 december 8 Skrivtid 5 tim De som klarat dugga räknar ej uppgift 1. 1. r mg/r m mg/r 9m/ En klots med en cylinderformad urgröpning med radie r glider på ett horisontellt, friktionsfritt

Läs mer

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13.

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13. Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 15-6-4 Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),

Läs mer

MEKANIK II 1FA102. VIK detta blad om bladen med dina lösningar. Se till så att tentamensvakterna INTE häftar samman lösningsbladen.

MEKANIK II 1FA102. VIK detta blad om bladen med dina lösningar. Se till så att tentamensvakterna INTE häftar samman lösningsbladen. UPPSALA UNIVERSITET Inst för fysik och astronomi Allan Hallgren TENTAMEN 08-08 -29 MEKANIK II 1FA102 SKRIVTID: 5 timmar, kl 8.00-13.00 Hjälpmedel: Nordling-Österman: Physics Handbook Råde-Westergren: Mathematics

Läs mer

Tentamen i Mekanik Statik

Tentamen i Mekanik Statik Tentamen i Mekanik Statik TMME63 2016-06-02, kl 08.00-12.00 Tentamenskod: TEN1 Tentasal: TER1, TER2, TERE Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna ca 09.00) Kursadministratör:

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013

SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013 SF626 Flervariabelanalys Tentamen Måndagen den 27 maj, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. De tre

Läs mer

Övning 8 Diffraktion och upplösning

Övning 8 Diffraktion och upplösning Övning 8 Diraktion och uppösning Diraktionsbegränsade system Om man tittar på ett objekt genom ett perekt (aberrationsritt) optiskt system avgörs hur små saker man kan se av diraktionen i insen. n θ mi

Läs mer

Mot. 1982/83 1435-1444 Motion

Mot. 1982/83 1435-1444 Motion Mot. 1982/83 1435-1444 Motion 1982183 : 1435 Lars Werner m. f. Inandsbanans upprustning Bakgrund Redan 1975 fattade riksdagen ett positivt besut om inandsbanans upprustning. Den första borgeriga regeringen

Läs mer

TFYA16/TEN :00 13:00

TFYA16/TEN :00 13:00 Link opings Universitet Institutionen f or fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Ovningstentamen Mekanik 2015 8:00 13:00 Tentamen best ar av 6 uppgifter som vardera kan ge upp till 4 po ang.

Läs mer

Tentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-03-17 Tentamen i Mekanik SG1130, baskurs P1 m fl OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 1 KTH Mekanik Problemtentamen En tunn homogen stav i jämvikt med massan m har i ena ändpunkten

Läs mer

Byggställning. Scaffold

Byggställning. Scaffold Byggstäning För bruk i trappor Scaffod For use in staircases Björn Larsson Högskoeingenjörseamen i maskiningenjör inriktning produktdesign, 10 Nr /008 Byggstäning Scaffod Björn Larsson mittibushen@hotmai.com

Läs mer

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten.

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten. Tentamen 1, Mekanik KF HT2011 26:e November. Hjälpmedel: Physics handbook alt. Formelblad, Beta mathematics handbook, pennor, linjal, miniräknare. Skrivtid: 5 timmmar. För godkänt krävs minst 18/36 på

Läs mer

. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt:

. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt: KOMIHÅG 19: ------------------------------------------------------ Dämpade vibrationer: Fria fallet Kritisk dämpningsrörelse x(t) = e "# nt ( B + Ct) + x j Svag dämpningsrörelse x(t) = e "#$ nt ( Bcos(

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller LEDNINR TILL ROBLEM I KITEL 4 L 4. Kroppen har en rotationshastighet. Kulan beskriver en cirkelrörelse. För ren rotation gäller v = r v = 5be O t Eftersom och r O är vinkelräta bestäms storleken av kryssprodukten

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet

Läs mer

Rotationsrörelse laboration Mekanik II

Rotationsrörelse laboration Mekanik II Rotationsrörelse laboration Mekanik II Utförs av: William Sjöström Oskar Keskitalo Uppsala 2015 04 19 Sida 1 av 10 Sammanfattning För att förändra en kropps rotationshastighet så krävs ett vridmoment,

Läs mer

Möjliga lösningar till tentamen , TFYY97

Möjliga lösningar till tentamen , TFYY97 Tal Se kurslitteraturen. Möjliga lösningar till tentamen 069, TFYY97 Tal Det finns oändligt många lösningar till detta tal. En möjlig lösning skulle vara följand. Börja med att titta i -led. Masscentrum

Läs mer

Tentamen Mekanik F del 2 (FFM521 och 520)

Tentamen Mekanik F del 2 (FFM521 och 520) Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Lösningsskiss: Christian Forssén Obligatorisk del 1. Lösningsskiss Använd arbete-energi principen.

