3 κappa Frågan. På R 4 definieras en produkt * på följande sätt: 1. x,y S och a,b R medför ax+by S. 2. x S och y R 4 medför x y S

Storlek: px
Starta visningen från sidan:

Download "3 κappa Frågan. På R 4 definieras en produkt * på följande sätt: 1. x,y S och a,b R medför ax+by S. 2. x S och y R 4 medför x y S"

Transkript

1 Täljren Mtemtiskt dividernde Gunnr Lindholm tljren. se novemer 7 Täljren är en nästn måntlig skrift om mtemtik och mtemtikundervisning riktd till ll intresserde. Jg uppmnr läsrn tt hör v sig med egn funderingr och tnkr eller intressnt sker som kommit upp i klssrummet eller i ndr smmnhng. Allt för tt stimuler till eftertnke, kompetensutveckling och för tt inte glömm ort hur kul det är med mtemtik. All respons är välkommen. Procent igen I Helsingorgs Dgld pulicerdes tydligen en uppgift som löd så här: En melon väger kilo och innehåller 99% vtten. Melonen får ligg i solen och därmed sjunker vttenhlten till 98%. Hur mycket väger melonen nu? Enligt hr det vrit mång som hr rottts med uppgiften. Åter är det känsln v orimlighet som är så slående. Hur kn svret vr tt den r väger kg? Hur kn procentenhet inte procent motsvr hlv vikten? Åter är svret: procent uttrycker hur stor del något utgör v det hel. Det som inte är vtten väger g eftersom % v kg är just g. När den hr torkt motsvrr g % v vikten, d.v.s. vikten är kg. Mn kn noter tt icke-vttnet utgör % till en örjn, för tt sedn ök till % v vikten, d.v.s. en förduling. Vill mn kn mn tänk på det som tt om du spär ut väldigt lite i väldigt mycket vtten, så måste du minsk mängden vtten väldigt mycket för tt kunn fördul koncentrtionen v det som inte är vtten. Så slutstsen är: tg lltid procenttl med en nyp slt tills du förstår vd de står för. Betygens etydelse Högskoleverket hr kommit med en rpport Smnd melln etyg i gymnsieskoln och presttioner i högskoln som finns tt ldd ner från 7 :R. De hr sett ett strkt smnd melln etygen i mtemtik och fysik och presttionern på civilingenjörsprogrmmet smt melln etygen i svensk och smhällskunskp och presttionern på juristprogrmmet. Med frmgång på högskoln vsees hur mång poäng de får. Det fnns även en större skillnd melln dem som fått G och VG än melln dem som fått VG och MVG i gymnsiet. Är det etygsinfltionen som mn ser tecken på? κpp 7 Mtemtiktävlingen för lärre, κpp 7, hr nu nått frm till sist frågn. Här presenterr jg mitt svr, som jg på inget sätt vill frmhåll som kort eller elegnt eller ens korrekt. Jg kn tillägg tt tiden hr gått ut och tt jg som sämst kn komm på plts eftersom r hr lämnt in svr.. Frågn På R definiers en produkt * på följnde sätt:,,c,d,,c,d cd c d,c c+c c, d d +d d,c d cd eller mer läsligt uttryckt c c d d cd c d c c+c c d d + d d c d cd Bestäm smtlig delmängder S v R som uppfyller följnde två villkor:. x,y S och, R medför x+y S. x S och y R medför x y S. Svret.. Kort svr Det finns fyr olik delmängder S R, {}, {x,y,z, x x,y,z R}, {x,x,, x R}.. Långt svr Villkor ger för tt S för ll mängder S. Vi finner direkt tt de två trivil mängdern {} och R uppfyller villkoren. R gör det eftersom den innehåller hel rummet vi retr i och {} eftersom + och produkten lltid lir om minst en v de två operndern för produkten är. Villkor säger oss tt mängden S utgör ett linjärt underrum till R och vi vet tt ett sådnt underrum spänns upp v en, två eller tre svektorer som ll är skild från nollvektorn. Fllet med noll respektive fyr svektorer utgör {} respektive hel R. Jg kommer tt ehndl de olik dimensionsfllen seprt och nvänd villkor för speciellt vld vektorer y för tt genom eräknnde v produkten få frm det resultt jg ehöver.

