nsk-st intressanta modellerna for utbyggnads progno? e r riamliuen linear och exponentieli kaparitetsutbyggnad. Energian,., ys av kraftsystem

Storlek: px
Starta visningen från sidan:

Download "nsk-st intressanta modellerna for utbyggnads progno? e r riamliuen linear och exponentieli kaparitetsutbyggnad. Energian,., ys av kraftsystem"

Transkript

1 * 2 O) LLJ

2 EN E KG I AN AI, V S O C H K R A F T U T B YGG X A D.tv Kla- JiHov. AF> Atomenergi, Studsvik Ener gianai vs syftar till.itt bittri 1 r-! a ri^i ra ener yifloden m.h energiutby ton vici olika produk t i,-m -p <. < ' < <v v. I denna niipurt analyseras cnergibudgeten dcis ii.r t-nskiidi r-i rnk r.mtverk mil dels for exprindorandt- system a v kr.i tt'.crk. Antiysen JV expanfi». raiu!>: kraftsystem kr.ivcr en viss matematisk truri som i:t\'evk!a.~ :or <if t 7.'; nsk-st intressanta modellerna for utbyggnads progno? e r riamliuen linear och exponentieli kaparitetsutbyggnad. Energian,., ys av kraftsystem ar en spniell form a%' in\'esteringsanalys for expanderande system. Den matematiska strukturen kan därför lika vä! tillämpas på ekonomisk kalkyl av krattut'.>\ggnacl. Den energimässiga aterbetalningstiden for kraftsystemet (nolltiden) beror kritiskt på den s k energikvoten for det enskilda kraftverket. Typiska värden på energikvoten för kärnkraftverk beräknas till 40 50; dessa värden och karaktäristiska byggnadstider och utnyttjmngltu'31 leder till nolltider för rimliga utbyggnadsprognoser av 2 till 3 år. Den energimässiga lönsamheten för en utbyggnad med kärnkraftverk är mycket god även om utbyggnadstakten enligt svenska förhållanden är hög. Lönsamhetskvoten - energikvotens e:konomiska motsvarighet - - ligger i området med de elprisr.ivåer, som i dagens lägo anses skäliga. Aterbetalningstiden för rimliga utbyggnadsprogram beräknas då med i övrigt typiska värden pa utnyttjning och byggnadstid till år.

3 För allmän bedömning av kärnkraftprogrammens energimassiga effektivitet ger energiaualys eit klart positivt besked men i jämförelse med en motsvarande ekonomisk analys ger energianalya ett svagt och lite vägledande undrrlag för planeringen av kraftsystem.

4 - Ill - INNEHÅLLSFÖRTECKNING 1. ALLMÄNT OM ENERGIANALYS 1 2. MATEMATISK STRUKTUR Generell metodik 3 l.z Linear utbyggnad Exponentiell utbyggnad TILLÄMPNINGAR Principjämförelse mellan energimässig o :n ekonomisk tillämpning Beräkning av lönsamhetskvot för lättvattenreaktor Beräkning av energikvot för lättvattenreaktor (BWR) Jämförelse med resultat av P F Chapman Sammanställning av och jämförelse mellan resultat från energianalys resp ekonomisk analys 27 REFERENSER 31 APPENDIX BERÄKNING AV SYSTEMNOLLTIDER FÖR ALLMÄNNA FALLET MED FLERA KRAFTVERKSGENERATIONER I. Linear utbyggnad 1:1 II. Exponentiell utbyggnad 1:4 Sid

5 - 1 - i. ALLMÄNT OM FiN KKGIAN ÄLVS I ett ekonomiskt.system utgwr kostnaden fur en var.-, eller tjänst..-t t kvantitativt m.ttt p.i summan a\ di- > i L K." i resurser, som kravs inr 1 r. un stall andet av nvttiyheten il :* -11; "i. Si.rn de prim t ra resurserna brakar vi r.tkna kapital, råvaror, arbetskraft och energi. E n e r g i n kan i p r i m i p b e t r a k t a s s-im b e s t i ende av d e t r e ö v r i g a f a k- turerna, Knergin har dm. k gen ^m sm '.'indarnent ala roll i alla modcrr.a produktionsprocesser kommit,itt betraktas som en särskild resurs, som p g a eventuell framtida knappriet iiksoni. > va rkont rol - lerbara miljoeftektcr bor a^nas allt större uppmärksamhet. Det bör observeras att uppdelningen i produktions! åkturerna i apital, ravarer. arbetskraft e,rh»,-ncrgi inte ;ir särskilt skarp eller entydig - s.i t ex varierar inneborden av begreppen kapital c rh rå/ara starkt beroende p.i s;unmanhanget. Vidare ar prodtiktinnsfaktorerna sinsemellan utbytbara i större eller mindre utsträckning. Den lägsta kostnaden for en vara eller tjänst erh.il inf för den ekonomiskt optimala fördelningen mellan produktionsfaktorerna. Att eftersträva en mycket lag energiåtgång ;ir med undantag for ett fatal produkter (t ex cement, aluminium) inte ekonomiskt optimalt. Sorti en följd av det under 60-talet snabbt okande intresset för miljövård har en allt större medvetenhet om energiförbrukningens skadliga effekter pa miljön växt fram under 70-talet, Detta gäller främst de ändliga icke-kontinue riiga energikällorna (olja, kol, kärikraft) Dessa s k externa effekter av energiförbrukningen har ännu i.rite hanterats pa ett adekvat sätt i nuvarande ekonomiska system. Vidare baseras industriländernas energiförsörjning i stor utsträckning pä olja, vars produktion domineras av ett fätal lander med politiskt och socialt

6 instabil karaktär. Kontinuitet i oljeförsörjningen är således en mycket viktig faktor i säkerheten, tryggheten i industriländernas energiförsörjning. I en marknadsekonomi ar det naturligt att dessa s k externa effekter av energiproduktionen bevakas och handlägges av regering och myndigheter. Beroende på ett kortsiktigt och okunnigt agerande har de politiska instanserna inte alltid hanterat energiförbrukningens externa effekter på ett adekvat sätt. Detta utgör förvisso ett gott skål för att närmare kartlägga energins roll i olika produktionsprocesser och de potentiella möjligheterna att minska energiförbrukningen. Mot denna bakgrund har den s k energianalysen vilxt fram med syfte att uppställa enheter och konventioner, bestämma och systematisera energiflöden och energiomvandlingen i industriproduktionen. Energianalys i vid mening sammanfaller givetvis med den verksamhet, som bedrivitb i form av offentliga utredningar och studier under en längre tid. Energianalys i alla former röner efter oljekrisen ett stort intresse från politiker och allmänhet. Organisationerna "Jordens vänner" (främst i England, t ex ref f l ) och IFIAS [l] har bl a tagit upp frågan om energibudgeten för en elkraftutbyggnad med atomreaktorer - energianalys av kärnkraft - som kommit att utförligt debatteras i större svenska dagstidningar. "Jordens vänner" och IFIAS formulerar främst följande motiv för energianalysen 1,, energianalys är en mer känslig indikator än kostnadsanalys - " är ett medel att förstå prisändringar

7 . energianalys är ett viktigt instrument för beslutsfattande. " är nödvändigt komplement till ekonomisk värdering eftersom energi är en begränsad resurs för global och nationell utveckling Dessa teser salnar dock en vederhäftig prövning och goda skäl finns att ifrågasätta dem, vilket endast i begränsad mening kan göras inom ramen för detta arbete. Vi begränsar oss här till energianalyser av kraftsystem, som utförligt behandlats av Chapman och Mortimer [ 3 och Price [ l]. Analysen går ut på att jämföra den energimängd, som kraftsystemet levererar, med den energimängd som måste tillföras under krafwerkens byggnadstid, allteftersom kraftsystemet expanderar. Price kallar problemställningen "dynamisk energianalys" för att markera att vi studerar ett i tiden expanderande energiproducerande system och vill härmed understryka skillnaden mot den "statiska" analysen av ett enskilt kraftverk, I det följande uppställer vi matematiska modeller för expanderande kraftsystem med utgångspunkt från energiparametrar för det enskilda kraftverket. 2. MATEMATISK STRUKTUR Z. 1 Generell metodik För ett enskilt kraftverk, oavsett typ av anläggning (det kan alltså vara kärnkraft, vattenkraft, oljeeldad stallon eller vindkraftanläggning), gäller att det krävs investeringar i form av arbetsinsatser (av en rad olika alag), materia! och energi under en ganska

8 - -I - lang projekte rings - och byggnadstid. I investeringen ing.ir ocksa. förvärv av landområde. Alla material, sum ing.ir, kanske fratnnt i form av byggnadsmaterial, halvfabrikat och komponenter, kan i sin tur anses besti av arbetsinsatser o, h energi samt råvaror, av vilka de sistnämnda i sin tur... forbundna med arbetsinsatser och energi. Det är givetvis i princip möjligt att definiera en total energiförbrukning för uppförandet av ett kraftverk varav huvudparten är fördelad över byggnadstiden och resten av förbrukningen investerats under en kortare tid innan anläggningsarbetet startar. Det förefaller rimligt att antaga att den totala energiinvesteringen för en viss kraftverkstyp är proportionell mot stationens nominella effekt p MW. (Detta gäller t ex dock inte vattenkraftanläggning med dammbyggnader. ) Energiflödet under uppförandet kan beskrivas enligt nedanstående skiss, där nollpunkten på tidsaxeln är förlagd till tidpunkten för idrifttagning. ilx)p energi flöde Fig.1 T är byggnadstiden (construction time) och T_ perioden för provdrift och funktionskontroll (test period). i(x) är investeringsenergins variation över tiden x och i är medelvärdet av i(x) förde- -1 c lat över byggnadstiden T (i = T i(x)dx). På samma sätt kan vi beskriva energiproduktionen Över livslängden för kraftverket T L enligt figur 2. Observera att här avses

9 nettoproduktion i egentlig mening, dvs till förbrukarna utgående energi reducerad med förluster i distributionen samt energiförbrukningen i bränslet» tillförsel till kraftverket och dess framställning ur råvara. Själva energiinnehållet i råvaran ingär självfallet inte eftersom analysen avser att jämföra vad man effektivt far ut av en energiproduktionsanläggning med vad som förbrukas i själva produktionsprocessen. energiflöde c(x)p Fig. 2 T. är kraftverkets livslängd och c(x) är den effektiva nettoproduktionens variation över tiden, c är medelvärdet av c(x) över T.. För att förenkla den fortsatta analysen av ett expanderande system uppställes följande schablonmodell för det enskilda kraftverkets energibudget (fig 3). Fig.3