Läs mer

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt

Läs mer

" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar

 e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------

Läs mer

Mer Friktion jämviktsvillkor

Mer Friktion jämviktsvillkor KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning

Läs mer

MA2003 Tillämpad Matematik I, 7.5hp, 2013-08-12

MA2003 Tillämpad Matematik I, 7.5hp, 2013-08-12 MA003 Tillämpad Matematik I, 7.5hp, 03-08- Hjälpmedel: Räknedosa! Tänk på att dina lösningar ska utformas så att det blir lätt för läsaren att följa dina tankegångar. Ofullständiga lösningar, eller lösningar

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

Repetition Mekanik, grundkurs

Repetition Mekanik, grundkurs Repetition Mekanik, grundkurs Kraft är en vektor och beskrivs med storlek riktning och angreppspunkt F= Fe + F e + Fe x x y y z z Kraften kan flytta längs sin verkninglinje Addera krafter Moment i planet

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Onsdagen den 13 januari 2010 klockan 08.30-12.30 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 006-08-8 Tentaen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen Ett glatt hoogent klot ed assan vilar ot två plana, hårda och glatta

Läs mer

6.2 Partikelns kinetik - Tillämpningar Ledningar

6.2 Partikelns kinetik - Tillämpningar Ledningar 6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste

Läs mer

Tentamen i Mekanik SG1130, baskurs. Problemtentamen

Tentamen i Mekanik SG1130, baskurs. Problemtentamen 013-03-14 Tentamen i Meani SG1130, basurs. OBS: Inga hjälpmedel förutom rit- och srivdon får användas KTH Meani 1. Problemtentamen En ub med massa m står lutad mot en vertial sträv vägg och med stöd på

Läs mer

Kapitel extra Tröghetsmoment

Kapitel extra Tröghetsmoment et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Hjälpmedel: Examinator: Jourhavande lärare: Måndagen den 16 augusti 2010 klockan 14.00-18.00 i V. Physics Handbook, Beta, Lexikon, typgodkänd miniräknare

Läs mer

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum:

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum: Tentamen i : Vågor,plasmor och antenner Kurs: MTF108 Totala antalet uppgifter: 6 Datum: 2006-05-27 Examinator/Tfn: Hans Åkerstedt/491280/Åke Wisten070/5597072 Skrivtid: 9.00-15.00 Jourhavande lärare/tfn:

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, typgodkänd kalkylator, lexikon, samt en egenhändigt skriven A4-sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, typgodkänd kalkylator, lexikon, samt en egenhändigt skriven A4-sida med valfritt innehåll. Tentamen i Mekanik för F, del 2 (gäller även som tentamen i Mekanik F, del B) Tisdagen 29 maj 2007, 08.30-12.30, V-huset Examinator: Martin Cederwall Jour: Per Salomonson, tel. 7723231 Tillåtna hjälpmedel:

Läs mer

Föreläsning 9. Induktionslagen sammanfattning (Kap ) Elektromotorisk kraft (emk) n i Griffiths. E(r, t) = (differentiell form)

Föreläsning 9. Induktionslagen sammanfattning (Kap ) Elektromotorisk kraft (emk) n i Griffiths. E(r, t) = (differentiell form) 1 Föreäsning 9 7.2.1 7.2.4 i Griffiths nduktionsagen sammanfattning (Kap. 7.1.3) (r, t) E(r, t) = t (differentie form) För en stiastående singa gäer E(r, t) d = d S (r, t) ˆndS = dφ(t) (integraform) Eektromotorisk

Läs mer

Föreläsning 17: Jämviktsläge för flexibla system

Föreläsning 17: Jämviktsläge för flexibla system 1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla

Läs mer

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11 Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd

Läs mer

Verksamhetsberättelse 2010 Uppsökande Verksamhet med Munhälsobedömning

Verksamhetsberättelse 2010 Uppsökande Verksamhet med Munhälsobedömning Verksamhetsberättese 2010 Uppsökande Verksamhet med Munhäsobedömning Det ska vara skönt att eva Aa som har bestående och omfattande behov av vård och omsorg, har rätt ti gratis munhäso bedömning och tandvård

Läs mer

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid:

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid: Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 16-6- Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper.