2 .. dims Antg tt dims och tt vi hr svektorn,,c,d. Vi får,,c,d,,,, c,d, Enligt villkor skll då, c, d, S och lltså gäller, c,d, λ,,c,d för något tl λ. Dett ger oss två möjligheter. Antingen är λ eller λ. I fllet med λ får vi direkt genom tt jämför komponentvis tt och d. Dett leder genom komponentvis jämförelse till tt c som leder till tt. Dett strider mot tt,, c, d. Alltså kn inte λ. I fllet med λ får vi tt c d. Vi eräknr därför,,,,,,,,, Om denn vektor skll vr en multipel v,,, så måste. Det inneär tt om S spänns upp v en end vektor så hr vi svektorn,,,. För tt vis tt rummet som spänns upp v denn vektor verkligen uppfyller villkor konstterr vi tt,,, A,B,C,D,,, S för ll värden på,a,b,c,d R... dims Nu skll vi nvänd en egenskp i produkten. Vi oserverr tt först komponenten, i en produkt v två element, är densmm som fjärde komponenten med omytt tecken. Dett ger oss tt vrje element z vi får frm som en produkt z x y där x S och y R hr krv på sig tt vr ntingen eller z z,z,z, z. Vår mängd S måste lltså vr fylld med vektorer på denn form. Den fjärde komponenten är lltså ointressnt och vi kn etrkt det som tt vi skll estämm ett tredimensionellt rum med tre svektorer. Vi kn välj vilk svektorer vi vill, men enklst är tt välj,,,,,,, och,,, som ger oss den fjärde komponenten på enklste sätt. Vi kn välj en nnn s så länge som den sen ger oss smm mängd... dims I det tvådimensionell fllet vill vi estäm en liknnde mängd där först och fjärde komponenten är eroende v vrndr. Vi får ett ntl möjlig svektorer som kn skp vår element. Jg hr reducert sern till det llr enklste tänkr... med noll. vi hr lltid först komponenten lik där R.. där där Nu skll jg vis tt ingen v dess fyr ser ger oss någon fungernde mängd S. Jg gör det genom tt vis tt det går tt ild linjärkomintioner v svektorern som ger oss produkter som inte ligger i S.. Bild vektorn. Vi eräknr produkten de föreslgn svektorern.. Bild vektorn. För tt ild denn vektor måste vi h. Dett element kn inte ilds med och eräkn x + y för någr värden på x och y. Det är uppenrligen omöjligt.. Bild vektorn och eräkn. Denn vektor kn vi omöjligen få frm genom tt ild en linjärkomintion v och.. Bild vektorn + och eräkn

3 +. Denn vektor kn vi ej ild som linjärkomintion v vektorern och såvid vi inte sätter. Men dett ger oss ett krv på svektorn som gör tt vi hmnr utnför rummet om vi etrktr vektorn som mul- tiplicerd med linjärkomintion v ger 6 och som inte är en. Vi kn lltså inte h ett underrum S med två svektorer.. Extr frågn Fyr mycket snål systrr hr fått ärv en kolonilott. Lotten hr formen v en tringel där ll sidor är tjugo meter. Systrrn är överens om tt del kostndern för ett stket som delr in lotten i fyr till ren lik stor delr och dom vill h din hjälp med indelningen. Sätter upp det gör dom själv. Hur kort kn du kn du gör ett sådnt stket? Stketet kn vr krokigt. Beskriv formen på stketet och nge längden med tre decimler. Du ehöver inte evis tt ditt svr är optimlt, men om du gör det är det förstås en onus.. Extr svret Jg örjr med tt erätt tt jg inte hr evist tt det finns någon kortste längd eller mitt svr är den kortste längden. Min lösning går ut på tt test olik fll... Kort svr Det kortste stketet jg fnn hr längden 6,6 m exklusive 6 m som krävs för tt hägn in hel tringelns knt. Formen viss i figur och i denn figur skll höjden H vr för tt minimum skll uppnås... Långt svr Först en oservtion. Jg räknr inte med de 6 m stket som skll omgärd hel tomten eftersom denn extr sträck är densmm för ll möjlig former på stketet. Vill mn kn mn lätt dder 6 till mitt svr. Jg kllr den kortste längden v stketet som åtgår för L. Aren för hel det tringelformde området är sin6 så vrje del v mrken skll h ren A. En grov övre gräns är L som erhålls genom tt dr tre prllelltrnsversler i tringeln som delr sidorn mitt itu. En nnn vrint är tt skp ett cirkel med ren A, d.v.s. A med rdien r,7, så som i figur. C A B Figur : En vrint. Noter tt CE är en rk linje genom tringelns tyngdpunkt D även om det inte ser ut så. Cirkelns rdie är r. A,B,E är mittpunktern på respektive sid. Vi vet tt DB tn vilket ger tt längden v de små itrn som går från cirkelns periferi till punktern A,B,E är D E. Denn vrint ger då en omkrets på + + 9, Dett är mindre än. Vi kn även oserver tt cirkelns omkrets är,7 vilket gör tt vrje försök med tt inneslut ren med en figur i det inre v tringeln utn mer kontkt än eventuellt en tngeringspunkt med någon sid kräver, enligt isoperimetrisk olikheten L >,7. Dessutom är vståndet från cirkeln till sidorn det minst möjlig då cirkeln ligger mitt i tringeln. Att t.ex. flytt cirkeln uppåt skulle led till tt sträckorn som går till punktern A och E skulle li längre. Det lir även den sträck som går till B. Härnäst försöker vi med figur. I denn gäller tt h. h Figur : Vi testr med fler rk streck. Längden lir då + h Det ger L + + 7,. Dett vr lltså en kortre vrint än tt inneslut ett område som vi gjorde i förr försöket. Längden L +

