Datorövning 4 Poissonregression

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Datorövning 4 Poissonregression"

Transkript

1 Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-16 Datorövning 4 Poissonregression När man hanterar två eller fler variabler är man ofta intresserad av funktionssambandet mellan variablerna. För räknedata (count data) är Poissonregression en vanligt förekommande modell och tillämpningar finns inom de flesta vetenskaper. Poissonregressionsmodellen finns också implementerad i flera statistiska datorpaket. I denna datorövning ska vi lära oss mer om: Poissonregressionsmodellen och hur man skattar modellparametrarna. Modellval, t.ex. hur många förklarande variabler man bör använda. 1 Förberedelseuppgifter 1. Läs igenom handledningen till datorövningen och kapitel (speciellt 7.3.3). 2. Försök förklara skillnaden mellan linjär regression och poissonregression. 2 Trafikolycksdata Vägverket (sedermera Trafikverket, numera Transportstyrelsen) har det övergripande ansvaret för hela vägtransportnätet. En viktig fråga är trafiksäkerhet och man genomför kontinuerligt arbete för att förbättra trafiksäkerheten. Från deras hemsida kan man få fram ett antal olika data om trafikolyckor. Vi ska i denna datorövning använda trafikolycksdata för åren Data är hämtade från Arsdata-fran-1950 och finns som excel-fil på kurshemsidan. Vi ska använda dessa data för att anpassa en poissonregressionsmodell till antalet personer som dödades i trafikolyckor, jfr Example 7.16 i boken. Den skattade modellen används sedan för att prediktera det förväntade antalet dödade år Börja med att ladda ner arsdata_1950_2010.xls från kursens hemsida och spara den i din Matlabkatalog. Läs sedan in den i Matlab med: >> data = xlsread('arsdata_1950_2010.xls'); Variabeln data består nu av 9 kolumner (size(data)) men vi är bara intresserade av kolumnerna 1, 2, 5 och 6, dvs. år, antal dödade personer, antal bilar (1000-tal) respektive mängd såld bensin (1000 m 3 ). Vi lägger dessa i varsin vektor: >> year = data(:,1); >> killed = data(:,2); >> cars = data(:,5); >> petrol = data(:,6);

2 DATORÖVNING 4, FMS065 2 Rita upp antalet personer som dött varje år: >> plot(year,killed,'*') >> xlabel('år') >> ylabel('döda') Uppgift: Rita också (i nya figurer) antalet döda mot antalet bilar och mot mängden bensin. Ser du några samband? Från figurerna kan man se att trenden med ökande antal döda bryts omkring år Och från 1970 börjar antalet minska. Varför ökade antalet döda under ? Och varför började det sedan minska? Ledtråd: högertrafik (1967), säkerhetsbälte i framsätet i nya bilar (1969), obligatorisk användning av bilbälte i framsätet (1975). 3 Poissonregressionsmodellen Antag att vi har en serie räknedata, n i, i = 1,..., k, för någon händelse, dvs. antalet dödade i trafikolyckor under året. Dessa räknedata antas vara observationer från slumpvariablerna N i Po(m i ), (kallas responseller beroende variabler) med väntevärden m i = m i (x i1,..., x ip ). Variablerna x i1,..., x ip kallas förklarande variabler 1 och antas mäta faktorer som har inverkan på räknevariablerna. Vi begränsar m i till att vara en log-linjär funktion 2, E(N i ) = m i = exp(b 0 + b 1 x i b p x ip ) (1) Då blir sannolikheten att N i = n: P(N i = n) = e m i (m i) n n! = e eb 0 +b 1 x i bpx ip (eb 0+b 1 x i b px ip ) n, n = 0, 1, 2,... n! 3.1 Skattning av modellparametrarna b 0,..., b p För att förenkla notationen inför vi x i0 = 1 och kan nu skriva (1) som E(N i ) = m i = exp( b j x ij ), p j=0 där N i Po(m i ) för i = 1,..., k. Likelihoodfunktionen beräknas sedan som L(b) = k P(N i = n i ) = k e m i mn i i n i!. där m i = m i (b p ) är en funktion av b p = (b 0,..., b p ). ML-skattningarna b p = (b 0,..., b p ) är de värden på b som maximerar likelihoodfunktionen L(b). Det är oftast enklare att maximera log-likelihoodfunktion l(b) = ln(n i!) + n i ln(m i ) 1 Det finns ett antal olika benämningar: oberoende variabler, prediktorvariabler, etc. 2 Ibland har modellen en extra term t i: m i = t i exp(b 0 + b 1x i b px ip). m i

