Bilaga C Kartläggningsmaterial - Numeracitet Samtals- och dokumentationsunderlag numeracitet

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Bilaga C Kartläggningsmaterial - Numeracitet Samtals- och dokumentationsunderlag numeracitet"

Transkript

1 Bilaga C Kartläggningsmaterial - Numeracitet Samtals- och dokumentationsunderlag numeracitet Förberedelser och instruktioner Tid max: 70 min 1. Testledaren bör vara undervisande lärare i matematik alternativt speciallärare/specialpedagog. 2. Boka tolk för det aktuella språket. 3. Avsätt lokal där ni kan genomföra testet i lugn och ro. 4. Kopiera bildunderlag. 5. Kopiera underlag för sammanställning. 6. Testledaren använder tolken som länk i sina frågor. Tolken gör inga egna bedömningar. 7. Utgå från underlaget för hur testet skall administreras. 8. Om en övning är för svår för eleven hoppar man över frågan eller går vidare till nästa. 9. Använd kartläggningsmallarna för att göra en bedömning av elevens prestationer. 10. Testledaren tillsammans med rektor och elevhälsa avgör i vilken klass och åldersgrupp eleven skall placeras, samt omfattningen av sva-undervisning, modersmålsundervisning och studiehandledning. 11. Rektorsbeslut se bilaga D. Vittraskolorna AB STOCKHOLM Telefon epost

2 Samtals- och dokumentationsunderlag numeracitet 6-8 år Instruktioner till läraren: Läs noga igenom materialet. Den svartmarkerade texten är ett förslag på vad läraren kan säga till eleven. Den kursiva och blå texten riktar sig till läraren. Det kan vara sådant som läraren ska göra, uppmärksamma eller notera. Ta fram: Laborativt material, 20 stycken föremål som till exempel marker, gem, knappar. Samt sifferkort 0-10,10-100, och tärningsbild(se bilagor). Genomförande: Skriv in elevens svar i formulär på den nivå eleven svarar. Säg till eleven: Vi kommer att ha ett samtal och jag kommer att ställa frågor till dig som du får svara på. Jag antecknar dina svar under samtalet för att komma ihåg vad du säger. I det här samtalet ska du få möjlighet att visa vad du kan för att skolan ska kunna hjälpa dig på rätt sätt. Elevens namn: Datum: Ålder: Antal år i skolan: Kartläggningsspråk: Elevens starkaste språk: Tidigare erfarenheter av matematik: 1. Vilken valuta är det i ditt hemland? 2. Räknade du något i hemlandet t ex antal djur, pengar, frukt etc? 3. Har du haft matematik i skolan? Vad gjorde ni mest under matematiklektionerna? Matematiska begrepp på modersmålet: (ringa in de begrepp som eleven behärskar) 1. Tid: före efter tidigare senare år månad vecka veckodagar dygn årstider 2. Antal: fler färre lika par dubbelt hälften udda jämna 3. Ordningstal: första andra tredje 4. Storleksordning: större mindre längre kortare tyngre lättare högre 2

3 Följande uppgifter är inspirerade/hämtade ur Skolverkets bedömningsportal: Börja här Lägre nivå Talraden Talraden 1. Räkna tills jag säger stopp. Skriv ned hur långt eleven räknar. Stoppa vid 115. Högre nivå Talraden 2. Börja på 9 och fortsätt räkna tills jag säger stopp. Stoppa vid 20 eller när det tar stopp. Börja på 26 och fortsätt räkna tills jag säger stopp. Stoppa vid 40 Börja på 89 och fortsätt räkna tills jag säger stopp. Stoppa vid Räkna nedåt från 10. Stoppa vid 0. Räkna nedåt från 15. Stoppa vid 0 Räkna nedåt från 28. Stoppa vid 19. Räkna nedåt från 71. Stoppa vid Vilket tal kommer efter a) 7 b) Vilket tal kommer före a) 5 b) 9 Vilket tal kommer efter a) 39 b) 76 Vilket tal kommer före a) 29 b) 34 Vilket tal kommer efter a) 89 b) 199 Vilket tal kommer före a) 89 b) Räkna 10 steg/hoppa 10 steg i taget. Börja på 10. Stoppa vid 50. Räkna 10 steg/hoppa 10 steg i taget. Börja på 0. Stoppa vid 100. Räkna 10 steg/hoppa 10 steg i taget. Börja på 12. Stoppa vid 62. 3