4 Vi kn enkelt oserver tt om något v de i figuren lodrät strecken skulle vr icke-lodrät, men fortfrnde h sin ändpunkter i tringelns s respektive på prllelltrnsverslen, så skulle det idr till ökd längd. På smm sätt skulle en förflyttning v ändpunkten från prllelltrnsverslen led till tt vi ökr längden. Jämför med det llr först fllet med längden. Skulle vi flytt ändpunkten ut på tringelns sid skulle längden li ännu längre för tt täck smm re. Vi hr även denn möjlighet Figur A B Figur : Vi drr en prllelltrnsversl smt en hlvcirkel och ett streck AB. Vi finner tt cirkeln får rdien r, vilket ger omkretsen r 6,9 Sträckn AB kn då inte vr längre än c 7 6+ men AB r. Det finns dock en kortre lösning. Se figur. Längden kn nu skrivs som LH H + h+ h + H Funktionen är definierd för < H < med undntg för punkter där nämnren lir. Hde jg hft mer tid hde jg försökt ret vidre exkt men jg lev tvungen tt nvänd Mple. Jg gv följnde kommndon ¾ ÕÖØ µ À¹ ½¼¹»¾»À À¹ ¹¾¼ Àµ» ¾¼ ÕÖØ µ¹»à¹¾ Àµ Ä À¹ ¾ À ¾¼¹¾ Àµ ¾ ÕÖØ Àµ¹ Àµµ ¾ ÕÖØ µ Àµ¹Àµ ¾µ ÔÐÓØ Ñ Ò ¼ Ä Àµµ À ¼ºº½¼ ÕÖØ µµ Ä ÕÖØ µ µ ØØ Ú Ñ Ú Ö Ø ½¼ ½¼ ÕÖØ µ Ú Ð Ø Ú Ö ÚÒØ Ø ÓÚ Òº Ñ Ò Ñ Þ Ä Àµ À ¼ºº½¼ ÕÖØ µ ÐÓ Ø ÓÒ ØÖÙ µ Ú Ð ±µ Dess kommndon gv mig resulttet L 6,68 för H Här visr jg grfen som plottdes. 9, 9 8, 8 7, 7 y 6, 8 H 6 Svr: Det kortste stketet jg fnn hr längden 6,6m., H -h h x Figur : Vi lägger in en rektngulär yt smt drr linjer från hörnen till tringelns övrig sidor. I denn tringel, som vi hr plcert i ett koordintsystem, gäller tt höjden H på rektngeln estämmer llt. Det gäller tt om A så är H h A h A H Vidre får vi tt ren för området som utgår från koordintsystemets origo är som ger +H + h A A H 7 H H Kul med primtl Från oken Prime numers v Dvid Wells måste jg t upp två sker. Först det fktum tt polynomet pn n producerr primtl då n,,,,. Här orde mn kunn formuler en uppgift som rör snnolikheten tt få frm primtl för olik värden på n. Det får li en övning till läsren.. Uppvärmning med summor Som inledning till det följnde vill jg t upp summor över fler vriler. Betrkt N M Vd kn vi säg om dett uttryck? Vd etyder det? Det etyder tt vi skll summer, för vrje värde på från till N, för vrje värde på från till M, värdet v uttrycket. Lät oss t ett exempel. Låt N och M. Vi får då Uttrycken lir ändå inte speciellt enkl tt jo med.