3 DATORÖVNING 4, FMS065 3 Genom att sätta förstaordningsderivatorna av log-likelihooden lika med noll får vi ett system av (p + 1) icke-linjära ekvationer i b j, l(b) b j = m i b j ( n i m i 1) = (n i m i )x ij = 0, j = 0,..., p Oftast måste detta ekvationssystem lösas med någon numerisk metod, t.ex., Newton-Raphson-algoritmen, jfr. Kapitel i boken. Poissonregressionsmodellen tillhör en klass av modeller som kallas generaliserade linjära modeller. I en generaliserad linjär modell (GLM), är väntevärdet av responsvariabeln, m, modellerat som en monoton (icke-linjär) transformation av de förklarande variablerna, m i = g(b 0 + b 1 x 1 + b 2 x ). Inversen av transformationsfunktionen g kallas den kanoniska länk-funktionen. I Poissonregression är denna funktion log-funktionen eftersom ln m i = p j=1 b jx ij. I andra GLM:er används andra länkfunktioner, se doc glmfit för en lista av länkfunktioner som Matlab tillåter. Dessutom kan responsvariabeln ha flera olika fördelningar, t.ex. normal eller binomial. Vi ska också använda Matlabs funktion glmval med en logaritmisk länkfunktion för att göra prediktioner med den skattade modellen. 4 Poissonregression av trafikdata Vi ska nu pröva att anpassa en poissonregressionsmodell till antal dödade i trafikolyckor. Vi kunde se att det fanns ett brott i den ökande trenden av antal dödade runt åren , till stor del beroende på förbättringen i trafiksäkerhet genom bilbälten. Därför verkar det rimligt att anpassa vår modell till data med start Uppgift: Varför? >> year = data(26:end,1); % 26:end betyder rad 26 t.o.m. sista raden. >> killed = data(26:end,2); >> cars = data(26:end,5); >> petrol = data(26:end,6); Uppgift: Vilka är de förklarande variablerna? Vilken är responsvariabeln? Rita om figuren för det reducerade datamaterialet: >> figure(1) >> plot(year,killed,'*') >> xlabel('år') >> ylabel('döda') Vi börjar analysen med en förklarande variabel, year. Uppgift: Vad är det tänkt att variabeln year ska mäta?