10 Donna enkla modell. anvä nde i ref bor vara adekvat for en översiktlig kartläggning. Generalisering till de realistiska funktionstyperna i( x i o«h c(x) erbjuder inga principiella svårigheter. Vi infor de karaktäristiska parametrarna energikwit K och nolltid T, Energikvoten dr fin: er i> sum förhållandet mellan totalt o *~ ' ' ' ' producerad nettoenergi och investerihgsenergi: c T L R - r i T Nolltiden (kraftverkets pay-off tid) är den tid som kraftverket måste drivas för att producerad energi skall just överskrida inve steringsenergin (d v s de sträckade ytorna i fig 3 är lika stora): T = o i T c c Vi betraktar nu ett utbyggnadsprogram enligt tidsfunktionen P(x) (nominell effekt) med en viss kraftverkstyp, som karaktäriseras av parametrarna T T, 1-, R och T. I realiteten är P(x) en iw C i O trappstegsfunktion där varje trappsteg motsvaras av ett enskilt kraftverk. Det är utbyggnadsfunktionens allmänna form och inte dess detaljer, som är relevant i sammanhanget. De enskilda kraftverkens effekter kommer därför inte in i analysen. I fig 4 är energibudgeten for ett godtyckligt utbyggnadsprogram P(x) grafiskt åskådliggjord. Den skuggade ytan mellan funktionerna P(x + T c + T T ) och P(x + T T ) multiplicerad med i är den inve8terade energin fram till tidpunkten x och den streckade ytan mellan

11 - 7 - P(x) och P(x - T. ) multiplicerad med c är den producerade nettoenergin. Detta gäller for den första generationen kraftverk med början vid x - o. Efter tiden T. (x T. ) måste en andra generation kraftverk byggas for att successivt ersätta den första generationen när kraftverken skrotas av älderaskäl. Energibudgeten för en period omfattande flera generationer (livslängder) åskådliggörs i fig 5 for det fall att utbyggnadsfunktionen är linear. Som framgår av fig 4 beräknas den producerade nettoenergin NE enligt NEfx) = c ' P(x)dx o (i: och den investerade energin IE för en period kortare än en generation (x.' T. ) enligt le(x) - i \ P(x)dx C o (2) där a = x + T och b - x + T t- T. Den tid, som krävs för att kraftsystemets nettoenergi NE just överskrider den successivt växande investeringgenergin IE, benämnes systemets nolltid T, vilken alltså är lösningen till ek- 3 O vationen NE(x) - IE(x) 3) Vid prognosarbete beskriver man i regel utbyggnadsbehov i procent per år, vilket med konstant procentsats innebär exponentiell utbyggnad. Ofta förekommer, såsom t ex i 1974 års Energiprognusutredning [5], att utbyggnadsprogno^ jn presenteras som

12 - 8 - värden på P för vissa tidpunkter x med medelvärden för tillväxttakten angivna för varje sådant tidsintervall. För västvärldens industriländer bedöms numera en procentuellt avtagande utbyggnad av elkraften (alltså ett förlopp som vanligen är linear snarare än exponentiell) som mest sannolik för de närmaste 10 å 20 åren och på längre sikt förutses en utbyggnadskurva som långsamt höjer sig mot ett mättningsvärde - en maximal nivå. Mot denna bakgrund och med hänsyn till osäkerheten i prognoser, som sträcker sig över I å 2 decennier eller längre, är det ur matematisk synpunkt tillräckligt att betrakta endast två utbyggnadsstrukturer: den lineära och den exponentiella. De i praktiken intressanta och realistiska systemnolltiderna är kortare än livslängden för ett enskilt kraftverk och analysen i huvudtexten begränsas till detta fall T < T.. I det allmänna fallet när flera (n) kraftverksgenerationer (n - 1) T, < x < n T. måste betraktas blir beräkningen av systemnolltiden mera komplicerad och de generella uttrycken för systemnolltiden behandlas utförligt i Appendix. Den lineära resp exponentiella modellen formulerar vi som följer: P = (4) P = P - i) (5) P Q är den installerade nominella effekten vid tiden x = o och a är den relativa utbyggnadstakten. Initialeffekten P är endast en Price [11 använder modellen: P = P e ax e"^tc + vilket är en orimlig, inadekvat antal».

13 - 9 - skalfaktor och påverkar inte nolltiden. Av praktiska skäl sättes P = 1. Vi noterar att ox < e a * - 1 och därmed att P > P,.. o exp 1 in 2. 2 Linear utbyggnad Vi betraktar en utbyggnad P = ox över en kraftverksiivslängd, d v s x < T.. Nettoproduktionen fram till tidpunkten x är x 2 N E(x) = c \ axdx = ca -~o Energiinvesteringen för tiden x kan efter integration skrivas T IE(x) = f c «T c (x+ T T +-^) Vi inför nolltiden för det ens? ilda kraftverket T och nolltiden o för kraftsystem benämnes T ' so Ekvationen NE(x) = IE(x) skriver vi då x 2. (6) Det nödvändiga och tillräckliga villkoret för att ekvation (6) skall ha en lösning i intervallet x < T. är: o- 2T T f T 2 + L.

14 Sambandet meiiar. systemnoutiden T och T är alltså T so = T o ; i + ; i t (8) i T - 2T + -~^ + T_ om T» ;!T T f T so o 2 T o T < Villkoret (7) kan formulercs I termen energikvot R s- enligt R > 2 + (9) Som synes ingår inte utbyggnadstakten a i ekvationerna och nolltiden för kraftsystemet är alltså helt oberoende av systemets utbyggnadstakt a Exponentiell utbyggnad Vi betraktar en utbyggnad P = e ax - 1 över en tidsperiod kortare än en kraftverksgen??atinn. Enligt formel (1) kan nettoenergiproduktionen skrivas HE(x) = c f(e 9X - l)dx = [ e ax <*x) Enligt formel (2) gäller för energiinvesteringen efter integration i (Ax + T ) f (e

15 Vi söker nu lösningen till ekvationen NE(x) = IE(x) som dock inte kan uttryckas analytiskt utan endast beräknas numeriskt. Ekvationen NE(x) = IE(x) kan lätt transformeras till e y *\l - f(>)) r 1 + ix - o T (10) dar f( >) - (e - l)e Nolltiden T för det exponentiella systemet är alltså lösning so till ekvationen (10). (#) < 1 är ett nödvändigt villkor för en lösning T so - T. L. {y) växer monotont med a. Detta innebär att det finns ett största värde på,y, a = a, för vilket f(o) = 1. För -y-värden större än a, finns ingen lösning T < T T max so i-* till ekvationen (10). Med andra ord om et > a hinner kraftsystem ax mets nettoproduktion inte ikapp investeringsbehovet inom en livslängd, y är lösningen till at (e (11) För korthets skull införes T = T», + T /2, som alltså motm r c svarar mittpunkten pa energiinvesteringen. Det maximala värdet på T eller minimivärdet av energikvoten R ör att T < T. bectäms enligt (10) av ekvationen T m>

16 ->T L [ e R. - min i i, (12)* För at. väsentligt mindre än 1, m (13) För små värden på a T och ^T (10) ytterligare ett steg O lj < 1 kan vi approximera ekv x 2-2T xe m + *- (T -Te O ry O O at m ) - 0 2T ' so = T o e m (14) Noggrannheten i lösningen (14) är inte särskilt hög. Som en grov uppskattning av T kan vi använda T so *" T so v (linear) ' e m För att undvika missuppfattning vill vi ytterligare markera att uttrycken för * max> R min och T SQ ((11) (14)) gäller endast för det fall att T <T.. Det allmänna fallet behandlas i Appendix. I[l] och [3] ges motsvarande uttryck, som är felaktiga. L

17 TILLÄMPNINGAR 3. 1 Principjämförelse mellan energimässiff och ekonomisk tillämpning Tillämpning av denna mrtematiska formalism, som härletts ovan, representerar en investeringskalkyl för ett expanderande system, där en ingående nyttighet jämföres med en motsvarande utgående nyttighet. För att en sådan kalkyl skall vara meningsfull krävs att den producerade nyttigheten kan mätas i samma enhet som den investerade nyttigheten. Om vi nu tillämpar formalismen på ingående och utgående penningflöden (cash flow) vid kraftutbyggnad, så får vi en vanlig ekonomisk kalkyl enligt pay-off metoden, där T är återbetalnings - * nr ' ' SO tiden. Den svårighet vi här möter är att priser och kostnader vid olika tidpunkter måste återföras till de nivåer, som gäller vid en viss refer ens tidpunkt. Med den inflation, som råder f n, är kost» nadsförändringarna stora även över de måttliga tider, som gäller för konstruktion av kärnkraftverk. Vid tillämpning på energiflödena vid kraftutbyggnad (energi* analys) är det inte värdeskalans förändring i tiden som är svårig' heten utan att det inte finns en generell värdeskala för olika energiformer. En precisering av ett elproducerande kraftverks energibudget innebär att vi måste väga samman investeringsbidrag av olika energislag (olja, kol och elkraft) och jämföra med producerad elenergi plus eventuell tillvaratagen lågtemperaturvärme. Självfallet blir värdet av energikvot R eller nolltid T i avsevärd grad beroende av viktsfaktorerna.

18 Innan vi gar in pa valet av viktsfaktorer måste vi klargöra energibegreppen mera i detalj. Den nyttiggjorda energin, dvs den energi, som utnyttjas av den enskilde konsumenten, fördelar sig i vårt land ungefär som följer: lågtemperaturvarme 64 % mekaniskt arbete 20 % högtemperaturvärme 13% elenergi (direkt) 3 % Det stora behovet av lågtemperaturvarme i vårt land beror givetvis på det kalla klimatet. Den största delen av lågtemperaturvärmen produceras genom direkt förbränning av olja (eldningsolja). Vidare noterar vid distinktionen mellan primärenergi och förädlad energi. Som exempel på primärenergier kan nämnas råolja, kol, naturgas, vattenkraft och uranenergi. Bland de förädlade energiformerna har vi elkraft, bensin, dieselolja, gasol osv. Elkraften måste betraktas som den högst förädlade energiformen p g a mångsidig tillämpning, liten grad av externa effekter och hög verkningsgrad vid omvandling till mekaniskt arbete. En nackdel med elkraften är dock svårigheten att lagra större mängder energi. Den investerade energin i ett kärnkraftverk tillföres i produktionskedjans många led - råvaruframställning (främst kanske stål och cement), halvfabrikat, komponenttillverkning, montering, transporter och byggnadsarbete. Energitillförseln domineras av mineraloljor (eldningsolja, diesel, bensin) men även elkraften spelar en väsentlig roll. Det står också klart att energin förbrukas till»tor

19 del som mekaniskt arbete, varvid omvandlingen av oljans termiska energiinnehåll sker med en verkningsgrad av ungefär 25 %. Större delen av den energi, som tillförs som olja, skulle tekniskt sett kunna ersättas med elkraft, varvid verkningsgraden på ca % skulle uppnås. En ej försumbar del av den tillförda energin förbrukas som högtemperaturvärme (t ex vid stålframställning) och för denna förbrukning kan en substitution av olja med el inte ge någon radikal förbättring av verkningsgraden. Vi kan helt allmänt konstatera att vid uppförande av kärnkraftverk (och även oljekraftverk) är den nyttiggjorda energin väsentligt förskjuten mot högvärdiga energiformer relativt vad som gäller för samhället i stort och som indikeras av ovanstående tabell. Svårigheten att åsätta de olika energiformerna relevanta viktsfaktorer enligt någon generell värdeprincip åskådliggör energianalysens och alla energiutredningars dilemma. Ener^ianalys förutsätter en sådan värdeskala, vilken måste baseras på ekonomiska överväganden, marknadsmassiga preferenser. Värderingsprincipen kan också ses som en målsättning av politisk och social natur. Om vi nu förutsätter att målet för kraftanläggningen är att producera elenergi bör vi sätta värdet 1 på utgående elkraft och noll på lågtemperamrenergin (i form av spillvärme). Mot bakgrund av ovanstående synpunkter på den tillförda energistrukturen är det rimligt att åsätta den investerade termiska energin i form av fossila bränslen värdet och (givetvis) ingående elenergin värdet 1. För att markera en konservativ uppskattning av energikvoten skall vi fortsättningsvis genomgående använda viktsfaktorn 0,4 för den ingående fossilenergin.

