Solsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Solsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan"

Transkript

1 1 KOMIHÅG 16: Centrala raka/sneda stötar relativ separationsfart Studstalet e = relativ kollisionsfart Föreläsning 17: Centralkrafter och solsystemet Centralkrafter: Inga kraftmoment på massan Solsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan Planeters oberoende rörelser antas. Dvs, krafter mellan små massor försummas! Alltså, bara kraft mellan sol och vardera planet! F Rörelsens ekvationer: Enligt momentlagen (med kraftmoment noll): H O = 0 " H O = mr # e z = konstant vektor Vilken är den kinematiska (rörelse-) betydelsen av detta? Den mekaniska energin för planeten kommer att bevaras om kraften är konservativ: T + V = konstant.

2 Den första ekvationen: Betrakta planetrörelsens vektorer: Eftersom vektorn H O är konstant måste de rörliga vektorerna r och v, som ingår i definitionen av H O, vara sådana att r "H O och v "H O hela tiden, dvs plan rörelse (med H O -riktningen som normalriktning till planet). Fler konsekvenser av att H O är konstant kommer senare. Med polära koordinater i rörelsens plan blir rörelsemängdsmomentet: H O = ( r" mv # )e z = ( mr # )e z, som skall vara en konstant vektor (längd och riktning) enligt tidigare analys av centralkrafter. Nu ser vi en ny detalj hos rörelsen: r " = h (konstant). Kan vi tolka detta? En dimensionsanalys ger dim(h) = L T -1, dvs yta per tid, möjligen ortsvektorns sektorhastighet? Ortsvektorns ändring av läge under tiden d t.

3 3 Den lilla sektorytan d A blir momentant en likbent triangelyta, och vi ser: d A d t = 1 d" r d t = 1 h. Sektorhastigheten är konstant och r " betyder dubbla sektorhastigheten (= h). Den andra (och sista) ekvationen: Den kinetiska energin uttryckt i cylindersystemets komponenter är alltid: T = 1 mv = 1 m ( r + r " ). OBS: Planetens rörelse sker i ett plan där z = z = z = 0! Den potentiella energin för planeterna, dvs V, beror av gravitationskraftens utseende. Vi behöver sätta oss in i detta närmare innan vi kan förstå annu fler detaljer i planetrörelsen. Gravitationskraften och potentiella energin Med solen i origo kan gravitationskraften på planeten skrivas F = "G Mm r e r, riktad mot solens masscentrum (origo). Om solen hade varit ett brinnande skal med samma massa hade kraften varit densamma, så länge planeten är utanför skalet.

4 4 Gravitationens potentiella energi: r # V ( r) = " %"G Mm & ) e $ r ( dr = "G Mm + konst ' r r ref r Man brukar alltid låta den godtyckliga konstanten vara noll, så att potentiella energins noll-nivå ligger på oändligt avstånd från solen. Alltså: V ( r) = "G Mm. r Grafisk illustration av gravitationens potential. V r ( ) = "G Mm r

5 5 Historisk sammanfattning Den flitige Kepler sammanfattar Tycho Brahes sifferdata till följande 'experimentella lagar'. Keplers 3 lagar ( ): 1) Varje planet rör sig i en plan ellipsbana med solen i ena fokus. ) Ortsvektorn från solen till en planet sveper över lika stora ytor under varje tidsintervall av samma längd. 3) Varje planets omloppstid T (period) runt solen beror av ellipsens (halva) storaxel a så att T = ka 3, där k är samma för alla planeter.

6 6 Problem: Vilken fart v måste rymdfärjan ha för att kunna släppa ut rymdteleskopet 'Hubble' i en cirkulär bana på höjden H=590 km ovanför jordytan? Jordradien är R=6371 km och tyngdaccelerationen på jorden är g=9.8 m/s. Lösning: Gravitationskraften kan skrivas: F = "G mm r e r = "m GM { R =g R r e r = "mg R r e r. Radiella kraftekvationen ger för önskad cirkelrörelse "m v = "m gr " v = gr. r c r c r c där r c = R + H.

7 KOMIHÅG 17: rörelsekonstanter. Keplers 3 lagar-observationer Gravitationskraften och dess potentiella energi Föreläsning 18 Sammanfattning av de två rörelsekonstanterna Centralrörelsen av massan m sker i ett plan kring kraftcentrum (t.ex. solen) så att: 7 rv " = h (konstant) 1 mv r + 1 m h " % $ ' (m GM # r & r = E (konstant) Anmärkning: Konstanternas värden skall kunna bestämmas av begynnelseläge och begynnelsehastighet för rörelsen, eller ur motsvarande information vid annan tidpunkt.