4 DATORÖVNING 4, FMS065 4 >> X1 = [year-mean(year)]; % Vi drar bort medelvärdet för att få % numeriskt stabilare skattningar. >> n = killed; >> help glmfit % Matlabs rutin för GLM-regressionsmodeller. >> beta1 = glmfit(x1,n,'poisson'); >> my_fit1 = glmval(beta1,x1,'log'); % Prediktion där log(my) är linjär. % Rita i samma figur som data ovan. >> plot(year,my_fit1,'b-') Uppgift: Vad blev din skattning av b 0 och b 1? Uppgift: Räkna ut e b 0 och e b 1 (exp(beta1)). Hur ska vi tolka dem? Försök identifiera dem i figuren. Hur stor är den genomsnittliga minskningen i antal döda per år? Uppgift: Att döma av figuren, är denna modell tillräcklig för att beskriva antalet personer som dödas i trafikolyckor? Trots att denna enkla modell fångar den övergripande trenden, kan anpassningen kanske förbättras genom att ta med fler variabler i modellen. Vi lägger alltså till antalet bilar till modellen: >> X2 = [year-mean(year), cars-mean(cars)]; >> beta2 = glmfit(x2,n,'poisson'); >> my_fit2 = glmval(beta2,x2,'log'); >> plot(year,my_fit2,'g-') Uppgift: Har dina skattningar b 0 och b 1 ändrats? Förbättrar antalet bilar anpassningen? Uppgift: Hur förändras det förväntade antalet döda om antalet bilar ökar med 1000? Med ? (Tänk på enheten!) Det verkar rimligt att också ta med mängden såld bensin eftersom den borde återspegla hur mycket bilarna kör. 3. (Naturligtvis skulle man hellre vilja ha antalet körda mil. På RUS (Regional Utveckling och Samverkan i miljömålssystemet) kan man hitta statistik över antal körda mil, baserat på bilprovningens noteringar men tyvärr bara för perioden ) 3 Under antagande att medelbensinförbrukningen för en bil varit konstant över åren en 1970-års model av Volvo använde ungefär 10 l per 100 km, vilket är ungefär detsamma som för en 2000-års modell. Däremot har 2000 års modell mer än dubbelt så många hästkrafter.

5 DATORÖVNING 4, FMS065 5 >> X3 = [year-mean(year), cars-mean(cars), petrol-mean(petrol)]; >> beta3 = glmfit(x3,n,'poisson'); >> my_fit3 = glmval(beta3,x3,'log'); >> plot(year,my_fit3,'r-') Uppgift: Har dina skattningar av b ändrats nu? Använd kommandot format long för att visa fler decimaler. Uppgift: Hur förändras det förväntade antalet döda om mängden bensin ökar med 1000 m 3? Med m 3. Uppgift: Vilken modell tycker du är bäst? (format short ställer tillbaka till färre decimaler igen.) 4.1 Modellval Deviance Det är inte alltid enkelt att avgöra, bara genom att titta på en figur, vilken modell man ska välja. Även om anpassningen blir bättre när man lägger till fler variabler så ökar också osäkerheten hos skattningarna. En metod att välja komplexitet hos modellen är att använda deviance och hypotestest. Låt b p = {b 0, b 1,..., b p } vara ML-skattningarna av modellparametrarna {b 0, b 1,..., b p } i den fullständiga modellen med p förklarande variabler och låt b q vara skattningarna i den reducerade modellen där vi bara använder q (q < p) av de förklarande variablerna. Då gäller, under lämpliga villkor, att deviance DEV = 2 (l(b p ) l(b q )) = 2 n i (ln m ip ln m iq) är ungefär q 2 (p q)-fördelad om den reducerade modellen är sann. Deviance för den tredje modellen, jämfört med den andra modellen kan beräknas som: >> DEV32 = 2*sum(killed.*(log(my_fit3)-log(my_fit2))) Uppgift: Är förbättringen med modell 3 signifikant jämfört med modell 2? (a-kvantilen i en q 2 (f )-fördelning fås med chi2inv(1-a,f )). Uppgift: Upprepa testet för modell 2 mot modell 1 och dessutom med modell 3 mot modell 1 (tänk på frihetsgraderna!) Vilken modell är bäst?