5 Vi skll summer för och. Om får vi och för får vi eller om vi vill uttryck det längre, Det vi gör är tt vi summerr och sedn multiplicerr med värdet på som här vr. Vi hr lltså som vi kn skriv För tt förstå den sist likheten kn du tänk dig som en konstnt B. Du summerr då B som kn skrivs B. Vi hr även. Denn summ kunde vi lltså h eräknt i en nnn ordning genom tt örj sumer för vrje värde på. Allt dett lycks tck vre tt summorns gränser och summtionsvriler är oeroende v vrndr, likså är uttrycket en produkt där vi kn ryt ut fktorer som r eror på en summtionsvriel. När du ser ett uttryck som så skll du tänk tt i den inre summn så händer inget med värdet. Det kn flytts ut till. Vi ser även tt i summn är den inre summn helt oeroende v. Vi eräknr lltså summorn vr för sig och multiplicerr dem. Hr vi ett uttryck såsom N N N m m m så inser vi tt vi kn skriv det som en produkt v enskild summor. N N Nm m m Dett är kärnn i hel resonemnget. Som övning kn du övertyg dig om tt N N N m m f f f m m N N Nm f f f m m m för funktioner f, f,, f m.. Liouville Det desto intressntre från oken är ett resultt v Joseph Liouville som jg först tänkte illustrer med ett exempel. Tlet hr följnde delre,,,,,,. Vrje delre hr i sin tur delre; vi hr Tl Delre Antl delre,,,,,,,,,,,, 6 Oservtionen som Liouville gjorde och tydligen evisde generellt vr tt I åd leden får vi. Dett är dock ingen tillfällighet. Med ett mer mtemtiskt skrivsätt hndlr det om tt för vrje delre k till n skll vi studer ntlet delre till dess tl k. Antlet delre till ett tl k skrivs τk. Vänsterledet i kn då skrivs τ+τ+τ+τ+τ+τ eller mer llmänt för vrje k som delr n; I högerledet hr vi τk τ + τ + τ + τ + τ + τ eller mer llmänt Vi vill nu vis tt τk τk τk Frågn är nu, vd är τk? Som jg nog nämnde i förr numret är τk en multipliktiv funktion och då gäller tt om k p α pα p m tt τ p α pα p m τp α τpα τp m 6

6 Vi konstterde tt för primtl p gäller så τp α α + τ p α pα p m α + α + + Om vi nu ntger tt n p α pα p m så kommer vrje delre k till n skrivs på formen k p β pβ pβ m m, β i α i, i m Högerledet i kn då skrivs τk och med 6 får vi α α β β α α β β β m β m τ p β pβ pβ m m τp β τpβ τpβ m m och med vår tidigre resultt kn vi skriv dett α β τp β α τp β β β m τp β m m α β β + α β β + Vänsterledet i kn vi nu skriv α α τk α τp β β α β + β α β + β β β α β α β α β β m β m β m + 7 τ p β pβ pβ m m τp β τp β m m β m β + β m och dett uttryck är lik med 7 eftersom α β β β m + αm β + β m + αα + β m α β β Den sist likheten utgår jg från tt du kn sedn tidigre. Annrs visr du den lätt med induktion. Därmed hr vi vist smm sk som Lioville visde för över hundr år sedn. Dålig nyheter Enligt skolverket så hr ntlet elever som läser kursen Mtemtik E minskt åter igen. Våren 999 vr det c 9% som läste den, år 6% och år 6 enrt %. Ill värre! De vet inte vd för roligt de går miste om! 6

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

14. MINSTAKVADRATMETODEN

14. MINSTAKVADRATMETODEN 4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

Kan det vara möjligt att med endast

Kan det vara möjligt att med endast ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE. GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Sidor i boken

Sidor i boken Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer

Läs mer

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför? Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13 LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Repetitionsuppgifter i matematik

Repetitionsuppgifter i matematik Lärrprogrmmet Ingång Mtemtik och Lärnde Repetitionsuppgifter i mtemtik Inför vårterminens mtemtikstudier kn det vr r tt repeter grundläggnde räknefärdigheter. Dett mteril innehåller uppgifter inom följnde

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Gör slag i saken! Frank Bach

Gör slag i saken! Frank Bach Gör slg i sken! Frnk ch På kppseglingsbnn ser mn tävlnde båtr stgvänd lite då och då under kryssrn. En del v båtrn seglr för styrbords hlsr och ndr för bbords. Mn kn undr vem som gör rätt och hur mn kn

Läs mer

Finaltävling den 20 november 2010

Finaltävling den 20 november 2010 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7.