8 8 Teoriproblem: Visa hur den mekaniska energin beror av stora radien a i ellipsbanan utgående ifrån den radiella energiuppdelningen. Lösning: De radiella vändlägena (max och minavstånd) fås ur energiekvationen, för i vändlägena försvinner den radiella hastigheten (v r = 0): 1 m " h % $ ' # r ± & (m GM r ± = E " Er ± + mgmr ± " 1 mh = 0 " r ± + mgm E r ± " 1 E mh = 0 " r ± = " mgm E ± # mgm & % ( + 1 $ E ' E mh Vi ser direkt att summan av vändlägena eliminerar rottecknet, dvs r + + r " = " mgm E, eller att energin i rörelsen kan bestämmas geometriskt av stora symmetriaxeln enligt Banenergiformeln : E = " mgm a. OBS: Detta är en bra formel att minnas (utöver de två rörelsekonstanterna) vid problemlösning!!

9 9 Problem: Bilden illustrerar begynnelsefasen av ett återinträde i jordatmosfären. Vad har vi för sektorhastighet, alternativt rörelsemängdsmoment för rymdfarkosten i detta fall? Lösning: Det ser ut som hastighetsvektorn är riktad mot jordens centrum. Rörelsemängdsmomentet och sektorhastigheten kring jordens centrum blir då noll. Ellipsbanor för jordsatelliter och planeter Rita så här: Ett snöre med längd a fästes i två punkter på avstånd c, och en penna spänner snöret och ritar.

10 Ellipsens egenskaper: 10 Geometriska termer: Stora och lilla symmetriaxlarna har längderna a respektive b. (Dubbla) fokalavståndet är c. Excentricitet: e = c a, 0 " e <1. Samband: b = a " c = a ( 1" e ). Ellipsens ekvation med polära koordinater i ena fokus: " b a( 1" e) % $ r = 1+ ecos# eller # a ' & r = 1+ ecos(. Ellipsens area: A = "ab. Banans ellipsform (se Keplers 1:a lag): Den geometriska formen av bankurvan för en planet kan nu definitivt visas vara identisk med ellipsens form. Vi ska göra ett 'geometriskt bevis' som bygger på kännedom om alla cirklars gemensamma egenskap: Cirkelekvationen: Två termer X och Y varierar så att X + Y = R, där R (radien) är konstant. Jämför också 'trigonometriska ettan': cos " + sin " =1. Betrakta figuren nedan:

11 11 Bevismetod: Vi hittar först ett samband X + Y = R med konstant R. Sedan kan vi konstatera att X och Y måste variera som X = Rcos" (och Y = Rsin" ) för något meningsfullt " (dvs, vår banvinkel med speciell betydelse av " = 0). Härledning: Vi dividerar energiekvationen i polära koordinater (z=0) med h och får: 1 m r " % $ ' + 1 # h& m " $ 1% ' (m GM # r& h r = E, h " r % " eller förenklat $ ' + $ 1% ' ( 1 # h& # r& r ) GM = E. h mh I vänsterledet behöver vi bara kvadratkomplettera :a och 3:e " GM % termerna (lägga till och dra ifrån en konstant $ ' ) så att: # h & " r % $ ' + 1 # h & r ( GM " % $ ' = E # h & mh + GM " % $ ' (*). # h & Om andra termen är X, första termen är Y och konstanten i högerledet är R, kan vi sätta : X = Rcos" " 1 r " GM = h E mh + # GM & % ( $ h ' cos) (**),

12 dvs r = GM h + Vi har nu visat: r = 1 E mh + " GM % $ ' # h & cos( h GM Eh ( GM) m cos". (***). samt r = h E mh + " GM % $ # h ' sin( (****). & Detta är ekvationen för plantebanors form (inte bara ellips), samt hur den radiella hastigheten varierar med ". 1 Om nämnaren inte blir noll för något ", så får man en ellips. Annars erhålls andra banor som inte är slutna: Dynamisk definition av excentriciteten: e = 1+ Eh ( GM) m. Om e<1: banan är elliptisk och därmed sluten. Om e=1: banan är parabolisk och öppen i bortre änden. Om e>1: banan är hyperbolisk, öppen och med helt raka bortre ändar av banan. Slutbevis: För att inse att den vinkel som dök upp i cirkelformeln verkligen är banans vinkel, visas nu att konstanten h kan uttryckas som: h = r ", som för den dubbla sektorhastigheten vi tidigare definierat.

13 Tidsderivatan av (**) ger ett uttryck för den radiella hastigheten: r = r " E mh + # GM & % $ h ( ' termen Y i (*) ger uttrycket 13 sin", medan den första r = h E mh + " GM % $ # h ' sin( (*****). & En jämförelse mellan dess båda uttryck ger att: h = r ", som är identiskt med uttrycket för dubbla sektorhastigheten. Geometri och dynamik: Jämförelse av vår banformel med ellipsens: " b % $ # a ' & r = 1+ ecos( ger omedelbart: b a = h GM och e = 1+ Eh GM ( ) m. Vi löser ut dubbla sektorhastigheten som funktion av geometriska egenskaperna hos banan och får då: h = b a GM (o) Omloppstiden (Keplers 3:e lag): Ortsvektorn kommer att svepa över hela ellipsens yta (A) under denna tid (T). Vi får med hjälp av dubbla sektorhastigheten: h = A T = "ab T. Om vi kvadrerar denna ekvation och löser ut omloppstiden erhålls

14 T = 4" a b. h Tillsammans med uttrycket för h i (o) på förra sidan blir omloppstiden i kvadrat: T = 4" a b b = 4" a 3 # % $ a GM & GM (. ' Vi har bevisat Keplers 3:e lag: # T = 4" & % ( a 3. $ GM ' Proportionalitetskonstanten är som synes oberoende av vilken planetmassa m det gäller. 14 Problem: En modersatellit med massan m kretsar kring Mars med massan M på samma tid T som Mars roterar ett varv kring sin egen axel. Det gör det möjligt att komma nära landningsplatsen för marslandaren vid 'samma tid på dygnet'. Landningsplatsen ligger vid banans periapsis r ", som antas vara känt. Bestäm apoapsis r + för samma bana.

15 15 Lösning: Den önskade omloppstiden T bestämmer entydigt ellipsbanans storaxel: a = GMT 1/ 3 # & % ( $ % ( " ). '( Om nu minimiavståndet r " är känt, så följer omedelbart att: r + = GMT 1/ 3 # & % ( ) r $ % ( " ) ). '( Problem: Bestäm stora symmetriaxeln för kometen Hale-Bopp uttryckt i omloppstiden. Bestäm även sektorhastigheten om perihelionavståndet är känt. Lösning: a) Vi tar Keplers 3:e lag för planeter och kometer kring solen: T = " GM a a. Den ger oss storaxeln som funktiona av omloppstiden: a = GMT 1/ 3 # & % (, $ 4" '

16 16 b) Nu kan vi använda energin uttryckt i storaxeln E = " mgm a som också skall vara lika med 1 mv " "m GM = E. r " Löser därför ut hastigheten som sen ger dubbla sektorhastigheten: # v " = GM 1 " 1 & # % ( " h = r " GM 1 " 1 & % (. $ r " a' $ r " a' Teoriproblem 1: Visa ellipsens polära ekvation ( ) a 1" e r = 1+ ecos# utgående ifrån r = r 0 1+ ecos" samt definitioner av c och e. Lösning: Om man bara kommer ihåg att ellipsen kan r skrivas som r = 0, kan man senare bestämma vad 1+ ecos" r 0 är: a! r 0 r 0 c ( a! r 0 ) = r 0 + 4c Vi använder dubbla focalavståndet..

17 Teoriproblem : Visa hur ellipsens a, e och b kan uttryckas i max- och minavstånden i banan. Lösning: Betrakta den polära ekvationen för ellipsen. Min- och maxavstånd till fokus (sol/jord) ges av: r " = a( 1" e), då " = 0(perihelion/perigeum), r + = a( 1+ e), då " = # (aphelion/apogeum). r " + r + = a " a = r + + r ", r " = 1" e " e = r " r + ". r + 1+ e r " + r + Lillaxeln (ur triangel abc): b = a " c = a 1" e ( ) = r + r ". Sammanfattning av formler med information om apogeum och perigeum: 17 h : E : E : r A v A = r P v P 1 mv A "m GM r A E = " GmM r A + r P = 1 mv P "m GM r P

Solsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan

Solsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan 1 KOMIHÅG 8: Centrala raka/sneda stötar Flera partiklar - masscentrum Föreläsningar 9-10: Centralkrafter och solsystemet Centralkrafter: Inga kraftmoment på massan Solsystemet: Solen, Merkurius, Venus,

Läs mer

Solsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan

Solsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan KOMIHÅG 17: 1 Centrala raka/sneda stötar relativ separationsfart Studstalet e = relativ kollisionsfart Föreläsning 18: Centralkrafter och solsystemet Centralkrafter: Inga kraftmoment på massan Solsystemet:

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar

Läs mer

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen 2015-06-12 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)

Läs mer

" e n och Newtons 2:a lag

 e n och Newtons 2:a lag KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar

Läs mer

" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar

 e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------

Läs mer

Fuglesangs skiftnyckel och Möten i rymden. Jan-Erik Björk och Jan Boman

Fuglesangs skiftnyckel och Möten i rymden. Jan-Erik Björk och Jan Boman Fuglesangs skiftnyckel och Möten i rymden Jan-Erik Björk och Jan Boman Det sägs att Christer Fuglesang tappade en skiftnyckel under sin rymdpromenad nyligen. Enligt Keplers första lag kom skiftnyckeln

Läs mer

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2# n KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v

Läs mer

Definitioner: hastighet : v = dr dt = r fart : v = v

Definitioner: hastighet : v = dr dt = r fart : v = v KOMIHÅG 8: --------------------------------- Jämvikten kan rubbas: stjälpning, glidning Flexibla system- jämvikt bara i jämviktslägen ---------------------------------- Föreläsning 9: PARTIKELKINEMATIK

Läs mer

Tentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-03-17 Tentamen i Mekanik SG1130, baskurs P1 m fl OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 1 KTH Mekanik Problemtentamen En tunn homogen stav i jämvikt med massan m har i ena ändpunkten

Läs mer

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION 1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen

Läs mer

NEWTONS 3 LAGAR för partiklar

NEWTONS 3 LAGAR för partiklar wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir

Läs mer

. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt:

. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt: KOMIHÅG 19: ------------------------------------------------------ Dämpade vibrationer: Fria fallet Kritisk dämpningsrörelse x(t) = e "# nt ( B + Ct) + x j Svag dämpningsrörelse x(t) = e "#$ nt ( Bcos(

Läs mer

Om ellipsen och hyperbelns optiska egenskaper

Om ellipsen och hyperbelns optiska egenskaper Om ellipsen och hyperbelns optiska egenskaper Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Ellipser och hyperbler är, liksom parabeln, s.k. kägelsnitt, dvs kurvor som uppkommer

Läs mer

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Läsåret 11/12 Utförliga lärandemål SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Richard Hsieh Huvudsakligt innehåll: Vektoralgebra och dimensionsbetraktelser. Kraft och kraftmoment. Kraftsystem; kraftpar,

Läs mer

Tentamen i Mekanik SG1130, baskurs. Problemtentamen

Tentamen i Mekanik SG1130, baskurs. Problemtentamen 013-03-14 Tentamen i Meani SG1130, basurs. OBS: Inga hjälpmedel förutom rit- och srivdon får användas KTH Meani 1. Problemtentamen En ub med massa m står lutad mot en vertial sträv vägg och med stöd på

Läs mer

Lösningar till problemtentamen

Lösningar till problemtentamen KTH Meani 2006 05 2 Meani b och I, 5C03-30, för I och BD, 2006 05 2, l 08.00-2.00 Lösningar till problemtentamen Uppgift : En platta i form av en lisidig triangel BC med sidolängderna a och massan m står

Läs mer

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.

Läs mer

Ellipsen. 1. Apollonius och ellipsen som kägelsnitt.

Ellipsen. 1. Apollonius och ellipsen som kägelsnitt. Ellipsen 1. Apollonius och ellipsen som kägelsnitt. Vi skall stifta bekantskap med, och ganska noga undersöka, den plana kurva som kallas ellips. Man kan närma sig kurvan på olika sätt men vi väljer som

Läs mer

Mekanik FK2002m. Repetition

Mekanik FK2002m. Repetition Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r

Läs mer

Planetrörelser. Lektion 4

Planetrörelser. Lektion 4 Planetrörelser Lektion 4 Äldre tiders astronomer utvecklade geocentriska (jorden i centrum) modeller för att förklara planeternas rörelser retrograd rörelse direkt rörelse Liksom solen och månen så rör

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 005-05-7 Tentamen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En homogen stång med massan m är fäst i ena änden i en fritt vridbar

Läs mer

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper.

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper. KTH Mekanik Fredrik Lundell Mekanik mindre kurs för E1 och Open1 Läsåret 05/06 Tentamen i 5C110 Mekanik mk, kurs E1 och Open 1 006-03-15 Var noga med att skilja på skalärer och vektorer. Rita tydliga figurer

Läs mer

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från

Läs mer

Basala kunskapsmål i Mekanik

Basala kunskapsmål i Mekanik Basala kunskapsmål i Mekanik I kunskapsmålen nedan används termerna definiera, förklara och redogöra återkommande. Här följer ett försök att klargöra vad som avses med dessa. Definiera Skriv ner en definition,

Läs mer

Mer Friktion jämviktsvillkor

Mer Friktion jämviktsvillkor KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning

Läs mer

Repetition Mekanik, grundkurs

Repetition Mekanik, grundkurs Repetition Mekanik, grundkurs Kraft är en vektor och beskrivs med storlek riktning och angreppspunkt F= Fe + F e + Fe x x y y z z Kraften kan flytta längs sin verkninglinje Addera krafter Moment i planet

Läs mer

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen 010-05-6 Tentamen i Mekanik SG1107, baskurs S OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1 En cylinder med massan M vilar på en homogen horisontell planka med

Läs mer

Inre krafters resultanter

Inre krafters resultanter KOMIHÅG 6: --------------------------------- Torr friktion: F " µn Normalkraftens angrepp?? Risk för glidning eller stjälpning ---------------------------------- Föreläsning 7: Inre krafters resultanter

Läs mer

NFYA02: Svar och lösningar till tentamen 140115 Del A Till dessa uppgifter behöver endast svar anges.

NFYA02: Svar och lösningar till tentamen 140115 Del A Till dessa uppgifter behöver endast svar anges. 1 NFYA: Svar och lösningar till tentamen 14115 Del A Till dessa uppgifter behöver endast svar anges. Uppgift 1 a) Vi utnyttjar att: l Cx dx = C 3 l3 = M, och ser att C = 3M/l 3. Dimensionen blir alltså

Läs mer

6.3 Partikelns kinetik - Härledda lagar Ledningar

6.3 Partikelns kinetik - Härledda lagar Ledningar 6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill

Läs mer

Föreläsning 17: Jämviktsläge för flexibla system

Föreläsning 17: Jämviktsläge för flexibla system 1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla

Läs mer

att båda rör sig ett varv runt masscentrum på samma tid. Planet

att båda rör sig ett varv runt masscentrum på samma tid. Planet Tema: Exoplaneter (Del III, banhastighet och massa) Det vi hittills tittat på är hur man beräknar radien och avståndet till stjärnan för en exoplanet. Omloppstiden kunde vi exempelvis få fram genom att

Läs mer

Parabeln och vad man kan ha den till

Parabeln och vad man kan ha den till Parabeln och vad man kan ha den till Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I det här dokumentet diskuterar vi vad parabeln är för geometrisk konstruktion och varför den

Läs mer

Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse

Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse Rotationsrörelse I denna laboration kommer vi att undersöka dynamik rotationsrörelse för stela kroppar. Experimentellt kommer vi att undersöka bevarandet av kinetisk rotationsenergi och rörelsemängdsmoment

Läs mer

AB2.1: Grundläggande begrepp av vektoranalys

AB2.1: Grundläggande begrepp av vektoranalys AB2.1: Grundläggande begrepp av vektoranalys En vektor är en storhet som dels har icke-negativ storlek dels har riktning i rummet. Två vektorer a och b är lika, a = b, om de har samma storlek och samma

Läs mer

Linnéuniversitetet Matematik Hans Frisk

Linnéuniversitetet Matematik Hans Frisk Linnéuniversitetet Matematik Hans Frisk Diskreta Dynamiska System, del I 1. Inledning. Denna föreläsningen handlar om diskreta dynamiska system vilket här innebär punkter som hoppar runt i planet. Även

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller LEDNINR TILL ROBLEM I KITEL 4 L 4. Kroppen har en rotationshastighet. Kulan beskriver en cirkelrörelse. För ren rotation gäller v = r v = 5be O t Eftersom och r O är vinkelräta bestäms storleken av kryssprodukten

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

Mekanik III, 1FA103. 1juni2015. Lisa Freyhult 471 3297

Mekanik III, 1FA103. 1juni2015. Lisa Freyhult 471 3297 Mekanik III, 1FA103 1juni2015 Lisa Freyhult 471 3297 Instruktioner: Börja varje uppgift på nytt blad. Skriv kod på varje blad du lämnar in. Definiera införda beteckningar i text eller figur. Motivera uppställda

Läs mer

ANDREAS REJBRAND NV1A Geografi Tellus position och rörelser inom solsystemet

ANDREAS REJBRAND NV1A Geografi  Tellus position och rörelser inom solsystemet ADREA REJBRAD V1A 2003-11-28 Geografi http://www.rejbrand.se Tellus position och rörelser inom solsystemet Innehållsförteckning TELLU POITIO OCH RÖRELER IOM OLYTEMET... 1 IEHÅLLFÖRTECKIG... 2 ILEDIG...

Läs mer

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation ANDREA REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se oulombs lag och Maxwells första ekvation oulombs lag och Maxwells första ekvation Inledning Två punktladdningar q 1 samt q 2 i rymden

Läs mer

Föreläsning 5: Acceleration och tidsderivering (kap ) . Sambandet mellan olika punkters hastigheter i en stel kropp: v A

Föreläsning 5: Acceleration och tidsderivering (kap ) . Sambandet mellan olika punkters hastigheter i en stel kropp: v A 1 Föreläsning 5: Acceleration och tidsderivering (kap 212-215) Komihåg 4: Vinkelhastighetsvektorn " = # e z Skillnadsvektorn mellan två punkter i stel kropp kan bara vrida sig: r BA = " # r BA Sambandet

Läs mer

Introduktionskurs i matematik LÄSANVISNINGAR

Introduktionskurs i matematik LÄSANVISNINGAR UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 006 Introduktionskurs i matematik för civilingenjörsprogrammet F Tentamen på Introduktionskursen i matematik äger rum lördagen den 6 september

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

1. Stela kroppars mekanik

1. Stela kroppars mekanik 1. Stela kroppars mekanik L1 Med en stel kropp menas ett föremål som inte böjer sig eller viker sig på något sätt. (Behandlingen av icke stela kroppar hör inte till gymnasiekursen) 1.1 Kraftmoment, M Ett

Läs mer

Föreläsning 13 Linjär Algebra och Geometri I

Föreläsning 13 Linjär Algebra och Geometri I Föreläsning 13 Linjär Algebra och Geometri I Se slide 1: det är i rymden oftast lättast att jobba med parametrar för linjer och ekvationer för plan. Exempel: Låt l : (x, y, z) = (1 t, 3 + t, 4t), t R och

Läs mer

Explorativ övning Vektorer

Explorativ övning Vektorer Eplorativ övning Vektorer Syftet med denna övning är att ge grundläggande kunskaper om vektorräkning och dess användning i geometrin Liksom många matematiska begrepp kommer vektorbegreppet från fysiken

Läs mer

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11 Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd

Läs mer

Övningshäfte 2: Komplexa tal

Övningshäfte 2: Komplexa tal LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet

Läs mer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim 9 september 05 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa

Läs mer

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2"# n. x j,

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2# n. x j, KOMIHÅG 18: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = # n x j, 1 med konstanterna! n = k m och!" n = c m. ------------------------------------------------------

Läs mer

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R 1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,

Läs mer

Hur trodde man att universum såg ut förr i tiden?

Hur trodde man att universum såg ut förr i tiden? Hur trodde man att universum såg ut förr i tiden? Ursprunglig världsbild Man trodde länge att jorden var en platt skiva omgiven av vatten. Ovanför denna fanns himlen formad som ett halvklot. På detta himlavalv

Läs mer

Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av

Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av Mekanik 2 Live-L A TEX:ad av Anton Mårtensson 2012-05-08 I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av ṗ = m r = F Detta är ett postulat och grundläggande för all Newtonsk

Läs mer

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning). STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

Föreläsning 4 1. Den andra av Maxwells ekvationer i elektrostatiken

Föreläsning 4 1. Den andra av Maxwells ekvationer i elektrostatiken Föreläsning 4 1 Potential Den andra av Maxwells ekvationer i elektrostatiken!" C E!dl = 0 eller # E = 0 innebär att E-fältet är konservativt. Det finns inga fältlinjer som bildar loopar. Alla fältlinjer

Läs mer

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen 007-08-30 Tentaen i Mekanik SG1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen En hoogen stång ed assan är fäst i ena änden i en fritt vridbar led.

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 19 januari 2013 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

Beräkningsuppgift I. Rörelseekvationer och kinematiska ekvationer

Beräkningsuppgift I. Rörelseekvationer och kinematiska ekvationer 1 Beräkningsuppgift I Vi skall studera ett flygplan som rör sig i xz planet, dvs vi har med de frihetsgrader som brukar kallas de longitudinella. Vi har ett koordinatsystem Oxyz fast i flygplanet och ett

Läs mer

Inlämningsuppgift 4 NUM131

Inlämningsuppgift 4 NUM131 Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter

Läs mer

1. Beräkna och klassificera alla kritiska punkter till funktionen f(x, y) = 6xy 2 2x 3 3y 4 2. Antag att temperaturen T i en punkt (x, y, z) ges av

1. Beräkna och klassificera alla kritiska punkter till funktionen f(x, y) = 6xy 2 2x 3 3y 4 2. Antag att temperaturen T i en punkt (x, y, z) ges av ATM-Matematik Mikael Forsberg 74-41 1 För ingenjörs- och distansstudenter Flervariabelanalys ma1b 15 1 14 Skrivtid: 9:-14:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja

Läs mer

Lösning. (1b) θ 2 = L R. Utgå nu från. α= d2 θ. dt 2 (2)

Lösning. (1b) θ 2 = L R. Utgå nu från. α= d2 θ. dt 2 (2) Lösningar till dugga för kursen Mekanik II, FA02, GyLärFys, KandFys, F, Q, W, ES Tekn-Nat Fak, Uppsala Universitet Tid: 7 april 2009, kl 4.00 7.00. Plats: Skrivsalen, Polacksbacken, Uppsala. Tillåtna hjälpmedel:

Läs mer

Prov Fysik 2 Mekanik

Prov Fysik 2 Mekanik Prov Fysik 2 Mekanik Instruktion för elevbedömning: Efter varje fråga finns tre rutor. Rutan till vänster ska ha en lösning på E-nivå. Om det går att göra en lösning som är klart bättre - på C-nivå - då

Läs mer

A-del. (Endast svar krävs)

A-del. (Endast svar krävs) Lösningar till tentamen i Matematik grundkurs den 7 juni 011. A-del. (Endast svar krävs) 1. Förenkla så långt som möjligt. Svar: 1 1 1 1 +1. Skriv talet på formen a + ib. Svar: 1 + i 3. Beräkna 10 + 5i

Läs mer

Veckoblad 1, Linjär algebra IT, VT2010

Veckoblad 1, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet

Läs mer

9.2 Kinetik Allmän plan rörelse Ledningar

9.2 Kinetik Allmän plan rörelse Ledningar 9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,

Läs mer

Exempel :: Spegling i godtycklig linje.

Exempel :: Spegling i godtycklig linje. INNEHÅLL Exempel :: Spegling i godtycklig linje. c Mikael Forsberg :: 6 augusti 05 Sammanfattning:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som

Läs mer

14. Minsta kvadratmetoden

14. Minsta kvadratmetoden 58 MINSTA KVADRATMETODEN. Minsta kvadratmetoden Eempel.. Det är inte så svårt att komma åt en trasig lampa på golvet för att byta den. Det är bara att gå fram till den. Hur är det om lampan hänger i taket?

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.

Läs mer

En sammanfattning av. En första kurs i mekanik

En sammanfattning av. En första kurs i mekanik En sammanfattning av En första kurs i mekanik Tony Burden Institutionen för mekanik, KTH, Stockholm Version 0.04 april 2005 Förord Denna lunta är en sammanfattning av kursboken, A First Course in Mechanics

Läs mer

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum:

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum: Tentamen i : Vågor,plasmor och antenner Kurs: MTF108 Totala antalet uppgifter: 6 Datum: 2006-05-27 Examinator/Tfn: Hans Åkerstedt/491280/Åke Wisten070/5597072 Skrivtid: 9.00-15.00 Jourhavande lärare/tfn:

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 006-08-8 Tentaen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen Ett glatt hoogent klot ed assan vilar ot två plana, hårda och glatta

Läs mer

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP00, Fysikprogrammet termin 2 Tid: Plats: Ansvarig: Hjälpmedel: Lödag 29 maj 200, kl 8 30 3 30 V-huset Lennart Sjögren,

Läs mer

Simulering av solsystemet Datorlab med MATLAB. Daniel Vågberg Institutionen för fysik Umeå Universitet

Simulering av solsystemet Datorlab med MATLAB. Daniel Vågberg Institutionen för fysik Umeå Universitet Simulering av solsystemet Datorlab med MATLAB Daniel Vågberg Institutionen för fysik Umeå Universitet 17 april 2013 Innehåll Introduktion 3 Redovisning 3 Simulering av Newtons rörelseekvationer 4 Gravitation

Läs mer

Astronomi. Hästhuvudnebulosan. Neil Armstrong rymdresenär.

Astronomi. Hästhuvudnebulosan. Neil Armstrong rymdresenär. Hästhuvudnebulosan Astronomi Neil Armstrong rymdresenär. Illustration av vår galax Vintergatan. Av naturliga själ har vi aldrig sett vår galax ur detta perspektiv. Vilka är vi jordbor egentligen? Var i

Läs mer

Krafter och moment. mm F G (1.1)

Krafter och moment. mm F G (1.1) 1 Krafter och moment 1.1 Inledning örståelsen för hur olika typer av krafter påverkar strukturer i vår omgivning är grundläggande för ingenjörsvetenskapen inom byggnadskonsten. Gravitationskraften är en

Läs mer

Övningar Arbete, Energi, Effekt och vridmoment

Övningar Arbete, Energi, Effekt och vridmoment Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,

Läs mer

Diskussionsfrågor Mekanik

Diskussionsfrågor Mekanik Diskussionsfrågor Mekanik Frågor markerade med en stjärna ( ) är lite svårare och kan betraktas som överkurs. Vektorer och rörelse 1. Mitt på dagen en solig dag vid ekvatorn kastar du iväg en boll. Hur

Läs mer

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi Föreläsning 13/5 Relativistisk kinematik Ulf Torkelsson 1 Relativistisk rörelsemängd, kraft och energi Antag att en observatör O följer med en kropp i rörelse. Enligt observatören O så har O hastigheten

Läs mer

{ 1, om i = j, e i e j = 0, om i j.

{ 1, om i = j, e i e j = 0, om i j. 34 3 SKALÄPRODUKT 3. Skaläprodukt Definition 3.. Skalärprodukten mellan två vektorer u och v definieras där θ är vinkeln mellan u och v. u v = u v cos θ, Anmärkning 3.. Andra beteckningar för skalärprodukt

Läs mer

Elins bok om Rymden. Börja läsa

Elins bok om Rymden. Börja läsa Elins bok om Rymden Börja läsa Innehållsförteckning Tankar från förr Vårt solsystem Planeterna Månen Solen Människan och rymden Rymdraketer och satelliter Stjärnorna Stjärnbilderna Mer om rymden s. 3 s.

Läs mer

ENKEL Fysik 22. Magnetism. Tengnäs Läromedel. Vad är magnetism? Magneter. EXPERIMENT - Magnetisk kraft

ENKEL Fysik 22. Magnetism. Tengnäs Läromedel. Vad är magnetism? Magneter. EXPERIMENT - Magnetisk kraft ENKEL Fysik 22 Magnetism Magneter har vi överallt i vårt samhälle. Hemma i köket sitter det kanske små magneter på kylskåpsdörren, som håller upp komihåg-lappar. Magneter kan även hålla skåpsluckor stängda.

Läs mer

m 1 + m 2 v 2 m 1 m 2 v 1 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 KTH Mekanik 2013 08 20

m 1 + m 2 v 2 m 1 m 2 v 1 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 KTH Mekanik 2013 08 20 KTH Mekanik 2013 08 20 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 Uppgift 1: En bil börjar accelerera med ẍ(0) = a 0 från stillastående. Accelerationen avtar exponentiellt och ges av ẍ(t)

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.

Läs mer

Konsten att "se" det osynliga. Om indirekta metoder att upptäcka exoplaneter

Konsten att se det osynliga. Om indirekta metoder att upptäcka exoplaneter ASTA02 - Lennart Lindegren - 19 okt 2011 Konsten att "se" det osynliga. Om indirekta metoder att upptäcka exoplaneter De allra flesta hittills funna exoplaneter har upptäckts med indirekta metoder. Vad

Läs mer

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten.

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten. Tentamen 1, Mekanik KF HT2011 26:e November. Hjälpmedel: Physics handbook alt. Formelblad, Beta mathematics handbook, pennor, linjal, miniräknare. Skrivtid: 5 timmmar. För godkänt krävs minst 18/36 på

Läs mer

6.2 Partikelns kinetik - Tillämpningar Ledningar

6.2 Partikelns kinetik - Tillämpningar Ledningar 6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft

Läs mer

b) Vi använder cylindriska skal och snittar därför upp området i horisontella snitt.

b) Vi använder cylindriska skal och snittar därför upp området i horisontella snitt. Viktiga tillämpningar av integraler b) Vi använder clindriska skal och snittar därför upp området i horisontella snitt. 7.. Finn volmen av kroppen S som genereras av rotation kring -aeln av området Ω som

Läs mer

Föreläsning 5, clickers

Föreläsning 5, clickers Föreläsning 5, clickers Gungbrädan 1 kg 2 kg A. Kommer att tippa åt höger B. Kommer att tippa åt vänster ⱱ C. Väger jämnt I en kastparabel A. är accelerationen störst alldeles efter uppkastet B. är accelerationen

Läs mer

Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar

Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar elativitetsteorins grunder, våren 2016 äkneövning 6 Lösningar 1. Gör en Newtonsk beräkning av den kritiska densiteten i vårt universum. Tänk dig en stor sfär som innehåller många galaxer med den sammanlagda

Läs mer

Matematik CD för TB = 5 +

Matematik CD för TB = 5 + Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:

Läs mer

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter TATM79: Föreläsning Absolutbelopp, summor och binomialkoefficienter Johan Thim 15 augusti 015 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0 x

Läs mer