6 DATORÖVNING 4, FMS Prediktion Vi vill nu använda vår modell för att prediktera det förväntade antalet dödade i trafiken år För att göra det måste vi först uppskatta antalet bilar och mängden såld bensin det året. Börja med att rita upp antalet bilar mot årtalet: >> figure(2) >> plot(year,cars,'o') Vi använder en enkel linjär modell för antalet bilar, y i, år x i y i = b 0 + b 1 x i + e i där felen, e i N(0, s 2 e), antas vara oberoende. Detta är den vanliga modellen vid linjär regression. I Matlab skattas parametrarna med funktionen regress som beräknar minsta-kvadrat-skattningarna. När e i är normalfördelade är dessa skattningar identiska med maximum-likelihood-skattningarna. >> phat = regress(cars,[ones(size(year)) year]) % regress måste ha en % kolumn ettor också. >> newyear = 1975:2020; % De år vi vill prediktera för. >> car_fit = phat(1)+phat(2)*newyear; >> plot(newyear,car_fit,'r-') >> cars_2020 = phat(1)+phat(2)*2020 Uppgift: Hur mycket ökar antalet bilar per år, i medeltal? Undersök hur bra modellen är genom att titta på residualerna: >> res = cars-(phat(1)+phat(2)*year); >> figure(3), plot(year,res,'o') >> figure(4), normplot(res) Uppgift: Ser residualerna ut som de borde när vi vet hur modellfelen e i ska bete sig? Det verkar som om vi missar lite konjunkturcykler men det struntar vi i nu. Vi vill bara ha en grov uppskattning av antalet bilar Nu ska vi uppskatta mängden såld bensin år >> figure(5) >> plot(year,petrol,'*') Uppgift: Ser det ut at passa med en rät linje? Eftersom bensinförbrukning inte är linjär anpassar vi en kvadratisk funktion till den istället:

7 DATORÖVNING 4, FMS065 7 >> phat = regress(petrol,[ones(size(year)) year year.^2]) >> petrol_fit = phat(1)+phat(2)*newyear+phat(3)*newyear.^2; >> plot(newyear,petrol_fit,'r-') >> petrol_2020 = phat(1)+phat(2)*2020+phat(3)*2020^2 Uppgift: Verkar det vara en bra uppskattning? Nu kan vi prediktera det förväntade antalet dödade år 2020 med hjälp av (1) och rita in det i den ursprungliga figuren: >> x = [2020-mean(year) cars_2020-mean(cars) petrol_2020-mean(petrol)]; >> my_2020 = glmval(beta3,x,'log') >> figure(1) >> plot(2020,my_2020,'ro') Uppgift: Verkar prediktionen rimlig? Eftersom modellen för att prediktera bensinförsäljningen kanske inte är så bra är det bäst att undersöka hur känslig vår prediktion av antalet döda är. Gör om prediktionen men utan att ta med bensinen: >> x = [2020-mean(year) cars_2020-mean(cars)]; >> my2_2020 = glmval(beta2,x,'log') % modell 2 utan bensin >> figure(1) >> plot(2020,my2_2020,'ko') Uppgift: Ändrade sig prediktionen? Uppgift: Bör man använda någon av modellerna för prediktera antalet dödade år 2100?

Datorövning 4 Poissonregression

Datorövning 4 Poissonregression Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövning 4 Poissonregression När man hanterar två eller fler variabler är man ofta intresserad

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F10: Intensiteter och Poissonmodeller Frågeställningar Konstant V.v.=Var Cyklister Poissonmodeller för frekvensdata Vi gör oberoende observationer av de (absoluta) frekvenserna n 1, n 2,..., n k från den

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

3 Maximum Likelihoodestimering

3 Maximum Likelihoodestimering Lund Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 Parameterestimation och linjär tidsserieanalys Denna laborationen ger en introduktion till

Läs mer

1 Förberedelseuppgifter

1 Förberedelseuppgifter LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli

Läs mer

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3, HT -06 MATEMATISK STATISTIK FÖR F, PI OCH NANO, FMS 012 MATEMATISK STATISTIK FÖR FYSIKER, MAS 233 Laboration 3: Enkla punktskattningar,

Läs mer

Datorövning 6 Extremvärden och Peak over Threshold

Datorövning 6 Extremvärden och Peak over Threshold Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövning 6 Extremvärden och Peak over Threshold I denna datorövning ska vi använda mätningarna

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Föreläsning 8: Konfidensintervall

Föreläsning 8: Konfidensintervall Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga

Läs mer

GMM och Estimationsfunktioner

GMM och Estimationsfunktioner Lunds Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 GMM och Estimationsfunktioner I laborationen möter du två besläktade metoder för att estimera