20 Vi noterar att dot som skiljer tillämdningen av investeringskalkylen tor kraftsystem m»'d avs c end t- pn a ena sidan penning* loden och å andra sidan energiflöden ar endast tolkningen av sturhete i R (och därmed T ). Övriga ingångsparametrar, T,, T r och T_ är gemensamma. I den ekonomiska kalkylen är R lönsamhetskvoten för det enskilda kraftverket medan i energikalkylen är R energikvoten. Lönsamhetekvoten, som vi i fortsättningen betecknar med R* (och analogt T' ), definieras som förhållandet mellan direkta energiintäkter minus driftskostnader (bränsle och personal) och totala anläggningsinvesteringar (direkta och indirekta arbetsinsatser samt kapital). Eftersom arbetskostnaderna för anläggning och drift alltid är större än noll så måste energikvoten vara större än lönsamhetskvoten: R > R f. En självklar förutsättning är att energianalyfiens vårdeskala för olika energislag inte drastiskt avviker från den ekonomiska analysens prissättning. Som vi nedan skall visa överensstämmer det ovan på energimässiga grunder motiverade värdet 0.4 för fossilenergi relativt elkraft väl med den nuvarande prissättningen på lågspänd elkraft. Ett i nuläget (mars 19?5) representativt pris på eldningsolja torde vara 350 kr/ton, vilket motsvarar kr per kwh (term i»k energi). Genom den komplicerade taxesättningen på elkraft är det svårt att ange ett medelpris för konsumentledet. Ett vanligt pris för elvärmeförbrukare torde f n vara kr per kwh. Denna prisrelation mellan olja och el motsvarar alltså en viktsfaktor 0.4 för fo»8ilenergin. Ett rimligt villkor för att ett expanderande krafuyetem skall vara ekonomiskt acceptabelt är att systemets återbetalningstid är

21 kortare än kraftverkens livslängd: T' <T., Detta implicerar ett visst minimivärde R. ; d v s min R' > R. min är ett nödvändigt och tillräckligt villkor för acceptabel ekonomi. Eftersom R alltid är större än R\ så är relationen R > R. enmin dast ett nödvändigt villkor för kraftsystemets ekonomi. Med andra ord, otn en ekonomisk analys ger positiva resultat så måste också rimliga energimäsaiga krav vara uppfyllda. Energianalys torde endast vara värdefull om den ekonomiska informationen är ytterst bristfällig eller om prissättningen på arbetskraft och energiformer avviker helt från en given politisk målsättning. 3. Z Beräkning av lönsamhetskvot för lättvattenreaktor Enligt nomenklaturen i kapitel 2 är R =-r i c L T c i T T =- o c och R = T För beräkning av lönsamhetskvot K* (och T* ) defineras c som årliga nettointäkter i kr per kw (cash flow): c - (e - k )t v r' u där e är elpriset, kr/kwh k är driftskostnaden (bränsle och personal), kr/kwh t är utnyttjningstiden per år, timmar

22 i.ir ärliga utgifter under byggnadstiden (utgående cash flow). i T är den integrerade kostnaden fram till start av kraftverket, c c Denna innefattar alltså bade anläggningskapitalet och kostnaden för den initiala bransieladdningen. Ranta under byggnadstiden ingår inte i i T. Samtliga kostnadsparametrar anges i fasl penningvärde motsvarande mitten av 1<)75. vilket innebär att uppgifter givna i löpande priser måste korrigeras med hänsyn till konsumentprisindex. Anläggningskostnaden per effektenhet beror av enhetsstorleken och hur många enheter som '.igår i samma station (förläggningsplats). Vi tänker oss hår att utbyggr. \den sker med reaktorenheter på 1000 MW och att varje station innehåller 2 eller 3 enheter. Vi utgår från en i 1975 års penningvärde beräknad anläggningskostnad per kw avseende en station som färdigställes i början av 80-talet och förutsätter att kostnadsstegringen på anläggningsarbete och material (komponenter och annan utrustning) i stort sett följer konsumentprisindex. I AEC-rapporten WASH-1345f4] görs en utförlig analys av kärnkraftanläggningars kapitalkostnader och en återblick på tidigare kostnadsutredningar. Enligt [4] ligger totala anläggningskostnaden i löpande priser inklusive ränta under byggnadstiden i området 530» ^/kw beroende på förläggningsplats inom USA. En station med två enheter på 1000 MW vardera förutsätts. Om kostnadseskalation och ränta under byggnadstiden dras ifrån, erhälles #/kw i 1974 års penningvärde och korrektion med ca 10 % ger $/kw i dagens penningvärde. Med aktuell valuta relation 4. 3:1 har vi kr/kw. I fortsättningen antar vi som representativt värde för svenska anläggningar 1600 kr/kw, vilket mot bakgrund av AEC-studien är

23 ett rimligt varde bl a med hänsyn att stationerna i Sverige har kustförläggning (direktkylning) och t >rde utrustas med minst 3 aggregat. Kostnaden för den första bränsleladdningen beräknas ned nu aktuella priser på anrikningsarbete och uran till ungefär Z00 kr/kw. Den totala investeringen före idrifttagning i T är så- C C ledes 1800 kr/kw. Av de tre parametrarna, som bestämmer nettointäkterna per år (c), är k och t tämligen väl definierade, medan elpriset är svårt att precisera p g a differentieringen med belastningen. Som typiska värden på k och t väljes 1. 5 öre/kwh resp 6000 timmar (kapacitetsfaktor %). För tre olika elpriser sammanställs värden p-\ T och R' nedan. o Tabell t e kr/kwh c kr/kw och år T' o o a r T L = 25 5., R' T r Beräkning av energikvot för lättvattenreaktor (BWR) För beräkning av cnergikvoten krävs en detaljerad analys av de olika komponenterna av investeringsenergin resp av nettoproduktionen av energi. Förat och främst måste investeringsenergin indelas i energiinnehållet i själva anläggningen och energimängden bunden i den initiala bränslesatsen. Som tidigare påpekats tillförs anläggningsenergin i produktionsprocessens många led och ett brett spektrum av vår råvaru- och verkstadsindustri liksom också vår byggnadsindustri är involverad.

24 I bilaga '"> til! F^nori;ipr»ifjn<isutredningens betänkande ' 5l firms en utiuriir s:\mmanst.iiinmg ur SCBs indu stri statistik a v dt-n direkta och indirekta energiförbrukningen for olika branscher.tv den svenska ekonomin. Näringslivets; olik,) produkter ar indelad».- och sammanförda i 42 varugrupper ( sektoreri. Någon karnkraftssektor finns inte definierad utan vi kan ondast använda detta material indirekt och genom analogier. Som ett riktvärde för den direkta energiåtgången vid själva uppförandet av kraftverket väljer vi motsvarande värden för varvsindustrin, vilka enligt f 5) är 84 MWh elkraft och 211 M.*h fossilenergi (207 MWh i 'orm av olja) för varje miljon kr i produktionsvärde. För produktionsvärdet 1600 kr/kw och viktsfaktorerna 1 resp 0. 4 får vi alltså en direkt energiförbrukning av 1. 6 ( ) = 268 kwh per kw. Enligt[4l kan vi uppskatta kostnaderna för komponenter, utrustning, halvfabrikat och råvaror för anläggningen till ca 60 % av totala anläggningskapitalet. Ett rimligt antagande kan vara att denna materialkostnad fördelar sig med 30 % på elektroindustri, 40 % på verkstadsindustri exklusive bil- och bilmotor tillverkning, 20 % på järn- och stålindustri och 10 % på cementindustri. På dessa fyra branscher fördelar vi alltså följande investeringsbelopp: 288, 384, 192 och 96 kr/kw rosp. Enligt [ 5] har vi motsvarande energibidrag, tom inkluderar både direkt och indirekt energi, Elenergi: f f r 348 Fossilenergi: < 96 = 2502

25 Den effektiva energin i material är alltså = kwh/kw. Energiinvesteringen i anläggningen är således kwh/kw*. Detta bidrag till i c T kallar vi (i T ). Vi har också att beräkna den tillförda energin i första bränsleladdningen (i c T (.) b. For att beräkna (i T ), är det lämpligt att dela UDD hränslefabc c h i- o rikationen i tre etapper: uranframställning, anrikning och elementtillverkning. Vi utgår från följande parametrar typiska för idrifttagna och projekterade lättvattenkokare (BWR): uranmängd per effektenhet kg/kw medelanrikning (U235-halt) i initialbränsle 2.2 % " ersättningsbränsle 2.6 % medelutbränning för ersättningsbränslet 27 MWd/kg Detta belopp är alltså en viktad summa av en elenergipost på 482 kwh och en fossilenergipost på 2840 kwh. Om fossilenergin (termisk energi) åsättes samma viktsfaktor som elkraften, dvs 1.0, uppgår investeringsenergi i anläggningen till 3382 kwh/kw. Som jä»rjförelse noteras att [6 \ anger en investeringsenergi av 4100 kwh/kw, beräknad enligt i stort sett samma metod men på basis av amerikansk industristatistik. 1.6] omnämns också att om man istället utgår från materialmängderna som ingår i anläggningen och adderar de direkta energiposterna, som förbrukats för framställning av varje materialkomponent, så blir resultatet en kraftig underskattning (upp till en faktor 10) av energiinveste.ringen främst p g a de relativt stora indirekta energibidragen, som då försummas. 1 7' har energiinvesteringen beräknats med utgångspunkt från materialåtgången för Ringhals 1 och summering av dessa direkta energiposter samt elkraft- och oljeförbrukning på byggplatsen ger en investeringsenergi av 570 kwh per kw (varav minst 100 kwh är elenergi), överensstämmelsen mellan resultaten i [6] och vår beräkning är acceptabla, medan värdena i [ 71 avviker starkt, vilket också är att förvänta av slutsatserna i 61. Osäkerheten i energiinvesteringen torde vara ca 20 %.