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper. KTH Mekanik Fredrik Lundell Mekanik mindre kurs för E1 och Open1 Läsåret 05/06 Tentamen i 5C110 Mekanik mk, kurs E1 och Open 1 006-03-15 Var noga med att skilja på skalärer och vektorer. Rita tydliga figurer

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 7 januari 0 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG. (a) Falltiden fås ur (positiv riktning nedåt) s v 0 t + at t s 0 a s,43 s. 9,8 (b) Välj origo

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, typgodkänd kalkylator, lexikon, samt en egenhändigt skriven A4-sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, typgodkänd kalkylator, lexikon, samt en egenhändigt skriven A4-sida med valfritt innehåll. Tentamen i Mekanik för F, del 2 (gäller även som tentamen i Mekanik F, del B) Tisdagen 27 maj 2008, 08.30-12.30, V-huset Examinator: Martin Cederwall Jour: Per Salomonson, tel. 7723231 Tillåtna hjälpmedel:

Läs mer

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Läsåret 11/12 Utförliga lärandemål SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Richard Hsieh Huvudsakligt innehåll: Vektoralgebra och dimensionsbetraktelser. Kraft och kraftmoment. Kraftsystem; kraftpar,

Läs mer

Louise Olsson (031-772 4390) kommer att besöka tentamenslokalen på förmiddagen.

Louise Olsson (031-772 4390) kommer att besöka tentamenslokalen på förmiddagen. Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Onsdagen den 11 april 2012 kl 8:30-13:30 i Väg och vattensalarna Examinator: Bitr. Prof. Louise Olsson Louise Olsson (031-772 4390) kommer att besöka

Läs mer

Övningar för finalister i Wallenbergs fysikpris

Övningar för finalister i Wallenbergs fysikpris Övningar för finalister i Wallenbergs fysikpris 0 mars 05 Läsa tegelstensböcker i all ära, men inlärning sker som mest effektivt genom att själv öva på att lösa problem. Du kanske har upplevt under gymnasiet

Läs mer

l l l l l l l l l l l l l l l

l l l l l l l l l l l l l l l VD-Förord. "En spännande start och ett spännande sut" Ja så kan man besiva verksamhetsåret 202, där vi i början av året påbörjade den sista deen i "Nordstreamprojektet". Ett arbete som varit mycket framgångsrikt

Läs mer

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14 Tentamen i Fysik TEN 1: Tekniskt basår 009-04-14 1. En glaskolv med propp har volymen 550 ml. När glaskolven vägs har den massan 56, g. Därefter pumpas luften i glaskolven bort med en vakuumpump. Därefter

Läs mer

Mekanik III, 1FA103. 1juni2015. Lisa Freyhult 471 3297

Mekanik III, 1FA103. 1juni2015. Lisa Freyhult 471 3297 Mekanik III, 1FA103 1juni2015 Lisa Freyhult 471 3297 Instruktioner: Börja varje uppgift på nytt blad. Skriv kod på varje blad du lämnar in. Definiera införda beteckningar i text eller figur. Motivera uppställda

Läs mer

Datum: , , , ,

Datum: , , , , RR:1 Instruktion till laborationen ROTERANDE REFERENSSYSTEM Författare: Lennart Selander, Svante Svensson Datum: 2000-02-21, 2004-12-02, 2006-12-01, 2012-02-03, 2013-01-22 Mål Att få erfarenhet av de fenomen

Läs mer

Tentamen TMA043 Flervariabelanalys E2

Tentamen TMA043 Flervariabelanalys E2 Tentamen TMA43 Flervariabelanalys E2 22-- kl. 8.3 2.3 Eaminator: Johan Jonasson, Matematiska vetenskaper, halmers Telefonvakt: Fredrik Lindgren, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan

Läs mer

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Uppgift 3.5. Vi har att: a = dv dt enligt definitionen. Med vårt uttryck blir detta: dt = kv2. Vi separerar variablerna: v 2 = kdt

Uppgift 3.5. Vi har att: a = dv dt enligt definitionen. Med vårt uttryck blir detta: dt = kv2. Vi separerar variablerna: v 2 = kdt Uppgift 3.5 a) Vi har att: a = dv dt enligt definitionen. Med vårt uttryck blir detta: Vi separerar variablerna: Vi kan nu integrera båda leden: dv v = k dv dt = kv dv v = kdt dt 1 v = kt + C där C är

Läs mer

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION 1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen

Läs mer

En punkt avbildas inte till en punkt p.g.a. diffraktion i optiken. I stället ser vi en Airy Disk:

En punkt avbildas inte till en punkt p.g.a. diffraktion i optiken. I stället ser vi en Airy Disk: Övning 7 Diraktion och uppösning Diraktionsbegränsade system Om man tittar på ett objekt genom ett perekt (aberrationsritt) optiskt system avgörs hur små saker man kan se av diraktionen i insen. D h min

Läs mer

BETONGRÖR - EN PRISVÄRD OCH LÅNGSIKTIG LÖSNING

BETONGRÖR - EN PRISVÄRD OCH LÅNGSIKTIG LÖSNING LAGT RÖR LIGGER S: Eriks rörsysem är en både prisvärd och ångsikig ösning och rörsysem i beong är dessuom överägse bäs ur mijösynpunk. Beong besår nämigen huvudsakigen av väkända naurmaeria som kaksen,

Läs mer

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen IF1330 Eära F/Ö1 F/Ö4 F/Ö2 F/Ö5 F/Ö3 Strökretsära Mätinstruent Batterier Likströsnät Tvåposatsen KK1 LAB1 Mätning av U och I F/Ö6 F/Ö7 Magnetkrets Kondensator Transienter KK2 LAB2 Tvåpo ät och si F/Ö8

Läs mer

INSTALLATIONS- HANDBOK

INSTALLATIONS- HANDBOK SE Garageportöppnare Keasy L / XL INSTALLATIONS- HANDBOK Keasy L / XL 1 Innehåsförteckning Symboer som används i denna handbok...3 För din säkerhet...3 Viktiga säkerhetsföreskrifter...3 Anvisningar för

Läs mer

6.4 Svängningsrörelse Ledningar

6.4 Svängningsrörelse Ledningar 6.4 Svängningsrörelse Ledningar 6.166 b) Krafterna i de båda fjädrarna är lia stora och lia med raften på roppen (inses genom att man frilägger roppen och de två fjädrarna var för sig). Kroppens förflyttning

Läs mer

Laboration: Roterande Referenssystem

Laboration: Roterande Referenssystem INSTITUTIONEN FöR FYSIK OCH ASTRONOMI Laboration: Roterande Referenssystem Laborationsinstruktionen innehåller teori, diskussioner och beskrivningar av de experiment som ska göras. Mål: Att få erfarenhet

Läs mer

IDEOLOGI OCH VERKLIGHET

IDEOLOGI OCH VERKLIGHET 489 IDEOLOGI OCH VERKLIGHET Av jur. kand. GUSTAF DELIN Högerpartiets programkommie har nu uppösts. Detta betyder ångt ifrån att programarbetet inom partiet kommer att avstanna. Tvärtom kommer man nu på

Läs mer

BEFOLKNINGSUTVECKLINGEN

BEFOLKNINGSUTVECKLINGEN .., '... ~ ~. ~-.. '... ~ - -!f>. BEFOLKNINGSUTVECKLINGEN I SOVJETUNIONEN Av professor CARL-ERIK QUENSEL, Lund DE UPPGIFTER om samhäsutveckingen, som kommit utandet tihanda från Sovjetunionen, ha för det

Läs mer

~, ;, :~. \ 1 l i N ~ -:- ' ~ ANK 2011 -uz- 15. ~,. l VÄRDEUTLÅTANDE. för del av fastigheten. Tegelbruket 11. Ängelholms kommun