4 Antalskonstans 7. Jämför 2 mängder. Lägg 4 stora föremål i en hög och 6 små föremål i en hög. I vilken är det flest föremål? Hur tänkte du? Notera om eleven räknar antalet eller jämför storleken. 8.Namnge tal Ta fram tärningsbild och sifferkort. Vilket sifferkort passar till tärningsbilden? Säg talet. 9. Fler/färre Ta fram 4 föremål. Hur många är det om det är 2 fler? Hur tänkte du? Hur många är det om det är 1 färre? Hur tänkte du? 10. Uppdelning av tal. Ta fram 5 föremål. Dela upp föremålen så att vi får lika många var. Antalskonstans/godtycklig ordning Ta fram 6 föremål i samma storlek. Lägg dem tätt tillsammans. Hur många är det? Sprid ut 6 föremål. Hur många är det? Notera om eleven behöver räkna antalet igen. Namnge tal Ta fram underlag Peka på talen och låt eleven namnge. Säg talet jag pekar på. Fler/färre Ta fram 11 föremål. Hur många är det om det är 3 fler? Hur tänkte du? Hur många är det om det är 3 färre? Hur tänkte du? Uppdelning av tal. Göm föremål i handen. Antal mellan Här har jag 7 föremål. Göm 4 föremål i den ena handen. Visa 3 föremål. Hur många har jag gömt i den andra handen? Hur tänkte du? Namnge tal Ta fram underlag och Peka på talen och låt eleven namnge. Säg talet jag pekar på. Fler/färre Ta fram 15 föremål. Hur många är det om det är 6 fler? Hur tänkte du? Hur många är det om det är 3 färre? Hur tänkte du? Uppdelning av tal Göm föremål i handen. Antal mellan Här har jag 12 föremål. Göm 5 föremål i den ena handen. Visa 7 föremål. Hur många har jag gömt i den andra handen? Hur tänkte du? Om eleven behöver räkna på fingrarna stoppar du. Hälften/dubbelt 11. Ta fram 8 föremål. Dela upp föremålen så att Hälften/dubbelt Vad är hälften av 6? Hur tänkte du? Hälften/dubbelt Vad är hälften av 12? Hur tänkte du? 4

5 vi får lika många var. Vad är hälften av 10? Hur tänkte du? Vad är dubbelt så mycket som 4? Hur tänkte du? Lisa är 5 år. Tor är dubbelt så många år som Lisa. Hur många år är Tor? Hur tänkte du? Vad är hälften av 50? Hur tänkte du? Vad är dubbelt så mycket som 100? Hur tänkte du? Vad är dubbelt så mycket som 15? Hur tänkte du? Kartläggningsprofil Elevens namn: Datum och lärare: Födelsedatum: Väg samman elevens svar inom de olika områdena och markera med ett kryss. Talraden uppgift 1-6 Lägre nivå Högre nivå Antalskonstans uppgift 7 Lägre nivå Högre nivå Namnge tal uppgift 8 Lägre nivå Högre nivå 5

6 Fler/färre uppgift 9 Lägre nivå Högre nivå Uppdelning av tal uppgift 10 Lägre nivå Högre nivå Häften/dubbelt uppgift 11 Lägre nivå Högre nivå Elevens styrkor: Elevens utvecklingsområden: Läraren bedömer att eleven kan placeras i den årskurs som åldern motsvarar: Ja Nej Förslag på åtgärder/insatser: 6

7 Samtals- och dokumentationsunderlag 9 år och äldre Instruktioner till läraren: Läs noga igenom materialet och uppmärksamma ev. stödfrågor. Material: Linjal, penna, sudd, snöre, konkret material t.ex. knappar eller gem i två olika färger(uppgift 7). Säg till eleven: Vi kommer att ha ett samtal och jag kommer att ställa frågor till dig som du får svara på. Jag antecknar dina svar under samtalet för att komma ihåg vad du säger. I det här samtalet ska du få möjlighet att visa vad du kan för att skolan ska kunna hjälpa dig på rätt sätt. Elevens namn: Datum: Ålder: Antal år i skolan: Kartläggningsspråk: Elevens starkaste språk: Tidigare erfarenheter av matematik: 1. Vilken valuta är det i ditt hemland? 2. Räknade du något i hemlandet t ex antal djur, pengar, frukt etc? Matematiska begrepp på modersmålet: (ringa in de begrepp som eleven behärskar) 1. Tid: före efter tidigare senare år månad vecka veckodagar dygn årstider 2. Antal: fler färre lika par dubbelt hälften udda jämna 3. Ordningstal: första andra tredje 4. Storleksordning: större mindre längre kortare tyngre lättare högre 7