26 En anrikning pä 1. 2 '',, kräver en mängt 1, naturligt uran av 4. 4 kg per kg arrika'1 produkt och separatio/isarbeu- av 2. 3 c-nbeter per kg (anrikat uran). For varje enhet sopa ratiunsarbete vid en gasdiifusionsanlaggning åtgår ungefär.?^00 kwh r\ och insatserna av andra cnergielag är obetydliga relativt sett. Energiförbrukningen vid produktion av natururan (gruvbrytning, mineralberedning, kemisk utvinning) beror givetvis i hög grad pi uranhalten i malmen och mal men. 8 kemiska sammansättning liksom på de lokala förhållandena rörande malmens utsträckning och läge. Genom den omfattande provdriften i Ranstad och den framskridna projekteringen av ett utbyggt Ranstadsverk är energiåtgången vid uranutvinning ur Billingenskiffern tämligen väl klarlagd. Enligt i 8. åtgår följande energimängder* för produktion av 1 kg uran i form av koncentrat 'natiumuranat) vid en årsproduktion av 1275 ton uran: elenergi 125 kwh/kg (160 GWh/år) "fossilenergi" 227 " "- ) vilket med viktsfaktorn 0.4 motsvarar en total ekvivalent elenergi av 216 kwh per kg uran. Per kg uran i det anrikade bränslet ger alltså natururanframställningen 4.4 ' kwh och per effektenhet är bidraget = 1(9 kwh/kw. Enligt Ranstadsprojektets nuvarande uppläggning kommer huvudparten (80 %) av "fosiilen.rgin" att förbrukas i form av ånga som ett led i svavelsyraframställningen och genereras genom förbränning av elementärt svavel. Vid ångproduktionen erhålles också 25 % av elkraften via mottrycksturbin. Av den totala energin på 216 kwh/kg svarar svavlet för ungefär 100 kwh/kg. Svavel erhålles i snabbt växande utsträckning som en restprodukt vid avsvavling av olja vid raffinaderier och oljekraftverk. Tillgången på svavel torde på sikt överstiga efterfrågan i de flesta industriländer. Om värdet av svavlets energiinnehåll sättes lika med noll si uppgår energiförbrukningen vid uranutvinning ur Billingenskiffern till endast 116 kwh/kg uran.

27 - Z3 - Innan uranet kan tillföras anrikningsprocessen måste urankoncentratet omvandlas till hexafluorid (UF, ). Denna konvertering är ringa energtkrävande i relation till utvinnings- och anrikningsstegen i bränslecykeln. Detsamma gäller stegen efter anrikningen - rekonverteringen och elementtillverkningen. Enligt L 1 kan vi för dessa tre steg tillsammans räkna med en energiförbrukning enligt elenergi: fossilenergi: = i 1 8 kwh/kg 4. 4 S4 t kwh/kg vilket i ekvivalent elenergi ger 226 kwh/kg anrikat uran. Bidraget per effektenhet är = 28 kwh/kw. Energiförbrukningen i en easäiffusionsanläggning uppgår med ovan angivna parametrar till 5750 kwh elenergi per kg anrikat uran och således =719 kwh/kw. AnrikningBposten är alltså den dominerande delen av energiförbrukningen som krävs för bränslets framställning. fi T ). = = 866 kwh/kv/ c c b Den totala energiinvesteringen före start av kraftverket är således i T = (i T ) + (i T ), t 8bb = 2483 kwh/kw c c c c a c c b Givetvis är detta värde på investeringsenergin behäftat med en ansenlig osäkerhet, i synnerhet gäller detta anläggningsenergin, som också är det»torre bidraget. Räknat per investerat belopp gav

28 vår approximativa beräkning pä anläggningen ungefär 1 kwh per investeringskrona 'ekvivalent elenergi). Hittills har vi e.i beaktat den mycket indirekta, oadresserade energiförbrukning, som investerats i den till kärnkrafttekniken associerade produktionsapparaten, t ex maskiner, processanläggningar, transportmedel och annan inlrastruktur och som genom förslitning och nedläggning mer eller mindre klart kan knytas till produktion av material för kraftverksanläggningen samt till produktion av uran, anrikningsarbete och bränslelement. Om vi som exempel betraktar uranproduktionen med det projekterade Ranstadsverket, får vi med schablonvärdet 1 kwh per kr och anläggningskostnaden 750 milj kr samt avskrivningstiden 25 år ett energibidrag från själva produktionsanläggningen av 24 kwh per kg uran, vilket skall jämföra» med det ovan angivna "direkta" energibeloppet 216 kwh/kg. Detta fall indikerar att den indirekta "kapitalenergin" uppgår till storleksordningen to % av den "direkta" i produktionsflödet bundna energin. Mot denna bakgrund uppskattar vi den totala investeringsenergin till i T = kwh/kw effektenhet. Det återstår nu att beräkna c, nettoproduktionen per år och c = t (1 - l)(l - e) kwh/kw och år dar t I e är utnyttjningstiden per år i timmar är förlusten i distributionen till abonnenterna är kvoten mellan energiinvesteringen i ersättningsbränslet och den till nätet levererade elenergin

29 Ett rimligt värde på distributionsförlusten i för nu aktuella kärnkraftlägen torde vara '0 %. För framställning av 1 kg uran i ersättningebränslet (anrikning 2.6 %) åtgår det 5.2 kg natururan och 3.0 kg separationsarbete. Med ovan angivna specifika energiåtgångsvärden får vi en energiinvestering för ersättningsbränslet av S ^ kwh/kg uran Ersättningsbränslet genererar 27 MWd (termisk energi) per kg uran, dvs kwh/kg. Med en nettoverkningsgrad av % har vi en utgående elenergi av «7 f0 3 kwh/kg uran. Vid beräkning av e måste vi också ta hänsyn till att första laddningen redan räknats in i investeringsenergin före start. Första bränsleladdningen representerar ungefär 15 % av den totala bränsleförbrukningen under kraftverkets livslängd. Således beräknas kvoten e approximativt enligt c = 3.5 % Nolltiden för det enskilda kärnkraftverket är nu: i T T C C _ i T c c 2800 tji - - c) = t u t u För tre rimliga värden på utnyttjningstiden t sammanställs motsvarande värden på T och R:

30 Tabell 2 u timmar T o år R R 1 T L = Hittillsvarande drifterfarenhet för lättvattenreaktorer visar en genomsnittlig kapacitetsfaktor på ca 56 % (ungefär 5000 timmar) men en uppåtgående trend kan observeras [ <*,. Typiska värden på energi - kvoten är således med aktuell driftstatistik 40.. *>0 och nolltiden för ett enskilt kraftverk ligger i området år. En jämförelse mellan lönsamhetskvoten R' (Tabell 1) och energikvoten R (Tabell 2) visar att i grova drag är energikvoten en faktor to större än lönsamhetskvoten. Kriteriet T < T. eller R >R. so L min är alltså ett utomordenligt svagt krav med avseende på kraftsystemets totala lönsamhet Jämförelse med resultat av P F Chapman Chapman 13] och Price [ 1 ] beräknar energikvoter för flera reaktortyper varvid T. antages vara 25 år och alla komponenter av investeringsenergin värderas i termisk energi (så t ex multipliceras elenergibidrag med faktorn 4) medan utgående energi mäts i elenergi. Chapman och Price anger R = _ 3 och _ 3 (ör PWR resp HTR (högtemperaturreaktorn). Om de ovan presenterade beräkningarna skulle genomföras på detta egendomliga, inkonsekventa sätt, så kulle värdena i Tabell 2 divideras med ungefär 3 och överstämmel- en skulle vara tämligen god.

31 Dessa värden i [ 3 J och [ 1} baseras bl a på uppgifter om uranutvinningen vid fem nu brukade gruvor i USA med en genomsnittlig uranhalt av 0. 3 %. Resultat redovisas också för en tänkt uranutvinning ur Chattanooga Shale (uranhalt %) som beräknas kräva 18 MWh/kg och i olja räknat ton per kg uran. Enbart energikostnaden skulle alltså uppgå till 500 kr per kg uran eller 50 g/lb b\o n, vilket är en extremt hög kostnad även om mar. ser det som en totalkostnad. På detta orimliga underlag erhålles energikvoten på för ovannämnda reaktortyper - värden som givetvis helt saknar relevans. Som tidigare påpekats i kapitel 2 är den matematiska behandlingen av exponentiell utbyggnad i Chapmans och Prices arbeten felaktig, vilket medför att värden på systemnolltider m m (även med korrekta ingångsdata) ej kan jämföras med resultat som presenteras här Sammanställning av och jämförelse mellan resultat frän energianalys resp ekonomisk analys Som ovan visats skiljer sig den ekonomiska och den energi - mässiga analysen endast i tolkningen, innebörden av stenneten R (alternativt nolltiden T ). Betydelsen av övriga parametrar (T.. T och T_) är i praktiken densamma för de två tillämpningarna. Systemnolltiden beror endast (se kapitel 2) av R (eller T ). T och T - = T T + T /2 (den genomsnittliga ledtiuen för investeringen). Detta gäller dock endast approximativt för exponentiell utbyggnad. För att skilja de två kalkylerna åt användes beteckningen R* för lönsamhetskvoten och T* för den monetära nolltiden 'återbetalningstiden).

32 Ett lämpligt rrlercnsvarrie på livslängden pä ett kärnkraftverk torde vara 25 År. Aktuell svensk erfarenhet indikerar att T -5 och T_ - 0. S Ir ar troliga värden och uppgifter i i 4 j pekar mot T och T = 0. b år. Med hänsyn til! att en ej försumbar del av energiinvesteringen liksom av den monetära investeringen infaller före själva byggnadsperiorien väljer vi 3 resp 4 år tom typiska värden på T. 1 Tabell 3 har vi sammanställt energiparametrarna R, T och systemnolltiden lör linear utbyggnad T for två sannolika värden på utnyttjningstiden samt motsvarande ekonomiska parametrar R 1, T' och T' för två rimliga värdan på elpriset vid produktionskällan. Det står klart att den ekonomiska lönsamhetskvoten är mer tin en faktor 10 mindre än energikvoten. Tabell 3 visar att systemnolltiden T (kraftsystemets energimässiga återbetalningstid) ligger i området år och insåledes en storleksordning mindre än livslängden. Om vi definierar energimässig lönsamhet som T *- T., så är det ställt utom allt s o * i_* tvivel att en linear utbyggnad med lättvattenreaktorer är energimässigt lönsam med *n mycket stor marginal. Kriteriet T 'T, kan ' ' i. rf i. " SO i-/ också uttryckas 7 med de ekvivalenta randvillkoren R > R min. eller T < T (se kapitel 2) där R. (och T ) endast beror av K o - omax ' min omax tids parametrarna T, och T för linear utbyggnad. Vid exponentiell utbyggnad tillkommer ett beroende av utbyggnadstakten > Som framav Tabell 4 är dock marginalen till R. för exponentiell utbyffffnad SO o min L " ' mm mycket betryggande för rimliga värden pä utbyggnadstakter. Den energimässiga lönsamheten för alla rimliga utbyggnads mönster med lattvattenreaktorer kan inte betvivlas. Det föreligger inga starka skäl för att energikvoter för andra reaktortyper skulle skilja sig drastiskt från energikvoten för LWR, vilket också stöds av Chapman*

33 j och Prices LI, beräkningar. Energianalys av expanderande kärnkraftsystem leder således till slutsatsen att den energimässiga lönsamheten är mycket god - äterbetalningstiden är i storleksordningen 1/10 av livslängden för det enskilda kraftverket. Om vi nu i Tabell 3 betraktar T', systemets monetära återbetalningstid, finner vi att T' för linear utbyggnad är både större och mindre än livslängden beroende pä elpris och utnyttjningstid. Av Tabell 4 ramgår att T f > T. för alla 4 parameterkombinationer om utbyggnaden sker exponentiellt med a - 8 %. Ekonomisk lönsamhet för kraftsystemev i betydelsen T' < T ' "' ' 6 O L implicerar såledeb vissa krav på utnyttjningstid och elpris samt även på utbyggnadstakt vid exponentiell utbyggnad. Dessa krav kompletterar den ekonomiska kalkylen för det enskilda kraftverket liksom den mera komplicerade nuvärdesanalysen av kraftsystemets ekonomi. Av de här presenterade resultaten för expanderande kärnkraftsystem framstår den energimässiga analysen som ointressant i jämförelse med den ekonomiska. Den väsentligaste fördelen med energianalys skulle enligt.2 j vara att beslutskriteria blir känsligare och skarpare än vad som erhålles med ekonomisk analys. Denna förmodan är som generell hypotes uppenbarligen felaktig. För planeringen av kärnkraftutbyggnad erbjuder energianalys ett positivt men svagt och lite vägledande beslutsunderlag.