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7. Uppsl Universitet Mtemtisk Institutionen Bo Styf LAoG I, 5 hp ES, KndM, MtemA -9-6 Smmnfttning v föreläsningrn 5-7. Föreläsningrn 5 7, 7/9 6/9 : Det kommer, liksom i lärooken, inte tt finns utrymme för

Läs mer

Lösningsförslag till fråga 5

Lösningsförslag till fråga 5 Lösningsförslg till fråg 5 Smmnfttning Följnde lceringr för unktern, som frmgår v Tbell, är de bäst vi hr funnit. Utförligre beskrivningr v ders lägen följer i texten: Fråg ), n unkter i en kvdrt n Plcering

Läs mer

MATEMATISKT INNEHÅLL UPPGIFT METOD. Omvandla mellan olika längdenheter. METOD BEGREPP RESONEMANG. Ta reda på omkrets. 5 Vilken omkretsen har figuren?

MATEMATISKT INNEHÅLL UPPGIFT METOD. Omvandla mellan olika längdenheter. METOD BEGREPP RESONEMANG. Ta reda på omkrets. 5 Vilken omkretsen har figuren? Kn du dett? Uppgiftern här är tänkt tt nvänds för utvärdering v hur elevern tillägnt sig kpitlets mtemtisk innehåll. Låt elevern, prvis eller i mindre grupper, lös uppgiftern tillsmmns och förklr för vrndr

Läs mer

Matematiska uppgifter

Matematiska uppgifter Element Årgång 59, 976 Årgång 59, 976 Först häftet 3020. Lös på enklste sätt ekvtionssystemet (Svr: x = v = 2 och y = u = 2) x + 7y + 3v + 5u = 6 8x + 4y + 6v + 2u = 6 2x + 6y + 4v + 8u = 6 5x + 3y + 7v

Läs mer

Bokstavsräkning. Regler och knep vid bokstavsräkning

Bokstavsräkning. Regler och knep vid bokstavsräkning Mtemtik Bokstvsräkning Du står nu inför en ny kurs i mtemtik, där meningen är tt du sk tillgodogör dig ny teorier, som smtlig leder frm till övningr och uppgifter. Även om du förstått vd teorin sk nvänds

Läs mer

a sin 150 sin 15 BC = BC AB 1.93 D C 39º 9.0

a sin 150 sin 15 BC = BC AB 1.93 D C 39º 9.0 18 Trigonometri Övning 18.1 I tringeln är sidorn och lik lång. Tringelns störst vinkel är 10. eräkn förhållndet melln sidorn och. Svr med tre gällnde siffror. Mätning i figur godts ej. Tringeln är likbent.

Läs mer

RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR MATEMATIKPROV, LÅNG LÄROKURS 905 BESKRIVNING AV GODA SVAR De beskrivningr v svrens innehåll och poängsättningr som ges här är inte bindnde för studentexmensnämndens bedömning Censorern beslutr om de kriterier

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

Generaliserade integraler

Generaliserade integraler Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst

Läs mer

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT. Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild

Läs mer

Nautisk matematik, LNC022, Lösningar

Nautisk matematik, LNC022, Lösningar Nutisk mtemtik, LN022, 2012-05-21 Lösningr 1. () För vilken eller vilk vinklr v melln 0 oh 180 är sin v = 0, 25? Räknren ger oss v 14, 5, då finns okså lösningen 180 14, 5 = 165, 5 i det givn intervllet.

Läs mer

FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK

FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK Förord Dett kompendium innehåller övningr inom reguljär språk för kursen Formell språk, utomter och eräkningsteori som

Läs mer

1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b.

1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b. UPPSAA UNIVERSITET Mtemtisk institutionen Slling (070-6527523) PROV I MATEMATIK AUTOMATATEORI 18 okt 2012 SKRIVTID: 8-13. HJÄPMEDE: Ing. MOTIVERA AA ÖSNINGAR NOGGRANT. BETYGSGRÄNSER: För etygen 3, 4 respektive

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

Area([a; b] [c; d])) = (b a)(d c)

Area([a; b] [c; d])) = (b a)(d c) Aren och integrl Summor Huvudämne i föreläsningen är reor v gurer i plnet och integrler. Integrl är ett egrepp som låter de nier reor v gurer i plnet, och speciellt eräkn reor melln grfer v funktioner

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel

Läs mer

Appendix. De plana triangelsatserna. D c

Appendix. De plana triangelsatserna. D c ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:

Läs mer

HF1703, Inledande matematik (Byggproduktion) DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER

HF1703, Inledande matematik (Byggproduktion) DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER Den trigonometrisk enhetscirkeln är en cirkel med rdie = och mittpunkt i origo B(0,) C(,0) O D(0,) I en rätvinklig tringel definierr vi

Läs mer

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering.