8 Rumsuppfattning, geometri och uppskattning 1. Hur skulle du göra för att ta reda på hur högt ett hus är? Hur högt skulle du uppskatta att ett hus är? Kan man ta reda på hur högt ett hus är? Hur tänker du då? Lägre nivå Mäter husets höjd med linjal. 8 Högre nivå Gör en rimlig uppskattning med hjälp av en referens. Anteckningar

9 2. Berätta hur du skulle göra om du vill veta hur långt det är runt ett cykelhjul. Hur långt är det runt ett cykelhjul? Lägre nivå Högre nivå Anteckningar Mäter med linjal. Mäter med måttband/snöre. Nämner att omkretsen kan mätas med hjälp av formel. 3. Vilka geometriska figurer är det på bilderna? Frågor: Kan du beskriva figurernas likheter och skillnader? Kan du säga något om omkretsen och arean av figurerna? 9

10 Notera: Känner eleven till de olika begreppen, kan eleven beskriva likheter och skillnader mellan formerna, t.ex. sidor, hörn, area, omkrets, vinklar. 4. Vilket av glasen tror du rymmer mest? Lägre nivå Högre nivå Anteckningar Anger att det höga glaset eller det breda glas rymmer mest. Taluppfattning Anger att de rymmer lika mycket med en godtagbar motivering. Nämner att volymen på en cylinder kan beräknas med hjälp av en formel. 5. Hur löser du följande uppgifter: a) 6 70= b) 72/8= c) = d) 612/3= 1 0

11 e) = Notera vilka metoder eleven använder sig av. T.ex. huvudräkning, algoritm osv. 6. Hur många tal finns det mellan 1 och 3? Skriv gärna ner talen. Ställ gärna följdfrågor som: Finns det fler tal? Lägre nivå Högre nivå Anteckningar Anger att talet 2 finns mellan 1 och 3. Nämner några t.ex. 1,5 etc Namnger heltalen Använder begrepp som decimaltal, tiondelar, hundradelar osv. 7. Fortsätt talföljden och förklara hur den är uppbyggd. a) _ b) _ Notera hur/om eleven kan fortsätta talföljden. Kan eleven beskriva vad som händer 8. Plocka fram 4 föremål i olika färger. Be eleven plocka fram dubbelt så många. Plocka fram 14 föremål. Be eleven plocka fram hälften så många. Hur stor andel/del av som ligger på bordet är nämn valfri färg t.ex. röda? Hur många procent är nämn valfri färg? Kan du skriva det? Lägre nivå Högre nivå Anteckningar Plockar fram hälften och dubbelt. Skriver uttrycken. Visar samband mellan procent och bråkform 1 1

12 Kartläggningsprofil Elevens namn: Födelsedatum: Datum och lärare: Väg samman elevens svar inom de olika områdena och markera med ett kryss. Rumsuppfattning, geometri och uppskattning Lägre Högre Taluppfattning och talföljd Lägre Högre Proportionalitet Lägre Högre Elevens styrkor: Elevens utvecklingsområden: Läraren bedömer att eleven kan placeras i den årskurs som åldern motsvarar: Ja Nej Förslag på åtgärder/insatser: 1 2

13 Kartläggning 6-8 år bilaga BEDÖMNINGSSTÖD I TALUPPFATTNING ÅRSKURS 1 3. UNDERLAG SIFFERKORT

14 BEDÖMNINGSSTÖD I TALUPPFATTNING ÅRSKURS 1 3. UNDERLAG

15 BEDÖMNINGSSTÖD I TALUPPFATTNING ÅRSKURS 1 3. UNDERLAG

16 1 6

17 Bildunderlag: Samtals- och dokumentationsunderlag 9 år och äldre Uppgift 1 1 7

18 Uppgift 2 1 8

19 Uppgift 3 1 9

20 Uppgift 4 2 0

Samtals - och dokumentationsunderlag

Samtals - och dokumentationsunderlag Skolverkets kartläggningsmaterial för bedömning av nyanlända elevers kunskaper steg 2, dnr 2016:428 Samtals - och dokumentationsunderlag med uppgifter Numeracitet 1 Steg 2 3 Elever 9 år och äldre Samtals-