34 Tabell 3 t u timmar per år T m år R Energiparametrar T o T o linear utbyggnad i 4. 5 öre/kwh 6.0 öre/kwh Ekonomiska 4. 5 öre/kwh parametrar 6.0 öre /kwh T' år BO linear utbyggnad 4. 5 öre/kwh (J, 0 öre 'kwh i H. f> ? ? bo 22.6 IS.**? fe 6 Tabell 4: Randvillkor: T < T. och T > so L so Utbyggnadsmönster T m T T omax o max R. min år år år Linear utbyggnad alla a-värden Exponentiell o = 4% Exponent! ell or = 6% Exponentiell «*«% < UT L ) R". mm i9 Om nolltiderna är ea korta eom har, är den "kontinuerliga" utbyggnads - funktionen en ganska grov approximation av den verkliga trappstegsformen. Systemnolltiden för den trappstegaformade utbyggnaden är dä något mindre än de värden»om angivit» här.

35 effekt P(x) investerad energi: skuggad yta producerad energi: streckad yta tid '(T C *T;) -T T O x Fig. i*. Utbyggnadsfunktion P(x) och motsvarande investeringsfunktion.

36 effekt investerad energi: skuggad yta producerad energi: streckad yta Fig.5 Linear utbyggnadsmodell.

37 REFERENSER 1. PRICE J H, Dynamic energy analysis and nuclear power. Friends of the Earth Ltd, London NILSSON S, Energy analysis - a more sensitive instrument for determining costs of goods and service. AMBIO 3 p CHAPMAN P F* and MORTIMER N D t Energy inputs and outputs for Nuclear Power Stations. EKG 005, Open University, Milton Keynes, Bucks Power Plant capital costs. Current trends and sensitivity to economic parameters (WASH-1345). 5. Energi , Betänkande av energiprognosutredningen, SOU 1974:64 och Bilaga, SOU 1974: ROMBOUGH C T and KOEN B V, Total energy investment in Nuclear Power Plants. Nucl. Technol. 26 (1975) p GÖTHE S, Energianalys för kärnkraft, ERA 48 (1975) p OLSSON G och GELIN R, Interna meddelanden resp MARGEN P H och LJNDHE S, Kärnkraftverkens lönsamhet. Tek. Tidskr. 105(1975):4 p. 16. Ett sammandrag finns också i New Sci. 64 (1974) p. 866.

38 APPENDIX BERÄKNING AV SY ST EMNOl.LT; DF.R FOH ALLMANNA FALLET MED FLERA KRAFT VERKSGEXER.ATIONEK

39 1:1 K n c r g i!)i;flgctcn för i-n period o m f a t t a n d e flora ^<-nc rationt;r angfit-r i X s k å d l i g g ö r s i f i j» ' > för dtt fall att -ubvggna dsfunkti :jnen r h.ncir. S u m t r a m g å r av oeu.t d i a g r a m bcr.ikn.is <:<r. : k r a f t s v s t e - t ir.\ cstt-radi' r m - r g i n! E i-nlipt 'K'x: n-1 b'jf it ' I o a-i I I"x dx för t: - 1 it >: r T 1 'Al dar a x * T._ och b - x T T. I.Linear Vi bftraktar t-n utbyggnad P ox över en tiflsprrioci av X gener a t i o n e r, cl v s> x N'T. N e t t o p r o d u k t i o n e n f r a m till tidpunkten x ar NE(x) -ej jxdx - cy o Entrgiinveeteringen för tiden x beror av hur många kraftverksgenerationer som innefattas av x. För x i den n:te generationen (n - 1)T L x ntj gäller n-1 b-jt L n-1 T IEfx(n)) = i Z ' '/xdx - i ot Z (x + T + ~ - jt ) C - ^ i-» CC. 1^ 1J j = o a-jt L j.-o IEfx(n)) -- i VT n(x + T_ + ~- - ~~^ T. ) C C 1 C L X-* (A2) Vi inför nolltiden för det enskilda kraftverket T och nolltiden o för kraftsystemet benämnes T So

40 Ekvationen NEix) - IE' J 'x(n)) skriver vi då x 1 " - nt (2x - (TI - o (A3) Det nödvändiga och tillräckliga villkoret för att ekvation 'A3) skall ha en lösning i intervallet 'n - t )T, <x < nt är»om följer: (A4) n - 1 (n - i)t L Sambandet mellan systemnolltiden T och T för T i intervallet enligt 'A4) är alltså T - nt i O n - " 2T T - T c nt <A5) För»i = 1; T < T. so L 2T + T T = T t *-= - J 80 O T o- 2T_ 4 T * T 2 + c T L T Ä2T +T+T_ omt so o 2 T o f T För n - h < T < 2T +T - A o- 2T T + T L 2T,

41 1:3 2T - T För att illustrera korrespondensen mellan generationsintervall för 'ör T och motsvarande intervall för T väljer vi ett typibkt so o värde på kvoten ~ i- = 0.2 (t ex T T 30, T = S, T_=0.i». I L i. c T Vidare noterar vi att olikheten (A4) kan formuleras i termen ener- T, L gikvot R = = enligt 2T^ + T n nt, 'JL < R < 2T_ + T T c ^ n (n - 1 )T L (A6) För detta typfall får vi då följande tabell: Intervall för systemnolltiden T so T, - 2 T, 2 T 3 Tj 4 T, - 5 T L JT, 6 T, 7T 1 8 T, 3Tj - 7T 1 " 8T 1-10 T, Generation nr n Tillåtet intervall för energikvoten R co * t ! T,

42 t:4 För att ett enskilt kraftverk skall vara meningsfullt som energikälla kr.'ivs att T - T. eller med andra ord energikvoten R I. Det är självfallet Önskvärt att R ~ 1 'T T f ) vilket också gäller för existerande kraftverkstvper. Av (A4>, <A5) cch (A6) framgår klart att för R i kan vi alltid finna ett n och därmed ett ändligt värde på T.1 praktiken ar det rimligt att systemnolltiden är mindre än livslängden T _ T (d v s n - 1). vilket innebär att T + 2T R 2 + (T L eller T f 2T R t + (T, L T o L i 2 T Det är väsentligt att notera systemnolltidens svaga beroende av konstruktionstid och provdrifttid när n > 1 och att nolltiden för kraftsystemet är helt oberoende av systemets utbyggnadstakt o. II. Exponentiell utbyggnad Vi betraktar en utbyggnad P = e - i över en längre tidsperiod innefattande många kraftverksgenerationer. Nettoenergiproduktionen kan då skrivas - l)dx = - [i a

43 1:5 Enligt formel (Al) gäller för er.ergiinvesteringen fram till den n:te generationen (n - 1)T. x nt. i n-1,,._ ->jt J._,, c _ - >(x + T_), H. L IE(x) =...e x T (e c-l)e = o i»(x + T_) VT T " ant L IE(x) = -, e, e -it L 1 - e g(n- Vi söker nu lösningen till ekvationen NE'x) = IE 7 x) som dock inte kan uttryckas analytiskt utan endast beräknae numeriskt. Ekvationen NE(x) - IE(x) kan lätt transformeras till e X (l - i(a, n)) = 1 +CKX - nat (Al) där ((a, n) = (e - l)e g(n, Nolltiden T för det exponentiella systemet är alltså lösning till ekvationen (A7). Eftersom vänsterledet växer exponentiellt med x och högerledet lineärt, så finns alltid en lösning till (10) om f(o, n) < 1. i(rt, n) växer monotont med n mot ett asymptotiskt värde i'~x, *) Vidare än f(o, n) en monotont växande funktion av v. Detta innebär att det finns ett största värde på a, i - u < för vilket f(c/. n) 1 r max ~ för alla n. i är roten till ekvationen f(o-i») = 1. max För a-värden större än y, finns ingen lösning till ekvationen (A7), d v s då finns ingen ändlig nolltid för systemet. Med andra ord

44 1:6 om. hinner kraftsystemet» nettuproduktion aldrig ikapp inmax vesteringsbehovet. Alltså,, ar lösningen tili 6 max T -.T, 1 - e f t, T" (AB) För korthets skull införes T - T_, + T,,. som alltså motm T c,c svarar mittpunkten på energiinvesteringen. Approximativt gäller då: _ m L ot e e o (A8a) För praktiska värden på T, T och T kan vi approximativt beräkna y enligt max T + T o m 1 - e T + T o m (- m (A8b) m Som exempel välje» T- = 30, T =3 och T = 1 (typitka värl~t m o den för ett kärnkraftverk) och vi har då: max =0.32 (o = är det exakta värdet, lödningen till (A8) max Kriteriet för kraftsystemets ändliga nolltid I(a, <») < 1 kan också tolkas i termerna T Q eller R, dvi såsom villkoren 'o <T omax elurr>r min( R min 3 T omax

45 1:7 för ett givet >. Värdet av R. (eller T ) ges exakt av (A8) eller min omax approximativt av (A8a) enligt -/r T e T m 1 - e L ökningstakten o brukar ofta anges i fördubblingstid T enligt sambandet n /T _. Med exempelvis T och T (T = 5 och T T - 1) erhålles enligt (A8) för fördubblingstiderna 10 resp 5 år: T DT R min omax Som ovan visats ger ekv (A7) den generella lösningen på nolltiden för det exponentiella kraftsystemet. Det ur praktisk synpunkt mest intressanta fallet är när T infaller under 1 :a generationen (n = 1), dvs när T < T.. För n = 1 förenklas ekv (A7) och vi kan SO L< med god approximation skriva e "(l - ^T Q e m ) = 1 + 'vx - /T (A9)*» Det maximala värdet på T eller minimivärdet av energikvoten R för att T <T. bestäms följaktligen av ekvationen * Chapman i 3 j ger här 3.02 reep 6.21, vilket är inkorrekta värden. ** I i. i i och i. 3 ] ges motsvarande uttryck, som är felaktiga.

46 1:8 -.- r. T , r i r t.. i, - i K ^. ^ - (A 1 0 )<. ' - 1t T ' I. För -,T vtsruthet :r.i;;< ; ri- a; t T R n - ft - ~ ' '. 'I'. T ). /All) mm - I L m * I [li och '3j ges motsvarande uttryck, som är felaktiga. AE i kontoritryemri Nyköping 1976

Grundläggande energibegrepp

Grundläggande energibegrepp Grundläggande energibegrepp 1 Behov 2 Tillförsel 3 Distribution 4 Vad är energi? Försök att göra en illustration av Energi. Hur skulle den se ut? Kanske solen eller. 5 Vad är energi? Energi används som

Läs mer

Projektarbete MTM456 Energiteknik

Projektarbete MTM456 Energiteknik Projektarbete MTM456 Energiteknik Projektet syftar till att ge kännedom om något energislag Sverige använder samt detaljerat utreda hur varje steg mellan råvara och restprodukt (se figur 1) påverkar vår

Läs mer

Sol, ved, vind, muskelkraft och strömmande vatten var de enda större energikällor människan hade tillgång till, ända fram till 1700-talet.