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering. 1 Introduktion till progrmmering SMD180 Föreläsning 8: Listor 2 Listor = generliserde strängr Strängr = sekvenser v tecken Listor = sekvenser v vd som helst [10, 20, 30, 40] # en list v heltl ["spm", "ungee",

Läs mer

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3.

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3. Inlednde kurs i mtemtik, vsnitt P6 P6 eräkn sin P61 eräkn os 4 Vi ritr upp enhetsirkeln oh vinkeln Vi sk nvänd enhetsirkeln oh symmetrier i denn för tt estämm os 4 Den punkt på enhetsirkeln med vinkeln

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

En skarp version av Iliev-Sendovs hypotes

En skarp version av Iliev-Sendovs hypotes School of Mthemtics nd Systems Engineering Reports from MSI - Rpporter från MSI En skrp version v Iliev-Sendovs hypotes Elin Berggren Feb 009 MSI Report 09005 Växjö University ISSN 650-647 SE-35 95 VÄXJÖ

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet

Läs mer

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969 Evighetsklender Vilken veckodg vr det när du föddes? På vilken veckodg fyller du 18 år? Med den här evighetsklendern kn du t red på det. Gör så här när du sk t red på veckodgen: Lägg ihop följnde fyr tl:

Läs mer

Tyngdkraftfältet runt en (stor) massa i origo är. F(x, y, z) =C (x 2 + y 2 + z 2 ) 3 2

Tyngdkraftfältet runt en (stor) massa i origo är. F(x, y, z) =C (x 2 + y 2 + z 2 ) 3 2 Nr 7, pril -, Ameli 7 Linjeintegrler 7. Idéer och smmnhng I en enkelintegrl summers värden v en funktion v en vriel f() längs ett visst intervll. I en duelintegrl summers värden v en funktion v två vriler

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

9. Vektorrum (linjära rum)

9. Vektorrum (linjära rum) 9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,

Läs mer

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00 Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:

Läs mer

Bilaga 1. Beskrivning av uppgifterna och provresultaten

Bilaga 1. Beskrivning av uppgifterna och provresultaten Bilg 1. Beskrivning v uppgiftern oh provresultten 1997-00 I det följnde redoviss lydelsen på de olik uppgifter som ingår i testet oh resulttet för de fyr år som testet hittills hr nvänts. Härigenom kn

Läs mer

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba. Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.

Läs mer

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n

Läs mer

vara n-dimensionella vektorer. Skalärprodukten av a och b betecknas a b ) vara tvådimensionella vektorer. Skalärprodukten av a och b är

vara n-dimensionella vektorer. Skalärprodukten av a och b betecknas a b ) vara tvådimensionella vektorer. Skalärprodukten av a och b är Armin Hliloic: EXTRA ÖVNINGAR Sklärprodkt och ektorprojektion SKALÄRPRODUKT. EGENSKAPER. GEOMETRISK TOLKNING. PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE Sklärprodkt i R n, R och R : Definition. Låt,,...,

Läs mer

Tentamen Programmeringsteknik II Skrivtid: Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper.

Tentamen Programmeringsteknik II Skrivtid: Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Tentmen Progrmmeringsteknik II 014-10-4 Skrivtid: 1400 1900 Tänk på följnde Skriv läsligt! Använd inte rödpenn! Skriv r på frmsidn v vrje ppper. Börj lltid ny uppgift på nytt ppper. Lägg uppgiftern i ordning.

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

Vilken rät linje passar bäst till givna datapunkter?

Vilken rät linje passar bäst till givna datapunkter? Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.

Läs mer

13 Generaliserade dubbelintegraler

13 Generaliserade dubbelintegraler Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

EGENVÄRDEN och EGENVEKTORER

EGENVÄRDEN och EGENVEKTORER EGENVÄRDEN och EGENVEKTORER Definition. (Linjär vbildning) En funktion T från R n (n-dimensionell vektorer) till R m (m-dimensionell vektorer) säges vr en linjär vbildning ( linjär funktion eller linjär

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste

Läs mer

MA002X Bastermin - matematik VT16

MA002X Bastermin - matematik VT16 MA00X Bstermin - mtemtik VT6 Något om trigonometri Mikel Hindgren februri 06 Cirkelns ekvtion Exempel Beräkn vståndet melln punktern (4, 6) och (, ). 7 6 5 4 d (, ) 4 = (4, 6) 6 = 4 4 5 6 Pythgors sts:

Läs mer

Datorernas matematik

Datorernas matematik Stockholms mtemtisk cirkel Dtorerns mtemtik Dniel Ahlsén Jor Bgge Institutionen för mtemtik, KTH och Mtemtisk institutionen, Stockholms universitet 2019 2020 Stockholms mtemtisk cirkel genom tidern (tidigre

Läs mer

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det

Läs mer

Bilaga 1. Beskrivning av uppgifterna och provresultaten

Bilaga 1. Beskrivning av uppgifterna och provresultaten Bilg 1. Beskrivning v uppgiftern oh provresultten 1997-003 I det följnde redoviss lydelsen på de olik uppgifter som ingår i testet oh resulttet för de fyr år som testet hittills hr nvänts. Härigenom kn

Läs mer

Rationella uttryck. Förlängning och förkortning

Rationella uttryck. Förlängning och förkortning Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing

Läs mer

Tillämpad Matematik I Övning 4

Tillämpad Matematik I Övning 4 HH/ITE/BN Tillämpd Mtemtik I, Övning 8 6 Tillämpd Mtemtik I Övning 6 8 Allmänt Övningsuppgiftern, speciellt Tpuppgifter i först hnd, är eempel på uppgifter du kommer tt möt på tentmen. På denn är du ensm,

Läs mer

Induktion LCB 2000/2001

Induktion LCB 2000/2001 Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n

Läs mer

definitioner och begrepp

definitioner och begrepp 0 Cecili Kilhmn & Jokim Mgnusson Rtionell tl Övningshäfte Avsnitt definitioner och egrepp DEFINITION: Ett rtionellt tl är ett tl som kn skrivs som en kvot melln två heltl och där 0. Mängden rtionell tl

Läs mer

Lösningar och kommentarer till uppgifter i 1.2

Lösningar och kommentarer till uppgifter i 1.2 Lösningr och kommentrer till uppgifter i.2 202 d) t t 2 25 t (t 5)(t + 5) Med hjälp v konjugtregeln kn vi fktoriser nämnren. Eftersom nämnren inte får bli noll är ej t 5 eller t 5 tillåtn. 206 Först presenterr

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

Rektangulär kanal, K. Produktbeteckning. Beteckningsexempel. Sida A (se storlekstabell) Sida B (se storlekstabell)

Rektangulär kanal, K. Produktbeteckning. Beteckningsexempel. Sida A (se storlekstabell) Sida B (se storlekstabell) K Rektngulär knl, K Produkteteckning Produkt K c d Sid A (se storlekstell) Sid B (se storlekstell) Längd 1=2000 mm 2= 1250 mm 3= 1000 mm 4= 600 mm 5= Löpnde längd nges i klrtext (mx 2500 mm) 1= Skrv i

Läs mer

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger )

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger ) Intrduktinskurs i mtemtik 1 v 5 Algerisk uttrk: Räknelgr: lgen distriutiv lgr ssitiv lgr kmmuttiv, Ptenser: 1 n L n gånger --------------------------------------- n udd tl, jämnt tl n, n n n 4 4.. ---------------------------------------

Läs mer

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017 KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,

Läs mer

Uttryck höjden mot c påtvåolikasätt:

Uttryck höjden mot c påtvåolikasätt: Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

Slutrapport Jordbruksverket Dnr. 25-12105/10 Kontroll av sniglar i ekologisk produktion av grönsaker och bär

Slutrapport Jordbruksverket Dnr. 25-12105/10 Kontroll av sniglar i ekologisk produktion av grönsaker och bär Slutrpport Jordruksverket Dnr. 25-125/ Kontroll v sniglr i ekologisk produktion v grönsker och är Projektledre: Birgitt Svensson, Område Hortikultur, SLU Innehåll sid Smmnfttning 3 Bkgrund / Motivering

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*)

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*) Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En cirkel är mängden v de punkter i plnet vrs vstånd till en given

Läs mer

Diskreta stokastiska variabler

Diskreta stokastiska variabler Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt

Läs mer

Matematik för sjöingenjörsprogrammet

Matematik för sjöingenjörsprogrammet Mtemtik för sjöingenjörsprogrmmet Mtemtisk Vetenskper 29 ugusti 202 Innehåll Aritmetik och lger. Räkning med nturlig tl och heltl.................... Nturlig tl.......................... 2..2 Negtiv tl...........................

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentmen ellär 92FY21 och 27 201-08-22 kl. 8 13 Svren nges på seprt ppper. Fullständig lösningr med ll steg motiverde och eteckningr utstt sk redoviss för tt få full poäng. Poängen för en helt korrekt löst

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

XIV. Elektriska strömmar

XIV. Elektriska strömmar Elektromgnetismens grunder Strömmens riktning Mn definierr tt strömmen går från plus (+) till minus (-). För tt få till stånd en ström måste mn. Spänningskäll 2. Elektriskt lednde ledningr 3. Sluten krets

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är Armin Hlilovi: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En irkel är mängden v de punkter i plnet vrs vstånd till en given punkt

Läs mer

AUBER 95 9 jan LÖSNINGAR STEG 1:

AUBER 95 9 jan LÖSNINGAR STEG 1: AUBER 95 9 jn AR. Den finit utomten nedn ccepterr ett språk L över = {, }. A B ε Konstruer ) ett reguljärt uttryck för L. ) L = ( ( ) ) = ( ) ) en reguljär grmmtik för L S A S A c) en miniml DFA för L.

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

1 Föreläsning IX, tillämpning av integral

1 Föreläsning IX, tillämpning av integral Föreläsning IX, tillämpning v integrl. Volym v någr kroppr.. Skiv- oc sklmetodern, m.m. Vi kn tänk oss en limp (röd) som längsledes är genomorrd v eln,. Limpn skivs i n lik tjock skivor, lltså med tjocklek

Läs mer

Integraler och statistik

Integraler och statistik Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik

Läs mer

TENTAMEN HF0021 TEN1. Program: Examinator: Datum: Tid: :15-17:15. , linjal, gradskiva. Lycka till! Poäng

TENTAMEN HF0021 TEN1. Program: Examinator: Datum: Tid: :15-17:15. , linjal, gradskiva. Lycka till! Poäng TENTMEN Kursnummer: Moment: Progrm: Rättnde lärre: Emintor: Dtum: Tid: Hjälpmedel: Omfttning oc etgsgränser: H Mtemtik för sår I TEN Tekniskt sår Nicls Hjelm Nicls Hjelm -8- :-7: ormelsmling: ISBN 78--7-77-8

Läs mer

Tentamen i ETE115 Ellära och elektronik, 4/1 2017

Tentamen i ETE115 Ellära och elektronik, 4/1 2017 Tentmen i ETE5 Ellär och elektronik, 4/ 07 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. v 0 i 0 Beräkn

Läs mer

Campingpolicy för Tanums kommun

Campingpolicy för Tanums kommun 1(8) Cmpingpolicy för Tnums kommun 1. Bkgrund Strömstds och Tnums kommuner diskuterde gemensmt sin syn på cmpingverksmhetern i respektive kommun år 2003 och kunde då se ett stort behov v tt en likrtd syn

Läs mer

13.9.2006 Dnr 6/002/2006. Till pensionsstiftelser som bedriver tilläggspensionsskydd och är underställda lagen om pensionsstiftelser

13.9.2006 Dnr 6/002/2006. Till pensionsstiftelser som bedriver tilläggspensionsskydd och är underställda lagen om pensionsstiftelser FÖRESRIFT 13.9.2006 Dnr 6/002/2006 Till pensionsstiftelser som edriver tilläggspensionsskydd och är underställd lgen om pensionsstiftelser FÖRSÄRINGSTENIS BERÄNINGR OCH DERS BERÄNINGSGRUNDER FÖR PENSIONSSTIFTELSER

Läs mer

Under årens lopp har många lärare och forskare beskrivit hur nybörjarstudenterna

Under årens lopp har många lärare och forskare beskrivit hur nybörjarstudenterna B. Grevholm, J. Lundqvist, L-E. Persson & P. Wll Ett mentorprojekt för gymnsieelever i Luleå Hur får vi fler gymnsieelever intresserde v tt örj läs mtemtik vid universitetet? Den frågn hr mång mtemtiklärre

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8 Kurs plnering.se NpMC vt011 1(9) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 011 Krvgränser 4 Del I, 8 uppgifter utn miniräknre 5 Del II, 9 uppgifter med miniräknre 8 Förslg på lösningr

Läs mer

TATA42: Föreläsning 11 Kurvlängd, area och volym

TATA42: Föreläsning 11 Kurvlängd, area och volym TATA4: Föreläsning Kurvlängd, re och volm John Thim 4 mrs 8 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på prmeterform: ((t), (t)). Dett innebär tt både - och -koordintern simultnt

Läs mer