Läs mer

Lärarhandledning Numeracitet

Lärarhandledning Numeracitet Skolverkets kartläggningsmaterial för bedömning av nyanlända elevers kunskaper steg 2, dnr 2016:428 Lärarhandledning Numeracitet 1 Steg 2 3 Elever 9 år och äldre Det här är det andra steget i kartläggningen

Läs mer

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter: Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

Lärarhandledning matematik

Lärarhandledning matematik Kartläggningsmaterial för nyanlända elever Lärarhandledning matematik 1 2 Steg 3 Det här materialet är det tredje steget i kartläggningen av nyanlända elevers kunskaper. Det syftar till att ge läraren

Läs mer

Bedömningsstöd i taluppfattning

Bedömningsstöd i taluppfattning Bedömningsstöd i taluppfattning Elisabeth Pettersson Pedagogisk Inspiration Malmö elisabeth.pettersson@malmo.se Christina Svensson Pedagogisk Inspiration Malmö christina.svensson@malmo.se Årskurs 1 och

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

Arbetsplan för nyanlända elever

Arbetsplan för nyanlända elever Förskola & Skola Arbetsplan för nyanlända elever Om vissa skolor i Nacka kommun fick profilera sig på olika språk, kunde en nyanländ elev placeras på en skola som valt att profilera sig på elevens modersmål.

Läs mer

Bedömning för lärande i matematik

Bedömning för lärande i matematik HANDLEDNING TILL Bedömning för lärande i matematik FÖR ÅRSKURS 1 9 1 Handledning I denna handledning ges förslag på hur du kan komma igång med materialet Bedömning för lärande i matematik åk 1 9. Du börjar

Läs mer

Storvretaskolans Kursplan för Matematik F-klass- år 5

Storvretaskolans Kursplan för Matematik F-klass- år 5 2010-11-01 Storvretaskolans Kursplan för Matematik F-klass- år 5 Skolan skall i sin undervisning sträva efter att eleven : utvecklar intresse för matematik samt tilltro till det egna tänkandet och den

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna

Läs mer

Att använda Bedömningsstöd i taluppfattning i årskurs 1 3 i specialskolan

Att använda Bedömningsstöd i taluppfattning i årskurs 1 3 i specialskolan Att använda Bedömningsstöd i taluppfattning i årskurs 1 3 i specialskolan Utgångspunkter För döva elever och elever med hörselnedsättning sker begreppsutveckling inom matematik på liknande sätt som för

Läs mer

Lokal studieplan matematik åk 1-3

Lokal studieplan matematik åk 1-3 Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen

Läs mer

Lokal kursplan i matematik för Stehags rektorsområde

Lokal kursplan i matematik för Stehags rektorsområde Lokal kursplan i matematik för Stehags rektorsområde MÅL Att eleverna ska få möjligheter att tillgodogöra sig de matematiska kunskaper som krävs för att uppnå kursplanens mål. Att eleverna ges en varierande

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Förskoleklassen År 1 År 2 År 3 År 4 År 5 År 6. Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall

Förskoleklassen År 1 År 2 År 3 År 4 År 5 År 6. Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Lokal kursplan i matematik Tal antal, mönster talmönster räkna antal oavsett föremålens storlek jämföra antalet föremål i två mängder genom att parbilda dem, t.ex. en tallrik till varje barn. räkna föremål

Läs mer

Samtals - och dokumentationsunderlag B Litteracitet spår B

Samtals - och dokumentationsunderlag B Litteracitet spår B Skolverkets kartläggningsmaterial för bedömning av nyanlända elevers kunskaper steg 2, dnr 2016:428 Samtals - och dokumentationsunderlag B Litteracitet spår B 1 Steg 2 3 Elever som läser och skriver Elevens

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

Skolverkets bedömningsstöd i Läs- och skrivutveckling (Svenska) och Taluppfattning (Matematik)

Skolverkets bedömningsstöd i Läs- och skrivutveckling (Svenska) och Taluppfattning (Matematik) Skolverkets bedömningsstöd i Läs- och skrivutveckling (Svenska) och Taluppfattning (Matematik) 2016-11-17 Innehåll 2 Motiv till bestämmelserna s. 3 Läs- och skrivutveckling (Svenska) s.4 1. Syfte s. 5

Läs mer

Nationella strävansmål i matematik. Skolan skall i sin undervisning i matematik sträva efter att eleven

Nationella strävansmål i matematik. Skolan skall i sin undervisning i matematik sträva efter att eleven Nationella strävansmål i matematik Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Samtals - och dokumentationsunderlag B1 Litteracitet spår B