~, ;, :~. \ 1 l i N ~ -:- ' ~ ANK 2011 -uz- 15. ~,. l VÄRDEUTLÅTANDE. för del av fastigheten. Tegelbruket 11. Ängelholms kommun ~, ;, :~. \ 1 i N ~ -:- ' ~ C, [ N ANGELhuLvii ANK 2011 -uz- 15 ~,. VÄRDEUTLÅTANDE - för de av fastigheten Tegebruket 11 Ängehoms kommun Det bedömda marknadsvärdet uppgår ti 15 000 000 kr Femton mijoner

Läs mer

Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av

Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av Mekanik 2 Live-L A TEX:ad av Anton Mårtensson 2012-05-08 I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av ṗ = m r = F Detta är ett postulat och grundläggande för all Newtonsk

Läs mer

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter):

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter): FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Måndagen den 5 maj 2008 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare.

Läs mer

Vi finns i M-huset Onk. kinik mottagning Hissar Hissar Hissar Kassa Entré Information Bomsteraffär Huvudentré Brachybehanding vid prostatacancer Apotek www.orebro.se/uso/onk Postadress: Onkoogiska kiniken

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende.

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende. Institutionen för matematik KTH MOELLTENTAMEN Tentamensskrivning, år månad dag, kl. x. (x + 5).. 5B33, Analytiska metoder och linjär algebra. Uppgifterna 5 svarar mot varsitt moment i den kontinuerliga

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers :

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers : FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING 1 februari 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFNDET 1. Enligt energiprincipen är det rörelseenergin som bromsas bort i friktionsarbetet. Detta ger mv sambandet

Läs mer

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar.

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Mekanik KF, Moment 1 Datum: 2012-08-25 Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Del 1 (Lämna in denna del med dina

Läs mer

Tentamen Fysikaliska principer

Tentamen Fysikaliska principer Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 2016 8:00 12:00 Tentamen består

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

Lösningar till övningar Arbete och Energi

Lösningar till övningar Arbete och Energi Lösningar till övningar Arbete och Energi G1. Lägesenergin E p = mgh = 1. 9,8. 1,3 J = 153 J Svar: 150 J G10. Arbetet F s = ändringen i rörelseenergi E k Vi får E k = 15,4 J = 36 J Svar: 36 J G6. Vi kan

Läs mer

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2 Lina Rogström linro@ifm.liu.se Lösningar till tentamen 150407, Fysik 1 för Basåret, BFL101 Del A A1. (2p) Eva kör en bil med massan 1500 kg med den konstanta hastigheten 100 km/h. Längre fram på vägen

Läs mer

krokens stål greppa. FFA tog rygg på fiskeguiden Micke Puhakka för att kolla om ryktena var sanna.

krokens stål greppa. FFA tog rygg på fiskeguiden Micke Puhakka för att kolla om ryktena var sanna. Laxtroing Området utanför Understen har under senare år evererat mängder med schysta axar Laxar som enigt utsago skue expodera så fort de känt krokens stå greppa FFA tog rygg på fiskeguiden Micke Puhakka

Läs mer

r+1 Uppvidinge \2:1 KOMMUN Kallelse/underrättelse 2014-09-01 6. Svar på skolinspektionens riktade tillsyn i Uppvidinge./. kornmun Dnr.

r+1 Uppvidinge \2:1 KOMMUN Kallelse/underrättelse 2014-09-01 6. Svar på skolinspektionens riktade tillsyn i Uppvidinge./. kornmun Dnr. r+1 Uppvidinge \2:1 KOMMUN Kaese/underrättese 2014-09-01 Sammanträde med: Barn- och utbidningsnämnden Datum: 2014-09-17 Tid: 13.30 Pats: Astermoskoan Ärende. Upprop Biaga 2. Va av justerare 3. Godkännande

Läs mer

Biomekanik, 5 poäng Jämviktslära

Biomekanik, 5 poäng Jämviktslära Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande

Läs mer

dy dx = ex 2y 2x e y.

dy dx = ex 2y 2x e y. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 3 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, poäng 005-04-04 Skrivtid: 14 19. Hjälpmedel: Skrivdon,

Läs mer