Sol, ved, vind, muskelkraft och strömmande vatten var de enda större energikällor människan hade tillgång till, ända fram till 1700-talet. 3 Utgåva KÄRN KRAFT Sol, ved, vind, muskelkraft och strömmande vatten var de enda större energikällor människan hade tillgång till, ända fram till 1700-talet. Med ångmaskinens hjälp utvecklades industrisamhället

Läs mer

Lennart Carleson. KTH och Uppsala universitet

Lennart Carleson. KTH och Uppsala universitet 46 Om +x Lennart Carleson KTH och Uppsala universitet Vi börjar med att försöka uppskatta ovanstående integral, som vi kallar I, numeriskt. Vi delar in intervallet (, ) i n lika delar med delningspunkterna

Läs mer

Introduktion till nationalekonomi. Föreläsningsunderlag 4, Thomas Sonesson. Marknadens utbud = Σ utbud från enskilda företag (ett eller flera)

Introduktion till nationalekonomi. Föreläsningsunderlag 4, Thomas Sonesson. Marknadens utbud = Σ utbud från enskilda företag (ett eller flera) Produktion Marknadens utbud = Σ utbud från enskilda företag (ett eller flera) Företaget i ekonomisk teori Produktionsresurser FÖRETAGET färdiga produkter (inputs) (produktionsprocesser) (output) Efterfrågan

Läs mer

Ränteberäkning vid reglering av monopolverksamhet

Ränteberäkning vid reglering av monopolverksamhet 1 Jan Bergstrand 2009 12 04 Ränteberäkning vid reglering av monopolverksamhet Bakgrund Energimarknadsinspektionen arbetar f.n. med en utredning om reglering av intäkterna för elnätsföretag som förvaltar

Läs mer

Lönsamhetsberäkning för småskalig biodiesel CHP

Lönsamhetsberäkning för småskalig biodiesel CHP Inledning Lönsamhetsberäkning för småskalig biodiesel CHP I förstudie kommer lönsamhetsberäkningar att göras för ett biodieselaggregat som har möjlighet att producera både el och värme hädanefter CHP.

Läs mer

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013 Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter

Läs mer

Emissioner från Volvos lastbilar (Mk1 dieselbränsle)

Emissioner från Volvos lastbilar (Mk1 dieselbränsle) Volvo Lastvagnar AB Meddelande 1 (6) För att underlätta beräkning av emissioner från transporter har Volvo Lastvagnar sammanställt emissionsfaktorer per liter förbrukat bränsle. Sammanställningen avser

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

Känslighetsanalys för nuvärdeskalkyl för vindkraft för Sundbyberg stad

Känslighetsanalys för nuvärdeskalkyl för vindkraft för Sundbyberg stad Känslighetsanalys för nuvärdeskalkyl för vindkraft för Sundbyberg stad 1. Bakgrund och syfte Jag har med PM benämnd Nuvärdeskalkyl för vindkraft för Sundbyberg stad daterad 2014-03-13 redovisat utfallet

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

c S X Värdet av investeringen visas av den prickade linjen.

c S X Värdet av investeringen visas av den prickade linjen. VFTN01 Fastighetsvärderingssystem vt 2011 Svar till Övning 2011-01-21 1. Förklara hur en köpoptions (C) värde förhåller sig till den underliggande tillgångens (S) värde. a. Grafiskt: Visa sambandet, märk

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

Algoritm för uppskattning av den maximala effekten i eldistributionsnät med avseende på Nätnyttomodellens sammanlagringsfunktion

Algoritm för uppskattning av den maximala effekten i eldistributionsnät med avseende på Nätnyttomodellens sammanlagringsfunktion Algoritm för uppskattning av den maximala effekten i eldistributionsnät med avseende på Nätnyttomodellens sammanlagringsfunktion Carl Johan Wallnerström December 2005 Kungliga Tekniska Högskolan (KTH),

Läs mer

Från energianvändning till miljöpåverkan. Seminarium IEI LiU 2015-04-09

Från energianvändning till miljöpåverkan. Seminarium IEI LiU 2015-04-09 Från energianvändning till miljöpåverkan Seminarium IEI LiU 2015-04-09 2 Agenda 1 Terminologi en snabbkurs 2 Primärenergi en problematisering 3 Tidsperspektiv vad kan vi lära från LCA? 4 Term Energi Energiform

Läs mer

miljövärdering 2012 guide för beräkning av fjärrvärmens miljövärden

miljövärdering 2012 guide för beräkning av fjärrvärmens miljövärden miljövärdering 2012 guide för beräkning av fjärrvärmens miljövärden 1 Inledning Det här är en vägledning för hur fjärrvärmebranschen ska beräkna lokala miljövärden för resursanvändning, klimatpåverkan

Läs mer

Förstudie Solceller på BRF Hamnkaptenen Uppdaterad

Förstudie Solceller på BRF Hamnkaptenen Uppdaterad Förstudie Solceller på BRF Hamnkaptenen Uppdaterad 2017 03 03 JB EcoTech Solenergi AB Telefon: 0704-333 217 Jonas.buddgard@jbecotech.se www.jbecotech.se 2017 03 03 Bakgrund Avsikten med denna förstudie

Läs mer

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom

Läs mer

Vindkraft, innehåll presentation

Vindkraft, innehåll presentation Vindkraft. Vindkraft, innehåll presentation Vad är vindkraft? Vad är el? Energiläget i Sverige och mål Typer av verk Projektering Byggnation Äga Planerade etableringar i Sverige Projektgarantis erbjudande

Läs mer

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser. TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP2 10-11 Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning Denna

Läs mer

Biogas. Förnybar biogas. ett klimatsmart alternativ

Biogas. Förnybar biogas. ett klimatsmart alternativ Biogas Förnybar biogas ett klimatsmart alternativ Biogas Koldioxidneutral och lokalt producerad Utsläppen av koldioxid måste begränsas. För många är det här den viktigaste frågan just nu för att stoppa

Läs mer

Differentialekvationer av första ordningen

Differentialekvationer av första ordningen Föreläsning 1 Differentialekvationer av första ordningen 1.1 Aktuella avsnitt i läroboken 1.1) Differential Equations and Mathematical Models. Speciellt exemplen 3, 4 och 5.) 1.2) Integrals as General

Läs mer

Simulering av Sveriges elförsörjning med Whats Best

Simulering av Sveriges elförsörjning med Whats Best Simulering av Sveriges elförsörjning med Whats Best Sammanfattning Projektet gick ut på att simulera elförsörjningen med programmet Whats Best för att sedan jämföra med resultaten från programmet Modest.

Läs mer

SKOGLIGA TILLÄMPNINGAR

SKOGLIGA TILLÄMPNINGAR STUDIEAVSNITT 3 SKOGLIGA TILLÄMPNINGAR I detta avsnitt ska vi titta på några av de skogliga tillämpningar på geometri som finns. SKOGSKARTAN EN MODELL AV VERKLIGHETEN Arbetar man i skogen klarar man sig

Läs mer

Energi VT-13. 1 av 6. Syfte: Kopplingar till läroplan. Lerum. Energi kan varken förstöras eller nyskapas, utan bara omvandlas mellan olika former.

Energi VT-13. 1 av 6. Syfte: Kopplingar till läroplan. Lerum. Energi kan varken förstöras eller nyskapas, utan bara omvandlas mellan olika former. Energi VT-13 Syfte: Energi kan varken förstöras eller nyskapas, utan bara omvandlas mellan olika former. Världens energibehov tillgodoses idag till stor del genom kol och olja, de så kallade fossila energikällorna.de

Läs mer

Tillväxt och klimatmål - ett räkneexempel

Tillväxt och klimatmål - ett räkneexempel Tillväxt och klimatmål - ett räkneexempel 2012-02-07 Detta dokument är ett räkneexempel som har tagits fram som stöd i argumentationen för en motion till Naturskyddsföreningens riksstämma år 2012. Motionen

Läs mer

Konsekvenser av höjda kvotnivåer i elcertfikatsystemet på elmarknaden

Konsekvenser av höjda kvotnivåer i elcertfikatsystemet på elmarknaden Konsekvenser av höjda kvotnivåer i elcertfikatsystemet på elmarknaden Harald Klomp Riksdagsseminarium om förnybar el och elmarknaden 14-05-07 14-05-08 1 Mikael Lundin, vd Nordpool, 3 februari 14: - Om

Läs mer

Optimering av olika avfallsanläggningar

Optimering av olika avfallsanläggningar Optimering av olika avfallsanläggningar ABBAS GANJEHI Handledare: LARS BÄCKSTRÖM Inledning Varje dag ökar befolkningen i världen och i vår lilla stad Umeå. Man förutsäg att vid år 2012 har Umeås folkmängd

Läs mer

Finaltävling i Stockholm den 22 november 2008

Finaltävling i Stockholm den 22 november 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Finaltävling i Stockholm den november 008 Förslag till lösningar Problem 1 En romb är inskriven i en konve fyrhörning Rombens sidor är parallella

Läs mer

2013-04-18 N2013/2075/E. Sveriges årsrapport enligt artikel 24.1 i Europaparlamentets och rådets direktiv 2012/27/EU om energieffektivitet

2013-04-18 N2013/2075/E. Sveriges årsrapport enligt artikel 24.1 i Europaparlamentets och rådets direktiv 2012/27/EU om energieffektivitet 2013-04-18 N2013/2075/E Sveriges årsrapport enligt artikel 24.1 i Europaparlamentets och rådets direktiv 2012/27/EU om energieffektivitet 1 Innehållsförteckning 1 Förutsättningar för medlemsstaternas årliga

Läs mer

Att beräkna t i l l v ä x t takter i Excel

Att beräkna t i l l v ä x t takter i Excel Att beräkna t i l l v ä x t takter i Excel Detta kapitel är en liten matematisk vägledning om att beräkna tillväxttakten i Excel. Här visas exempel på potenser och logaritmer och hur dessa funktioner beräknas

Läs mer

Miljöfysik. Föreläsning 4

Miljöfysik. Föreläsning 4 Miljöfysik Föreläsning 4 Fossilenergi Energianvändning i Sverige och omvärlden Förbränningsmotorn Miljöaspekter på fossila bränslen Att utnyttja solenergi Definitioner Instrålnings vinkelberoende Uppkomst

Läs mer

Fjärrvärmens konkurrenskraft i Umeå - Indata, förutsättningar och resultat 2013-06-05

Fjärrvärmens konkurrenskraft i Umeå - Indata, förutsättningar och resultat 2013-06-05 Fjärrvärmens konkurrenskraft i Umeå - Indata, förutsättningar och resultat 213-6-5 Inledning Syftet med detta projekt är att visa på konkurrenskraften för Umeå Energis produkt fjärrvärme. Konkurrenskraften

Läs mer

Kretslopp Follo Sammanfattning av Rapport daterad 2009-09-29 kompletterad med approximativa konsekvenser vid behandling av avfall från MOVAR

Kretslopp Follo Sammanfattning av Rapport daterad 2009-09-29 kompletterad med approximativa konsekvenser vid behandling av avfall från MOVAR 1 (9) Kretslopp Follo Sammanfattning av Rapport daterad 2009-09-29 kompletterad med approximativa konsekvenser vid behandling av avfall från MOVAR Torrötning. Datum som ovan Peter Svensson 2 (9) Innehållsförteckning

Läs mer

Bensin, etanol, biogas, RME eller diesel? - CO 2 -utsläpp, praktiska erfarenheter och driftsekonomi. Johan Malgeryd, Jordbruksverket

Bensin, etanol, biogas, RME eller diesel? - CO 2 -utsläpp, praktiska erfarenheter och driftsekonomi. Johan Malgeryd, Jordbruksverket Bensin, etanol, biogas, RME eller diesel? - CO 2 -utsläpp, praktiska erfarenheter och driftsekonomi Johan Malgeryd, Jordbruksverket Bakgrund Utsläppen från transportsektorn var 2005 ca 20 miljoner ton

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.