Samtals - och dokumentationsunderlag B1 Litteracitet spår B Skolverkets kartläggningsmaterial för bedömning av nyanlända elevers kunskaper steg 2, dnr 2016:428 Samtals - och dokumentationsunderlag B1 Litteracitet spår B 1 Steg 2 3 UTA ÖVERSATTA UPPGIFTER Elever

Läs mer

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå

Läs mer

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3 BEDÖMNINGSSTÖD till TUMMEN UPP! matte i årskurs 3 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper i årskurs 3. Av tradition har man i den svenska skolan

Läs mer

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK RÖDA TRÅDEN MATEMATIK F-KLASS ÅK 5 F-KLASS TALUPPFATTNING ALGEBRA Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas Matematiska likheter och likhetstecknets

Läs mer

Bilaga A- Introduktionssamtal Elevens bakgrund och erfarenheter Kartläggning av styrkor och utvecklingsområden

Bilaga A- Introduktionssamtal Elevens bakgrund och erfarenheter Kartläggning av styrkor och utvecklingsområden Bilaga A- Introduktionssamtal Elevens bakgrund och erfarenheter Kartläggning av styrkor och utvecklingsområden Elevens namn Födelsedatum Kartläggningsspråk Datum och lärare Vårdnadshavare/Förmyndare/ God

Läs mer

a) 1 b) 4 a) b) c) c) 6 a) = 4 b) = 6 c) = 6 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? 4. Beräkna. 3. Hur många?

a) 1 b) 4 a) b) c) c) 6 a) = 4 b) = 6 c) = 6 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? 4. Beräkna. 3. Hur många? 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? Exempel a) 1 2 b) 4 5 a) b) c) c) 6 7 3. Hur många? 4. Beräkna. Exempel 1 + 2 = 3 a) 3 + 1 = 4 a) 4 b) 5 b) 4 + 2 = 6 c) 3 + 3 = 6 c) 3 d) 2 GILLA

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Vad är det som gör skillnad?

Vad är det som gör skillnad? Vad är det som gör skillnad? Pedagogisk Inspiration Maria Dellrup Elisabeth Pettersson Nafi Zanjani Team Munkhättan Lotta Appelros Morin Iwona Charukiewicz Gudrun Einarsdottir Dammfriskolan Emma Backström

Läs mer

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK KRAVNIVÅER Åtvidabergs kommuns grundskolor MATEMATIK Reviderade april 2009 Förord Välkommen att ta del av Åtvidabergs kommuns kravnivåer och bedömningskriterier för grundskolan. Materialet har tagits fram

Läs mer

Skolverkets kartläggningsmaterial. för bedömning av nyanlända elevers kunskaper

Skolverkets kartläggningsmaterial. för bedömning av nyanlända elevers kunskaper Skolverkets kartläggningsmaterial för bedömning av nyanlända elevers kunskaper Nya bestämmelser 2016 En nyanländ elevs kunskaper ska bedömas om en sådan bedömning inte är uppenbart onödig. (3 kap. 12 c

Läs mer

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod: SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på

Läs mer

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation Bo skola Matematikmål år - Namn: Strävansmål: Vi strävar efter att varje elev ska Utveckla goda baskunskaper i de fyra räknesätten Utvecklar en god förståelse för matematik och matematiska begrepp att

Läs mer

Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte

Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

Pedagogisk planering i matematik

Pedagogisk planering i matematik Pedagogisk planering i matematik Myrstacken Äldre årskurs 6, Hällby skola L= mest för läraren E= viktigt för eleven Gäller för första delen av HT15 Förankring i kursplanen - L Syfte L Eleven ska genom

Läs mer

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik

Läs mer

identifiera geometriska figurerna cirkel och triangel

identifiera geometriska figurerna cirkel och triangel MATEMATIK F-klass Genom att använda matematik i meningsfulla sammanhang visar vi barnen vilka möjligheter den ger. Ex datum, siffror och antal, ålder, telefonnummer mm. Eleven bör kunna: benämna siffrorna

Läs mer

Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN

Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN RUMSUPPFATTNING GEOMETRI OCH MÄTNING MATEMATIK REDOVISNING OCH MATEMATISKT SPRÅK TALUPPFATTNING, OCH RÄKNEMETODER STATISTIK Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN Kursplan i matematik Lgr

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Skriv inte på bladens baksidor. Helst en uppgift per blad.