Läs mer

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler UPPSALA UNIVESITET Matematiska institutionen Jesper ydén Matematisk statistik 1MS026 vt 2014 DATOÖVNING MED : EGESSION I den här datorövningen studeras följande moment: Enkel linjär regression: skattning,

Läs mer

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik

Läs mer

Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen

Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, HT-16 Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Syftet med den här laborationen

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

Datorövning 3 Bootstrap och Bayesiansk analys

Datorövning 3 Bootstrap och Bayesiansk analys Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövning 3 Bootstrap och Bayesiansk analys I denna datorövning ska vi fokusera på två olika

Läs mer

PROGRAMFÖRKLARING III

PROGRAMFÖRKLARING III Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING III Matematisk statistik, Lunds universitet stik för modellval och prediktion p./22 Statistik

Läs mer

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera

Läs mer

lära dig tolka ett av de vanligaste beroendemåtten mellan två variabler, korrelationskoefficienten.

lära dig tolka ett av de vanligaste beroendemåtten mellan två variabler, korrelationskoefficienten. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FMS035: MATEMATISK STATISTIK FÖR M DATORLABORATION 5, 11 MAJ 2012 Syfte Syftet med dagens laboration är att du ska lära dig tolka ett av de

Läs mer

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval

Läs mer

Datorövning 6 Extremvärden och Peaks over Threshold

Datorövning 6 Extremvärden och Peaks over Threshold Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-16 Datorövning 6 Extremvärden och Peaks over Threshold I denna datorövning ska vi använda

Läs mer

Laboration 4: Hypotesprövning och styrkefunktion

Laboration 4: Hypotesprövning och styrkefunktion LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels

Läs mer

Laboration 4 R-versionen

Laboration 4 R-versionen Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 VT13, lp3 Laboration 4 R-versionen Regressionsanalys 2013-03-07 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall

Läs mer

Datorövning 1 Fördelningar

Datorövning 1 Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet

Läs mer

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk)

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk) Poissonregression En lämplig utgångspunkt om vi har en beroende variabel som är en count variable, en variabel som antar icke-negativa heltalsvärden med ganska liten variation E(y x1, x2,.xn) = exp( 0

Läs mer

Lunds tekniska högskola Matematikcentrum Matematisk statistik. FMS035: Matematisk statistik för M Datorlaboration 5

Lunds tekniska högskola Matematikcentrum Matematisk statistik. FMS035: Matematisk statistik för M Datorlaboration 5 Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: Matematisk statistik för M Datorlaboration 5 Syfte Syftet med dagens laboration är att du ska lära dig tolka ett av de vanligaste beroendemåtten

Läs mer

Datorövning 1 Introduktion till Matlab Fördelningar

Datorövning 1 Introduktion till Matlab Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-12 Datorövning 1 Introduktion till Matlab Fördelningar I denna datorövning ska du först

Läs mer

Regressionsmodellering inom sjukförsäkring

Regressionsmodellering inom sjukförsäkring Matematisk Statistik, KTH / SHB Capital Markets Aktuarieföreningen 4 februari 2014 Problembeskrivning Vi utgår från Försäkringsförbundets sjuklighetsundersökning och betraktar en portfölj av sjukförsäkringskontrakt.

Läs mer

Regressionsanalys av lägenhetspriser i Spånga

Regressionsanalys av lägenhetspriser i Spånga Regressionsanalys av lägenhetspriser i Spånga Mahamed Saeid Ali Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2016:11 Matematisk statistik Juni 2016

Läs mer

Instruktioner till arbetet med miniprojekt II

Instruktioner till arbetet med miniprojekt II Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: Matematisk statistik för M Miniprojekt II, 17 maj 2013 Instruktioner till arbetet med miniprojekt II Innan ni börjar arbeta vid Datorlaboration

Läs mer

Laboration 4 Regressionsanalys

Laboration 4 Regressionsanalys Matematikcentrum Matematisk Statistik Lunds Universitet MASB11 VT14, lp4 Laboration 4 Regressionsanalys 2014-05-21/23 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner som finns