Läs mer

Resursanvändning - sida 1

Resursanvändning - sida 1 Beskrivning och beräkningsmetod av utfallsindikatorer som hör till hållbarhetsaspekten: RESURSANVÄNDNING Aspekt Resursanvändning Utfallsindikatorer Objektiv EL/Ru-I-O1 Andel markanvändningn för det kommunala

Läs mer

Energiläget i världen - en kvantitativ överblick

Energiläget i världen - en kvantitativ överblick Energiläget i världen - en kvantitativ överblick Föreläsning i Energisäkerhet Ångströmlaboratoriet, Uppsala, 2011-01-17 Mikael Höök, teknologie doktor Globala Energisystem, Uppsala Universitet Hur ser

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

FÖRDELAKTIGHETSJÄMFÖRELSER MELLAN INVESTERINGAR. Tero Tyni Sakkunnig (kommunalekonomi) 25.5.2007

FÖRDELAKTIGHETSJÄMFÖRELSER MELLAN INVESTERINGAR. Tero Tyni Sakkunnig (kommunalekonomi) 25.5.2007 FÖRDELAKTIGHETSJÄMFÖRELSER MELLAN INVESTERINGAR Tero Tyni Sakkunnig (kommunalekonomi) 25.5.2007 Vilka uppgifter behövs om investeringen? Investeringskostnaderna Den ekonomiska livslängden Underhållskostnaderna

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Facit/Lösningsförslag till Tentamen (TEN1) TSFS11 Energitekniska System. 23:e Aug, 2014, kl. 14.00-18.00

Facit/Lösningsförslag till Tentamen (TEN1) TSFS11 Energitekniska System. 23:e Aug, 2014, kl. 14.00-18.00 ISY/Fordonssystem Facit/Lösningsförslag till Tentamen (TEN1) TSFS11 Energitekniska System 23:e Aug, 2014, kl. 14.00-18.00 OBS: Endast vissa lösningar är kompletta Tillåtna hjälpmedel: TeFyMa, Beta Mathematics

Läs mer

Överföring av vindkraftgenererad el från norra till södra Sverige, Sveca- Söder december 2002

Överföring av vindkraftgenererad el från norra till södra Sverige, Sveca- Söder december 2002 Överföring av vindkraftgenererad el från norra till södra Sverige, Sveca- Söder december 22 Vid konferensen VIND-22 i Malmö 6-7 november, 22 presenterade Julija Sveca resultatet av en studie om konsekvenserna

Läs mer

+33,97% Framtidens bränslen. Vad är det som händer? - En framtidsspaning. Anders Kihl, Ragn-Sells AB. Kraftverkens framtida bränslen 22/3 2012

+33,97% Framtidens bränslen. Vad är det som händer? - En framtidsspaning. Anders Kihl, Ragn-Sells AB. Kraftverkens framtida bränslen 22/3 2012 Framtidens bränslen - En framtidsspaning Anders Kihl, Ragn-Sells AB Kraftverkens framtida bränslen 22/3 2012 Vad är det som händer? +33,97% 2 Prisutveckling BF95 & Biogas År BF95 (kr/l) Biogas (kr/m3)

Läs mer

Rapporteringsformulär Energistatistik

Rapporteringsformulär Energistatistik Rapporteringsformulär Energistatistik Del 1 Företagsinformation 1. namn: 2. a. Anläggning: b. Dossiernr: 3. Adress: 4. Kontaktperson energifrågor: 5. Telefonnr: E-post: 6. Rapporteringsår 7. Bruksarea

Läs mer

Beräkning av skydd mot brandspridning mellan byggnader

Beräkning av skydd mot brandspridning mellan byggnader Beräkning av skydd mot brandspridning mellan byggnader Beräkning av infallande strålning Förstudie Kalmar Norra Långgatan 1 Tel: 0480-100 92 Karlskrona Drottninggatan 54 Tel: 0455-107 92 Växjö Kronobergsgatan

Läs mer

Skatteverkets allmänna råd

Skatteverkets allmänna råd Skatteverkets allmänna råd ISSN 1652-1439 * Skatteverkets allmänna råd om riktvärdeangivelser och grunderna för taxeringen och värdesättningen av elproduktionsenheter vid 2013 års allmänna fastighetstaxering

Läs mer

Kostnader och intäkter för produktion och distribution av vatten samt behandling av avloppsvatten för kommuner och kommunala bolag

Kostnader och intäkter för produktion och distribution av vatten samt behandling av avloppsvatten för kommuner och kommunala bolag Kostnader och intäkter för produktion och distribution av vatten samt behandling av avloppsvatten för kommuner och kommunala bolag fördelade per vattendistrikt Producent Producer Förfrågningar Inquiries

Läs mer

OCH RÅDETS FÖRORDNING

OCH RÅDETS FÖRORDNING EUROPEISKA KOMMISSIONEN Bryssel den 18.11.2015 COM(2015) 496 final ANNEXES 1 to 2 BILAGOR till Förslag till EUROPAPARLAMENTETS OCH RÅDETS FÖRORDNING om europeisk statistik om naturgas- och elpriser och

Läs mer

LATHUND olika begrepp som förekommer i branschen

LATHUND olika begrepp som förekommer i branschen LATHUND olika begrepp som förekommer i branschen Januari 2010 Siffror 1 TWh = 1 000 GWh = 1 000 000 MWh = 1 000 000 000 kwh Sveriges totala elproduktionseffekt år 2009 = cirka 34 000 MW Sveriges sammanlagda

Läs mer

Kurvlängd och geometri på en sfärisk yta

Kurvlängd och geometri på en sfärisk yta 325 Kurvlängd och geometri på en sfärisk yta Peter Sjögren Göteborgs Universitet 1. Inledning. Geometrin på en sfärisk yta liknar planets geometri, med flera intressanta skillnader. Som vi skall se nedan,

Läs mer

hur bygger man energieffektiva hus? en studie av bygg- och energibranschen i samverkan

hur bygger man energieffektiva hus? en studie av bygg- och energibranschen i samverkan hur bygger man energieffektiva hus? en studie av bygg- och energibranschen i samverkan Miljöpåverkan berör oss alla Att minska energianvändning och utsläpp av växthusgaser är ett övergripande samhällsmål

Läs mer

Så är det! Arne Andersson

Så är det! Arne Andersson Så är det! Vår generation, i västvärlden, är den första någonsin som har kunskap om de stora risker för det mänskliga samhällets fortsatta utveckling på vår blå planeten som våra produktions och konsumtionsvanor

Läs mer

Strukturell utveckling av arbetskostnaderna

Strukturell utveckling av arbetskostnaderna Lönebildningsrapporten 2016 31 FÖRDJUPNING Strukturell utveckling av arbetskostnaderna Riksbankens inflationsmål är det nominella ankaret i ekonomin. Det relevanta priset för näringslivets förmåga att

Läs mer

Ekonomisk redovisning inom VA utveckling av investeringsredovisning och ekonomisk uppföljning

Ekonomisk redovisning inom VA utveckling av investeringsredovisning och ekonomisk uppföljning Ekonomisk redovisning inom VA utveckling av investeringsredovisning och ekonomisk uppföljning Mattias Haraldsson, Företagsekonomiska institutionen, Ekonomihögskolan i Lund 2014-05-14 1 Agenda Varför lägga

Läs mer

Approximation av funktioner

Approximation av funktioner Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner

Läs mer

Försämrad miljö efter stängning av Barsebäck

Försämrad miljö efter stängning av Barsebäck Försämrad miljö efter stängning av Barsebäck Detta är Faktablad nr 25 från 2000. Den kan även hämtas ned som pdf (0,18 MB) En miljökonsekvensbeskrivning av barsebäcksstängningen har upprepade gånger efterlysts

Läs mer

Torrötning. Datum som ovan. Peter Svensson

Torrötning. Datum som ovan. Peter Svensson 1 (12) Kretslopp Follo Sammanfattning av Rapport daterad 2009-09-29 kompletterad med approximativa konsekvenser vid behandling av avfall från ytterligare 1 alt 2 organisationer/kommuner Torrötning. Datum

Läs mer

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare

Läs mer

TIAP-metoden för statusbestäming

TIAP-metoden för statusbestäming TIAP-metoden för statusbestäming Höjer lönsamheten på din anläggning Anna Pernestål, anna.pernestal@tiap.se, Life Cycle Profit och TIAP-metoden TIAP-metoden bygger på helhetssyn av drift och underhåll

Läs mer

Definition av energiprestanda för nära-nollenergibyggnader systemgränser

Definition av energiprestanda för nära-nollenergibyggnader systemgränser Definition av energiprestanda för nära-nollenergibyggnader systemgränser 1 Detta dokument är avsett som ett underlag för diskussioner om systemgränser som kan ligga till grund för formulering av energikrav

Läs mer

Solelsinvestering i Ludvika kommun. Underlag för motion

Solelsinvestering i Ludvika kommun. Underlag för motion Solelsinvestering i Ludvika kommun Underlag för motion Vänsterpartiet i Ludvika 2013 Vänsterpartiet vill att Ludvika kommun tar en aktiv roll i omställningen av samhällets energiproduktion. Genom att använda

Läs mer

1 De fyra fundamentala underrummen till en matris

1 De fyra fundamentala underrummen till en matris Krister Svanberg, mars 2012 1 De fyra fundamentala underrummen till en matris 1.1 Definition av underrum En given delmängd M av IR n säges vara ett underrum i IR n om följande gäller: För varje v 1 M,

Läs mer

Dekomponering av löneskillnader

Dekomponering av löneskillnader Lönebildningsrapporten 2013 133 FÖRDJUPNING Dekomponering av löneskillnader Den här fördjupningen ger en detaljerad beskrivning av dekomponeringen av skillnader i genomsnittlig lön. Först beskrivs metoden

Läs mer

1 Kostnader till följd av verkningsgradsförluster

1 Kostnader till följd av verkningsgradsförluster SvK1000, v3.3, 2014-03-26 Svenska kraftnät balansansvarsavtal@svk.se 2015-09-16 2015/1058 EGELDOKUMENT egler för prisberäkning av budpris för FC-N och FC-D Detta regeldokument beskriver metoder för att