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Skriv inte på bladens baksidor. Helst en uppgift per blad. Ma F-3 I Provmoment: Ladokkod: Tentamen ges för: Matematik 5 hp Studenter i lärarprogrammet Ma F-3 I (11F322) 15 högskolepoäng TentamensKod: Tentamensdatum: 15-04-29 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel

Läs mer

Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål förskoleklass Taluppfattning

Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål förskoleklass Taluppfattning Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål Taluppfattning Kunna skriva siffrorna Kunna uppräkning 1-100 Kunna nedräkning 10-0 Kunna ordningstalen upp till 10

Läs mer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna

Läs mer

Innehåll och förslag till användning

Innehåll och förslag till användning Övningar för de första skolåren med interaktiv skrivtavla och programmet RM Easiteach Next generation. Materialet är anpassat till och har referenser till. Innehåll och förslag till användning De interaktiva

Läs mer

Matematik. Namn: Datum:

Matematik. Namn: Datum: Matematik Namn: Datum: Multiplikation, tabell 2 och 4. Hur många ben har djuren tillsammans? + = = + + = = + + + + = = + = = + + + = = Skriv färdigt multiplikationen! 3 4 = 4 2 = 2 5 = 4 6 = 4 0 = 4 5

Läs mer

ARBETSPLAN MATEMATIK

ARBETSPLAN MATEMATIK ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera

Läs mer

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll. ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,

Läs mer

Bedömningsexempel. Matematik årskurs 6

Bedömningsexempel. Matematik årskurs 6 Bedömningsexempel Matematik årskurs 6 Innehåll Ämnesprovet i matematik i årskurs 6 läsåret 2011/2012 Exempel på provuppgifter... 3 Inledning... 3 Muntligt delprov... 3 Skriftliga delprov... 3 Övrigt webbmaterial...

Läs mer

Matematik i barnets värld

Matematik i barnets värld Matematik i barnets värld Välkomna! Anette Skytt Elisabeth Hector Matematikutvecklare i Botkyrka kommun Banslätt 18 november 2010 Matematiken runt omkring oss och barnens matematik. Vuxna använder matematik

Läs mer

Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt

Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt Bedömning för lärande i matematik Mullsjö 16 juni 2014 Katarina Kjellström Inger Ridderlind Anette Skytt PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet

Läs mer

Broskolans röda tråd i Matematik

Broskolans röda tråd i Matematik Broskolans röda tråd i Matematik Regering och riksdag har faställt vilka mål som svenska skolor ska arbeta mot. Dessa mål uttrycks i Läroplanen Lpo 94 och i kursplaner och betygskriterier från Skolverket.

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Välkommen till dialogmöte för kartläggare

Välkommen till dialogmöte för kartläggare Välkommen till dialogmöte för kartläggare Elev Ali: En bil som kör till exempel, 40 eller 50 hastigheten. Och en kör 40 det är inte samma. Till exempel de andra elever dom född här, dom går i skolan i

Läs mer

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet

Läs mer

Centralt innehåll. I årskurs 1.3

Centralt innehåll. I årskurs 1.3 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

Undersökande arbetssätt i matematik 1 och 2

Undersökande arbetssätt i matematik 1 och 2 Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg Del 6: Undersökande arbetssätt med matematisk programvara Undersökande arbetssätt i matematik 1 och 2 I texten Undersökande arbetssätt

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Tid Muntliga uppgifter

Tid Muntliga uppgifter Tid Muntliga uppgifter Till uppgift 1 5 behövs en ställbar klocka. Tid Begrepp 1. Ställ elevnära frågor där du får svar på frågor om idag, igår och i morgon till exempel: Vilken dag är det idag? Vad gjorde

Läs mer

Uppgifter till Första-hjälpen-lådan

Uppgifter till Första-hjälpen-lådan Uppgifter till Första-hjälpen-lådan Många Stockholmslärare har fått en första-hjälpen-låda i matematik då de deltagit i de kurser som letts av Karin Kairavuo, matematiklärare från Mattelandet i Helsingfors.

Läs mer

48 p G: 29 p VG: 38 p

48 p G: 29 p VG: 38 p 11F322 MaI Provmoment: Matematik 5 hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet F-3 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-31 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel Totalt

Läs mer

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60. Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och

Läs mer

Lgr 11 matriser i Favorit matematik 4 6

Lgr 11 matriser i Favorit matematik 4 6 Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor

Läs mer

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.

Läs mer

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs

Läs mer

MATEMATIK 5.5 MATEMATIK

MATEMATIK 5.5 MATEMATIK 5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

KARTLÄGGNING I MATEMATIK

KARTLÄGGNING I MATEMATIK KARTLÄGGNING I MATEMATIK Datum Namn Födelseår Uppväxt i (land) Modersmål Antal månader i Sverige Förord För personal som arbetar i grundskolan är behovet av att kunna kartlägga nyanlända elevers ämneskunskaper

Läs mer

Förskoleklass. (Skolverket )

Förskoleklass. (Skolverket ) Förskoleklass Förskoleklassen ska stimulera elevens utveckling och lärande och förbereda för fortsatt utbildning. I undervisningen ska förskolans, förskoleklassens och skolans kultur och arbetssätt mötas

Läs mer

2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter.

2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter. Bedömning för lärande i matematik Dagens innehåll Biennette i Malmö 15 mars 2015 Katarina Kjellström Olika bedömningsstöd i matematik Vad är syftet med bedömningsstödet för åk 1-9 Vilka har arbeta med

Läs mer

Modersmålslärarens roll i den pedagogiska kartläggningen

Modersmålslärarens roll i den pedagogiska kartläggningen Modersmålslärarens roll i den pedagogiska kartläggningen Sektionen för resurs och stödverksamhet Flerspråkighet Snezana Arsenovic Nero, verksamhetschef (modersmålsstöd i förskola, förskoleklass) Åsa Svensson,

Läs mer

Dagens program. SMS-frågor VÄXA FÖR FRAMGÅNG. Nyanlända elever i fokus. Stöd och förutsättningar för nyanlända elevers lärande. Allmänna råd Bedömning

Dagens program. SMS-frågor VÄXA FÖR FRAMGÅNG. Nyanlända elever i fokus. Stöd och förutsättningar för nyanlända elevers lärande. Allmänna råd Bedömning Dagens program VÄXA FÖR FRAMGÅNG Stöd och förutsättningar för nyanlända elevers lärande 10.00 Nyanlända elever i fokus Organisation för mottagande Kartläggning: Steg 1 och 2 12.00 Lunch 13.00 Kartläggning:

Läs mer

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. En uppgift per blad och inga svar på baksidan av bladen Lycka till!

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. En uppgift per blad och inga svar på baksidan av bladen Lycka till! Matematik 4-6 II Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 4 hp Studenter i lärarprogrammet LAG 4-6 T3 15 högskolepoäng Tentamensdatum: 15-01-15 Tid: 09.00 13.00 Hjälpmedel: Lgr 11,

Läs mer

Gunnar Hyltegren. Ämnet matematik 2011 i grundskolan

Gunnar Hyltegren. Ämnet matematik 2011 i grundskolan Ämnet matematik 2011 i grundskolan Förmågor som skall utvecklas i matematik 2011 - gr Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

Målet i sikte åk 1 3. Målet i sikte 1 3. kartläggning i matematik. Lgr11

Målet i sikte åk 1 3. Målet i sikte 1 3. kartläggning i matematik. Lgr11 Må Målet i sikte åk Målet i sikte Målet i sikte är ett kopieringsmaterial som kartlägger elevernas kunskaper i matematik. Utgångspunkt är det centrala innehållet och kunskapskraven i Lgr. För varje område

Läs mer

Identifiering av stödbehov

Identifiering av stödbehov Identifiering av stödbehov Bedömning i matematik Årskurs 1 - höst Lärarhandledning Allmänna principer för bedömningen Bekanta dig på förhand med instruktionerna och materialet. Kontrollera att du har allt

Läs mer

Lgr 11, miniräknare och skrivmaterial. 33 p 20 p. Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.

Lgr 11, miniräknare och skrivmaterial. 33 p 20 p. Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Matematik för alla 15 högskolepoäng Provmoment: Matematik 3hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet SMEN/GSME/MIG 2 TentamensKod: Tentamensdatum: 12-02-03 Tid: 09.00-13.00 Hjälpmedel:

Läs mer

MATEMATIK. Åk 1 Åk 2. Naturliga tal Naturliga tal Större än, mindre än, lika med

MATEMATIK. Åk 1 Åk 2. Naturliga tal Naturliga tal Större än, mindre än, lika med MATEMATIK Åk 1 Åk 2 Naturliga tal 0-100 Naturliga tal 0-100 Talföljd Talföljd Tiokamrater Större än, mindre än, lika med Större än, mindre än, lika med Positionssystemet Sifferskrivning Talskrivning Add.