Läs mer

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 1, 1 APRIL 215 FÖRDELNINGAR, SIMULERING OCH FÖRDELNINGSANPASSNING Syfte Syftet med dagens laboration är att du ska

Läs mer

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013 Föreläsning 9 Logistisk regression och Indexteori Patrik Zetterberg 7 januari 2013 1 / 33 Logistisk regression I logistisk regression har vi en binär (kategorisk) responsvariabel Y i som vanligen kodas

Läs mer

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent

Läs mer

Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik 1MS026 vt 2014

Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik 1MS026 vt 2014 Föreläsning 1. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Tillämpad statistik 1MS026 vt 2014 Varför tillämpad statistik? Användningsområden i medicin, naturvetenskap

Läs mer

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två

Läs mer

Statistisk analys av komplexa data

Statistisk analys av komplexa data Statistisk analys av komplexa data Trunkerade data och Tobitregression Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 10, 2015 Bertil Wegmann (statistik, LiU) Trunkerade data

Läs mer

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 I Punktskattningar I Egenskaper I Väntevärdesriktig I E ektiv I Konsistent

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på

Läs mer

Några extra övningsuppgifter i Statistisk teori

Några extra övningsuppgifter i Statistisk teori Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT

Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Regressionsanalys handlar om att estimera hur medelvärdet för en variabel (y) varierar med en eller flera oberoende variabler (x). Exempel: Hur

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet

Läs mer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Information om laborationerna I andra halvan av MASA01 kursen ingår två laborationer.

Läs mer

MMA132: Laboration 2 Matriser i MATLAB

MMA132: Laboration 2 Matriser i MATLAB MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar

Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar ICKE-LINJÄRA MODELLER Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Y i = 1 + 2 X 2i + u i Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar cov(x i,u i )

Läs mer

Industriell matematik och statistik, LMA136 2013/14

Industriell matematik och statistik, LMA136 2013/14 Industriell matematik och statistik, LMA136 2013/14 7 Mars 2014 Disposition r Kondensintervall och hypotestest Kondensintervall Statistika Z (eller T) har fördelning F (Z en funktion av ˆθ och θ) q 1 α/2

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera

Läs mer

SAMBANDS- MODELLER, 15HP. Lärare: Ann-Charlotte Hallberg Tommy Schyman

SAMBANDS- MODELLER, 15HP. Lärare: Ann-Charlotte Hallberg Tommy Schyman 1 SAMBANDS- MODELLER, 15HP Lärare: Ann-Charlotte Hallberg Tommy Schyman 2 Kursplan Kursplanen är det styrande dokumentet i en kurs. Planen är fastställd av fakulteten och måste följas. Kursplanen visas

Läs mer

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs.

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 31:E MAJ 2012 KL 08.00 13.00. Examinator: Tobias Rydén, tel 790 8469. Kursledare: Tatjana Pavlenko, tel 790 8466.

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys Anna Lindgren Matematisk statistik 2 september 2013 Formalia Syfte och Mål Om kursen Kursen ger 7.5 hp och är obligatorisk på Riskhantering. Förutsätter en grundläggande kurs i statistik/matematisk statistik.

Läs mer

Statistisk försöksplanering

Statistisk försöksplanering Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare

Läs mer

Laboration 3: Enkel linjär regression och korrelationsanalys

Laboration 3: Enkel linjär regression och korrelationsanalys STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 3: Enkel linjär regression och korrelationsanalys I sista datorövningen kommer

Läs mer

b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p)

b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p) Avd. Matematisk statistik TENTAMEN I SF90 OCH SF905 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 4:E MARS 204 KL 4.00 9.00. Kursledare: För D och Media: Gunnar Englund, 073 32 37 45 Kursledare: För F:

Läs mer

SF1901 Sannolikhetsteori och statistik, VT 2017 Datorlaboration 1 för CELTE2, CTFYS2

SF1901 Sannolikhetsteori och statistik, VT 2017 Datorlaboration 1 för CELTE2, CTFYS2 Matematisk Statistik SF1901 Sannolikhetsteori och statistik, VT 2017 Datorlaboration 1 för CELTE2, CTFYS2 1 Introduktion Detta är handledningen till Datorlaboration 1, ta med en utskriven kopia av den

Läs mer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2 Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2 Rapporten till den här laborationen skall lämnas in senast den 19e December 2014.