Läs mer

KÖPGUIDE. LED Dimning. Färgtemperatur

KÖPGUIDE. LED Dimning. Färgtemperatur LED Dimning Viktigt är att observera att LED belysningsprodukter som är dimbara skall ha en specifik produktmärkning. Det är dock ingen garanti att dimbara LED-produkter fungerar felfritt med olika dimrar

Läs mer

FöretagarFörbundet har fått ovanstående ärende på remiss och inkommer med följande synpunkter:

FöretagarFörbundet har fått ovanstående ärende på remiss och inkommer med följande synpunkter: Remissvar FöretagarFörbundet 2009-08-20 Effektivare skatter på klimat- och energiområdet FöretagarFörbundet har fått ovanstående ärende på remiss och inkommer med följande synpunkter: - FöretagarFörbundet

Läs mer

Vindkraft. Sara Fogelström 2013-10-25

Vindkraft. Sara Fogelström 2013-10-25 Vindkraft Sara Fogelström 2013-10-25 Historik Vindkraft i världen (MW) I slutet på 2012 var totalt cirka 280 000 MW installerat världen över. Källa: EWEA och GWEC Vindkraft i världen Totalt installerad

Läs mer

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor. Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att

Läs mer

Energibalanser A. Allmänna uppgifter EN0201

Energibalanser A. Allmänna uppgifter EN0201 Energibalanser 1998 EN0201 A. Allmänna uppgifter A.1 Ämnesområde Energi A.2 Statistikområde Energibalanser A.3 Statistikprodukten ingår i Sveriges officiella statistik A.4 Beställare Statens Energimyndighet

Läs mer

NyföretagarCentrum STRÄNGNÄS. Utförd av IUC Sverige AB 2010

NyföretagarCentrum STRÄNGNÄS. Utförd av IUC Sverige AB 2010 IUC Sverige AB RAPPORT SEK! Samhällsekonomisk kalkyl NyföretagarCentrum STRÄNGNÄS Utförd av IUC Sverige AB 2010 RAPPORT 2010-06-30 Samhällsekonomisk Kalkyl NyföretagarCentrum Strängnäs Sammanfattning Våra

Läs mer

Energi. Den årliga energistatistiken publiceras i statistiska meddelanden, serie EN 11 och på SCB:s webbplats, www.scb.se.

Energi. Den årliga energistatistiken publiceras i statistiska meddelanden, serie EN 11 och på SCB:s webbplats, www.scb.se. 12 Statens energimyndighet har ansvaret för den officiella statistiken inom energiområdet men har uppdragit åt Statistiska centralbyrån att producera statistiken. Tabellerna i detta kapitel är hämtade

Läs mer

Tentamen 11 juni 2015, 8:00 12:00, Q21

Tentamen 11 juni 2015, 8:00 12:00, Q21 Avdelningen för elektriska energisystem EG2205 DRIFT OCH PLANERING AV ELPRODUKTION Vårterminen 205 Tentamen juni 205, 8:00 2:00, Q2 Instruktioner Skriv alla svar på det bifogade svarsbladet. Det är valfritt

Läs mer

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p)

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p) Avd. Matematisk statistik TENTAMEN I SF190 (f d 5B2501 ) SANNOLIKHETSLÄRA OCH STATISTIK FÖR - ÅRIG MEDIA MÅNDAGEN DEN 1 AUGUSTI 2012 KL 08.00 1.00. Examinator: Gunnar Englund, tel. 07 21 7 45 Tillåtna

Läs mer

PM om hur växthusgasberäkning och uppdelning på partier vid samrötning

PM om hur växthusgasberäkning och uppdelning på partier vid samrötning 2011-12-12 1 (5) Analysavdelningen Enheten för hållbara bränslen Linus Hagberg 016-544 20 42 linus.hagberg@energimyndigheten.se PM om hur växthusgasberäkning och uppdelning på partier vid samrötning Inledning

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Fysik: Energikällor och kraftverk

Fysik: Energikällor och kraftverk Fysik: Energikällor och kraftverk Under en tid framöver kommer vi att arbeta med fysik och då området Energi. Jag kommer inleda med en presentation och sedan kommer ni att få arbeta i grupper med olika

Läs mer

Arbets- och näringsministeriets förordning

Arbets- och näringsministeriets förordning UTKAST 7.11.2014 Arbets- och näringsministeriets förordning om rapportering om objeksbesiktningar Utfärdad i Helsingfors den 2014 I enlighet med arbets- och näringsministeriets beslut föreskrivs med stöd

Läs mer

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1. Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är

Läs mer

Generell tillämpning av mät- och ersättningsregler MER

Generell tillämpning av mät- och ersättningsregler MER Generell tillämpning av mät- och ersättningsregler MER ALLMÄNT Mät- och ersättningsregler MER är anpassade till AMA och är avsedda att användas vid förteckning av mängder och vid mätning och ersättning

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

Uppföljning av Energiplan 2008 Nulägesbeskrivning

Uppföljning av Energiplan 2008 Nulägesbeskrivning Nulägesbeskrivning Lerum 2013-04-10 Innehåll Energiplan 2008 uppföljning 4 Sammanfattning 6 Uppföljning Mål 7 Minskade fossila koldioxidutsläpp... 7 Mål: År 2020 har de fossila koldioxidutsläppen minskat

Läs mer

Till vem, till vad och hur mycket? Olof Samuelsson Industriell Elektroteknik & Automation

Till vem, till vad och hur mycket? Olof Samuelsson Industriell Elektroteknik & Automation Elenergi Till vem, till vad och hur mycket? Olof Samuelsson Industriell Elektroteknik & Automation Översikt Små och stora strömavbrott Trender inom elanvändning Statistik Sverige Energiläget g 2007 Världen

Läs mer

SVANTE JANSON OCH SVANTE LINUSSON

SVANTE JANSON OCH SVANTE LINUSSON EXEMPEL PÅ BERÄKNINGAR AV SANNOLIKHETER FÖR ATT FELAKTIGT HANTERADE RÖSTER PÅVERKAR VALUTGÅNGEN SVANTE JANSON OCH SVANTE LINUSSON 1. Inledning Vi skall här ge exempel på och försöka förklara matematiken

Läs mer

Vindkraft - ekonomi. Sara Fogelström 2013-03-26

Vindkraft - ekonomi. Sara Fogelström 2013-03-26 Vindkraft - ekonomi Sara Fogelström 2013-03-26 Ekonomi Intäkter: Försäljning av el på Nord Pool Försäljning av elcertifikat Elpris Spotpris Fleråriga avtal 40 öre/kwh Elcertifikat Elcertifikatsystemet

Läs mer

Linjära ekvationer med tillämpningar

Linjära ekvationer med tillämpningar UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-17 SÄL 1-10p Linjära ekvationer med tillämpningar Avsnitt 2.1 Linjära ekvationer i en variabel

Läs mer

Basindustrin finns i hela landet

Basindustrin finns i hela landet Basindustrin finns i hela landet Viktig på orter med svag arbetsmarknad Efterfrågan på produkterna ökar varje år 375 000 direkt och indirekt sysselsatta 27 procent av varuexporten 1/3 del av industrins

Läs mer

Finansieringskalkyl, fast förbindelse Fårö

Finansieringskalkyl, fast förbindelse Fårö PM Finansieringskalkyl, fast förbindelse Fårö 1 Inledning 1.1 Bakgrund En förstudie för en fast förbindelse mellan Fårö och Fårösund har tagits fram av Atkins under 212/213. En fast förbindelse med bro

Läs mer

Kort om mätosäkerhet

Kort om mätosäkerhet Kort om mätosäkerhet Henrik Åkerstedt 14 oktober 2014 Introduktion När man gör en mätning, oavsett hur noggrann man är, så får man inte exakt rätt värde. Alla mätningar har en viss osäkerhet. Detta kan

Läs mer

Datum 2013-05-07. Hemställan från Stiftelsen Jälla Egendom om investeringsmedel för uppförande av en biogasanläggning

Datum 2013-05-07. Hemställan från Stiftelsen Jälla Egendom om investeringsmedel för uppförande av en biogasanläggning KS 8 22 MAJ 2013 KOMMUNLEDNINGSKONTORET Handläggare Malmberg Jan Sigurdson Björn Datum 2013-05-07 Diarienummer KSN-2012-0845 Kommunstyrelsen Hemställan från Stiftelsen Jälla Egendom om investeringsmedel

Läs mer

Ekonomi i balans. Relationstal vid bedömning av kommunal ekonomi. Ålands kommunförbund

Ekonomi i balans. Relationstal vid bedömning av kommunal ekonomi. Ålands kommunförbund Ekonomi i balans Relationstal vid bedömning av kommunal ekonomi Ålands kommunförbund FÖRORD Syftet med detta dokument är att föra fram användbara nyckeltal för att underlätta bedömningen av huruvida en

Läs mer

Energigaserna i Sverige. Anders Mathiasson, Energigas Sverige

Energigaserna i Sverige. Anders Mathiasson, Energigas Sverige Energigaserna i Sverige Anders Mathiasson, Energigas Sverige Mer energigas till industrin Energigaserna ökar konkurrenskraften TWh 15 12 9 6 3 0 Gasol Naturgas Olja Energigas Olja Energigas År 2010 År

Läs mer

ARBETSGIVANDE GASCYKLER

ARBETSGIVANDE GASCYKLER ARBETSGIVANDE GASCYKLER Verkliga processer är oftast mycket komplicerade till sina detaljer; exakt analys omöjlig. Om processen idealiseras som internt reversibel fås en ideal process vars termiska verkningsgrad

Läs mer

1(7) Bara naturlig försurning. Bilaga 3. Konsekvensanalys av förslag till nedlagt delmål för utsläpp av svaveldioxid

1(7) Bara naturlig försurning. Bilaga 3. Konsekvensanalys av förslag till nedlagt delmål för utsläpp av svaveldioxid 1(7) Bara naturlig försurning Bilaga 3 Konsekvensanalys av förslag till nedlagt delmål för utsläpp av svaveldioxid 2(7) 1. Problemanalys De samlade utsläppen av svavel (och kväveoxider) bidrar till det

Läs mer

Mindre och bättre energi i svenska växthus

Mindre och bättre energi i svenska växthus kwh/kvm På tal om jordbruk fördjupning om aktuella frågor 2013-02-11 Mindre och bättre energi i svenska växthus De svenska växthusen använder mindre energi per odlad yta nu än för elva år sedan. De håller

Läs mer

Farväl till kärnkraften?

Farväl till kärnkraften? Farväl till kärnkraften? En analys av Sveriges framtida elförsörjning Per Kågeson Svensk Energi 2014-10-01 Kärnkraften i världen 2014 Antal reaktorer USA 104 Ryssland 23 Kanada 19 Kina 20 EU 132 Indien

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

Tomträttsindexet i KPI: förslag om ny beräkningsmetod

Tomträttsindexet i KPI: förslag om ny beräkningsmetod STATISTISKA CENTRALBYRÅN PM 1(7) Tomträttsindexet i KPI: förslag om ny beräkningsmetod Enhetens förslag. Enheten för prisstatistik föreslår att en ny beräkningsmetod införs för tomträttsindexet så snart

Läs mer