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 3

Enhet / skola: Lindens skola i Lanna Åk: 3 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,

Läs mer

Lokal pedagogisk planering

Lokal pedagogisk planering Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr och Favorit matematik 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med undervisningen

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter. M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

PP i matematik år 2. Taluppfattning och tals användning.

PP i matematik år 2. Taluppfattning och tals användning. PP i matematik år 2. Taluppfattning och tals användning. Ord och begrepp siffra, tal tallinje, talrad, talsorter- ental, 10-tal, 100-tal, 1000-tal, addition, addera, term, summa, subtraktion, subtrahera,

Läs mer

Nyckelord Grundläggande matematik. Ord- och begreppshäfte. Elisabet Bellander ORD OCH BEGREPP. Matematik

Nyckelord Grundläggande matematik. Ord- och begreppshäfte. Elisabet Bellander ORD OCH BEGREPP. Matematik Nyckelord Grundläggande matematik Ord- och begreppshäfte Elisabet Bellander ORD OCH BEGREPP Matematik 1. BANK - VARDAGSORD 1. Minst 2. Uttag 3. Insättning 4. Kontonummer 5. Uttaget belopp kvitteras 6.

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

Taluppfattning och tals användning Matematik

Taluppfattning och tals användning Matematik Kartläggningsmaterial för nyanlända elever Taluppfattning och tals användning Matematik 1 2 Steg 3 SVENSKA Kartläggningsmaterial för nyanlända elever Taluppfattning och tals användning åk 3 MA 1 Skriv

Läs mer

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri Studieplan och bedömningsgrunder i Matematik för åk F-1 Stor-liten, framför - bakom, större än osv. kunna visa att du förstår ordens förhållande till varandra, tex. med hjälp av olika saker eller genom

Läs mer

MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN

MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN Så här arbetar vi: Matematiken är ett språk. Vår undervisning har som mål att eleverna ska förstå och kunna använda det språket. Vi arbetar med grundläggande begrepp

Läs mer

Verktyg för systematiskt arbete i matematik. Anna-Karin Ericsson och Ewa Nässén Carlson Barn-, elevhälsa och skolutveckling

Verktyg för systematiskt arbete i matematik. Anna-Karin Ericsson och Ewa Nässén Carlson Barn-, elevhälsa och skolutveckling Verktyg för systematiskt arbete i matematik Anna-Karin Ericsson och Ewa Nässén Carlson Barn-, elevhälsa och skolutveckling 2017-03-14 Innehåll Bakgrund Verktyget Bakgrund Sjunkande resultat i matematik

Läs mer

Fira Pi-dagen med Liber!

Fira Pi-dagen med Liber! Fira Pi-dagen med Liber! Specialuppdrag från Uppdrag: Matte o Kul-diagram o Geometri med färg UPPDRAG: MATTE Mattedetektiverna Mattespanarna Hej! Den 14 mars är det Pi-dagen (3.14). Det är värt att uppmärksammas

Läs mer

Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften.

Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften. MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Måluppfyllelse i svenska/svenska som andraspråk vid nationella prov årskurs 3 vårterminerna 2009 och 2010 TOTALT ANTAL ELEVER 2009: 72

Måluppfyllelse i svenska/svenska som andraspråk vid nationella prov årskurs 3 vårterminerna 2009 och 2010 TOTALT ANTAL ELEVER 2009: 72 Sedan vårterminen 2009 görs nationella prov i svenska och matte för årskurs 3 i hela landet. Från och med höstterminen 2009 får varje elev i Valdemarsviks kommun skriftligt omdöme varje termin i de ämnen

Läs mer

Boken Förstå och använda tal en handbok behandlar 22 områden av elevers

Boken Förstå och använda tal en handbok behandlar 22 områden av elevers Marie Mäkiranta Att diagnostisera elevers kunskaper och missuppfattningar Författaren har i ett fördjupningsarbete under en kurs i Lärarlyftet arbetat med boken Förstå och använda tal en handbok av Alistair

Läs mer

Identifiering av stödbehov

Identifiering av stödbehov Identifiering av stödbehov Bedömning i matematik Förskola - vår Lärarhandledning Allmänna principer för bedömningen Bekanta dig på förhand med instruktionerna och materialet. Kontrollera att du har allt

Läs mer

Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v.

Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v. TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det nionde skolåret: Eleven skall ha förvärvat sådana kunskaper i matematik som behövs för att kunna beskriva och hantera situationer samt lösa

Läs mer