Läs mer

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Anna Lindgren 28+29 november, 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F15: multipel regression 1/22 Linjär regression

Läs mer

TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER Statistiska institutionen Frank Miller Dan Hedlin Skrivtid: 09.00-14.00 TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2014-03-21 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade tabeller

Läs mer

Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå

Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå Användning Multilevel Modeling (MLM) Var sak på sin nivå Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Kärt barn har många namn: (1) Random coefficient models; () Mixed effect models; (3)

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER

Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER När vi mäter en effekt i data så vill vi ofta se om denna skiljer sig mellan olika delgrupper. Vi kanske testar effekten av ett

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT10

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT10 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT10 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

Härledning av Black-Littermans formel mha allmänna linjära modellen

Härledning av Black-Littermans formel mha allmänna linjära modellen Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem

Läs mer

F9 Konfidensintervall

F9 Konfidensintervall 1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att

Läs mer

Resultatet läggs in i ladok senast 13 juni 2014.

Resultatet läggs in i ladok senast 13 juni 2014. Matematisk statistik Tentamen: 214 6 2 kl 14 19 FMS 35 Matematisk statistik AK för M, 7.5 hp Till Del A skall endast svar lämnas. Samtliga svar skall skrivas på ett och samma papper. Övriga uppgifter fordrar

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 12 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 12 December 1 / 12 Explorativ Faktoranalys

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2010

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2010 Avd. Matematisk statistik SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2010 0 Allmänna anvisningar Arbeta med handledningen, och skriv rapport, i grupper om två eller tre personer. Närvaro vid laborationstiden

Läs mer

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I

Läs mer

Datorövning 5 Regression

Datorövning 5 Regression Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5 HP FÖR E, HT-15 Datorövning 5 Regression Syftet med den här laborationen är att du skall bli

Läs mer

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Laboration 5: Regressionsanalys

Laboration 5: Regressionsanalys Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 5 Matematisk statistik AK för Π och E, FMS012, HT14/VT15 Laboration 5: Regressionsanalys Syftet med den här laborationen är att

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 5 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/200, HT-03 Laboration 5: Intervallskattning och hypotesprövning Syftet med den här

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Resultatet anslås senast 10 juni på institutionens anslagstavla samt på kurshemsidan.

Resultatet anslås senast 10 juni på institutionens anslagstavla samt på kurshemsidan. Matematisk statistik Tentamen: 28 5 27 kl 8 13 FMS 32 Matematisk statistik AK för V och L, 7.5 hp Till Del A skall endast svar lämnas. Samtliga svar skall skrivas på ett och samma papper. Övriga uppgifter

Läs mer

f(x) = 2 x2, 1 < x < 2.

f(x) = 2 x2, 1 < x < 2. Avd. Matematisk statistik TENTAMEN I SF90,SF907,SF908,SF9 SANNOLIKHETSTEORI OCH STATISTIK TORSDAGEN DEN 7:E JUNI 0 KL 4.00 9.00. Examinator: Gunnar Englund, tel. 07 7 45 Tillåtna hjälpmedel: Formel- och

Läs mer

Statistisk analys av komplexa data

Statistisk analys av komplexa data Statistisk analys av komplexa data Kategoriska data Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 18, 2016 Bertil Wegmann (statistik, LiU) Kategoriska data November 18, 2016

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

Datorövning 5 Exponentiella modeller och elasticitetssamband

Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. anpassa och tolka analysen av en exponentiell

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer