En studie av fel på tentamen i 5B1120 Introduktionskurs i matematik, 1 poäng 24/3 2005

Storlek: px
Starta visningen från sidan:

Download "En studie av fel på tentamen i 5B1120 Introduktionskurs i matematik, 1 poäng 24/3 2005"

Transkript

1 En studie v fel på tentmen i 5B110 Introduktionskurs i mtemtik, 1 poäng 4/ 005 Mikel Cronhjort, KTH Mtemtik mikelc@mth.kth.se Inledning Denn studie utgör en del v projektet Gymnsieskolns mål och mbitioner och högskoln förkunskpskrv och förväntningr. Syftet med projektet är tt krtlägg studenterns kunskpsnivå när de börjr sin högskolestudier, och jämför denn nivå med vd KTH i de först mtemtikkursern förutsätter tt studentern kn. I denn studie vill vi undersök kunskpsnivån genom tt studer vilk fel en grupp studenter på Öppen Ingång hr begått på tentmen i introduktionskursen i mtemtik. I projektet ingår även ndr studier v fel i studenters lösningr, t.ex. det rbete som studentern Emm Enström och Sr Isksson hr gjort om fel på tentmen i kursen Mtemtik 1. Ett nturligt sätt för en lärre tt utvärder hur studentern hr mottgit undervisningen i en kurs är tt studer vilk fel de gör på tentmen. Oft gör mn dett helt informellt i smbnd med tt mn rättr tentmen. Om mn försöker gör dett mer formellt, kn mn studer lösningsfrekvenser för de olik uppgiftern. En sådn studie kn vis hur olik kursvsnitt hr fungert. Fördelr med en sådn studie är tt resulttet blir objektivt och kvntittivt. En nckdel är tt lösningsfrekvensern inte kn vis vrför studentern hr hft svårigheter med uppgiftern. Mn vet efter en sådn studie vd som skll funger bättre, men inte hur mn skll uppnå tt det fungerr bättre. För tt få närmre informtion om vrför studentern inte hr lyckts lös uppgiftern, kn mn försök vgör vd ders fel beror på. Dett är betydligt svårre, eftersom studenterns fel i regel kn tolks på fler olik sätt. Den som gör studien måste oft giss hur studentern hr resonert. Resulttet blir subjektivt, eftersom det är en tolkning. Ett lterntiv för tt få ett mer detljert och nynsert resultt kn vr tt intervju studentern, men dett kräver en betydligt större rbetsinsts, och resulttet är fortfrnde en tolkning. Denn studie omfttr dels en kvntittiv nlys bserd på lösningsfrekvenser, dels en kvlittiv nlys med fokus på vrför studentern inte hr klrt v tt lös uppgiftern. Dess resultt bygger inte på någr intervjuer, utn br på studenterns inlämnde skriftlig lösningr. I den kvlittiv nlysen är målet tt så nog som möjligt beskriv de fel som studentern hr gjort, smt reflekter över vrifrån de observerde bristern härstmmr. Mteril Denn studie omfttr de fel som studentern på Öppen Ingång hr gjort på tentmen i kursen 5B110 Introduktionskurs i mtemtik, 1 poäng. Tentmen gvs i

2 två versioner, och denn studie omfttr endst version A. Det ger ett mteril som omfttr 5 studenters lösningr till de 9 uppgifter som fnns på tentmen. Uppgiftern på tentmen vr: 1. Förenkl följnde uttryck så långt som möjligt (x + ) - x.. Kvdrtkompletter uttrycket x + 6x Lös ekvtionen x + 4x 7 = 0. 5 / 4. Förenkl uttrycket. 5. Lös ekvtionen 5 = x. e t 6. Lös ut t ur formeln T =. π 7. Vd är sin v då cos v = -1/, 0 < v < π? 8. Lös ekvtionen cos x = cos x. 9. Rit kurvn (x + ) + y = 9. Skrivtiden vr 60 minuter, och ing hjälpmedel vr tillåtn. Mn kunde få 1p per uppgift och för godkänt krävdes 6p. Kvntittiv nlys Lösningsfrekvensern för de respektive uppgiftern vr: Uppgift nummer Antl felktig lösn Lösningsfrekv (%) Mn kn noter tt nästn ll klrde tt lös den först uppgiften. Uppgiftern 6 löstes v cirk procent v studentern. Uppgiftern 7 och 8 gick sämst, och löstes v mindre än hälften v studentern. Dess uppgifter hndlr om trigonometri. Uppgift 9, som hndlr om tt rit en cirkel utifrån en given ekvtion, innebr också problem för mång studenter. Den löstes v cirk två tredjedelr v studentern. Den genomsnittlig lösningsfrekvensen är 69%. Kvlittiv nlys För tt identifier viktig fel som begås v mång studenter kn det vr en hjälp tt ktegoriser felen. Fel är i llmänhet svår tt ktegoriser. För det först måste mn lltid gör en subjektiv tolkning v studentens lösning. För det ndr går fel tt beskriv på mång olik sätt, och ur olik synvinklr. En metod för ktegorisering är tt utgå från de uttolkde kompetenser som Plm m.fl. definierr [1]. Det rbete som CL-studentern Emm Enström och Sr Isksson hr gjort inom rmen för dett projekt utgår från dess kompetenser. En nnn metod är tt i likhet med Ljung m.fl. försök ktegoriser felen oberoende v

3 vilken kompetens de visr brister inom []. Dett tillväggångssätt hr nvänts i denn studie. Ktegoriseringen grunds enbrt på likheter melln beskrivningrn v felen. Efter ktegoriseringen nlysers vilk brister felen vslöjr inom de respektive kompetensern, eller i mtemtisk ämnesområden, eller om mn kn dr någr ndr slutstser v felen. Det är viktigt tt komm ihåg tt ktegoriseringen inte är ett mål i sig, utn t hjälpmedel för tt kunn hnter en stor mängd dt. Eftersom ktegoriseringen är subjektiv, så kn studier gjord v olik personer skilj sig mycket på den här punkten. Det viktig är emellertid nlysen v felen och de slutstser mn drr. Dess kn bli likrtde trots olik metoder för ktegorisering. Iblnd kn mn inte uttl sig om vrför en student inte hr klrt v tt lös en uppgift, exempelvis då studenten inte hr skrivit någonting. Ur den kvlittiv nlysens synvinkel är sådn fel ointressnt, och exkluders därför här. Vi fokuserr istället på sådn fel där det som studenten hr skrivit på något sätt belyser vrför studenten hr misslyckts med tt lös uppgiften. I något fll innehåller en lösning fler olik fel som kn beskrivs. Då inkluders ll felen i nlysen. Mterilet omfttr 5 tentmin à 9 uppgifter, vilket ger ett totlt ntl uppgifter som är 468. Av dess är 14 uppgifter felktigt löst. Blnd dess hr 94 fel kunnt beskrivs. Beskrivningen v fel gör ing nspråk på tt bli uttömmnde, och ll fel kn inte omnämns här. Fokus ligger på sådn fel som ntingen hr gjorts v ett ntl studenter, eller på enstk fel som är viktig för tolkningen v hur en student hr resonert. Blnd de beskrivn felen hr följnde ktegorier definierts: Trigonometri Potenser Logritmer Felktig, omotiverd formel Bristnde räknefärdighet Hntering v ekvtioner eller uttryck Observer tt dess ktegorier är v olik krktär. De tre först utgör ämnesområden, medn de tre sist är relterde till studentens resonemng och rbetssätt. Ett fel kn pss in under fler olik ktegorier. Exempelvis kn ett visst fel omftt både trigonometri och en felktig, omotiverd formel. I sådn fll hr felet kommenterts under ll de ktegorier som felet pssr in under. I dett smmnhng är huvudsyftet tt beskriv felen kvlittivt, snrre än tt kvntiser hur vnligt ett särskilt fel är, även om en del noteringr v kvntittiv krktär förekommer. Trigonometri Uppgiftern om trigonometri vr de som hde lägst lösningsfrekvens. Av de beskrivn felen hr sorterts under ktegorin trigonometri, dvs. cirk en tredjedel. Blnd dess kn mn urskilj följnde typer v fel: En vnlig feltyp är tt studenten missr tt ekvtioner v typen cos x = k hr två lösningr

4 per vrv. Denn typ v fel förekommer 10 gånger. Felet visr sig i lösningrn till uppgift 7, men även i uppgift 8, där mång studenter hävdr tt ekvtionen cos x = cos x medför tt x = x, utn tt tänk på periodiciteten eller tt det finns lösningr för -x = x + πn. En nnn frmträdnde feltyp v llvrlig rt som gäller trigonometri är tt studenten inte skiljer på vinklr och cosinus v vinklr, t.ex. på cos x och x. Studenten kn skriv t.ex. cos x = 60º=1/. Fel där cosinus v en vinkel sätts lik med en vinkel förekommer i 7 fll. Fel v denn typ skulle också kunn beskrivs som bristnde hntering v ekvtioner och uttryck. En del studenter påstår tt sinus eller cosinus i något fll hr ett värde som är större än 1. Dett fel förekommer 4 gånger. Potenser 16 v de beskrivn felen hndlr om potenser och potenslgr. Ett vnligt fel, som förekommer 9 gånger, är tt studentern inte vet hur mn skll skriv som en potens. Följnde vrinter förekommer i studenterns lösningr: = 1/ 5/ = 5 = / = (-1) = = = ( ) 1/ Det är uppenbrt tt studentern inte är vn tt omvndl ett rotuttryck till ett potensuttryck. Två studenter missr tt kvdrten v ett negtivt tl blir positiv. Logritmer 1 v de beskrivn felen hndlr om logritmer. Felen vittnr tydligt om tt mång studenter inte behärskr logritmlgrn. Dess fel skulle också i stor utsträckning kunn beskrivs som nvändnde v felktig, omotiverde formler. Jg ger här någr exempel på påståenden som studentern hr skrivit: ln 5 / ln = ln (5-) ln 5 / ln = ln 5 ln ln (Tπ 1/ ) = 1 ln (Tπ) ln ( / b) = ln / ln b ln e = e lnt ln π = Tπ

5 Felktig formel Ett mycket stort ntl fel beror på tt studentern nvänder felktig formler. Dess formler kn gäll trigonometrisk reltioner, lösningrn till en ndrgrdsekvtion, potens- eller logritmlgr, Pythgors sts m.m. Studentern prövr inte om en formel som de tror sig komm ihåg kn vr giltig. Eftersom gränsdrgningen för denn felktegori är svår tt gör, är det meningslöst tt försök nge hur mång gånger dett fel hr förekommit. Anmärkning: Denn felktegori hänger ihop med en kulturkrock melln gymnsiet och högskoln. På gymnsiet är studentern vn tt nvänd formelsmling. Därför är de inte vn tt behöv härled eller komm ihåg formler, eller kunn vgör om en formel kn vr riktig. Bristnde räknefärdighet Ett stort ntl fel beror på ren räknefel. Hit räknr vi t.ex. de fyr räknesätten, felktig kvdreringr, tppde minustecken, m.m. Det mest förvånnde är dock ett ntl fll där studentern inte inser tt eller hur de kn förenkl elementär uttryck: Någr exempel där en kvot i kvdrt förenkls genom tt utför divisionen innn kvdreringen: Exempel 1: Studenten hr kommit frm till uttrycket 6 7, och beräknr dett till 6 / 14 /. Om studenten istället hde utfört divisionen först, så skulle det knske h blivit rätt: 6 7 = 7 = 9 7 = 8 / 8 Exempel : Studenten vill förenkl uttrycket och kommer frm till där det tr stopp. Även här verkr det rimligt tt studenten hde kommit längre genom tt börj med 8 / 4 divisionen: = =. Exempel : Studenten hr misslyckts med smm uppgift genom tt skriv 8 / 8 / =. Det blir enklre om mn dividerr först. Exempel 4: Studenten beräknr 4 till 8 / 4. Om studenten hde dividert före

6 4 kvdreringen hde det ntgligen gått bättre: = = 4. Någr exempel med potenser, exponentilfunktioner och kvdrtrötter: Exempel 5: Studenten skriver tt e -t = t e -. Två studenter gör dett fel. Exempel 6: Studenten skriver tt x = x. Är dett br slrv, eller är det okunskp? Hur snbbt kn mn glömm vd mn håller på med? Exempel 7: Två studenter påstår tt 11 =. Hntering v ekvtioner eller uttryck Ett frmträdnde fel är tt studenter blndr ihop förenkling v uttryck och lösning v en ekvtion. Studentern verkr inte h klrt för sig vd de håller på med. Exempel: En student skll lös en ekvtion. Studenten förenklr vänsterledet, men nvänder ldrig högerledet. Som svr presenters det förenklde vänsterledet. En nnn student skll genomför en kvdrtkomplettering. Studenten bildr en ekvtion v uttrycket genom tt sätt det lik med noll, och löser sedn ekvtionen. En student skll förenkl ett uttryck, och hr kommit frm till 6x+9. För tt förenkl vidre delr studenten med, och skriver lltså 6x+9 = x+. En nnn student förenklr smm uttryck genom tt sätt det lik med noll, och bestämmer sedn x till -/. Även ett v felen som finns beskrivet i vsnittet om trigonometri kn tolks som tt studenten inte är klr över skillnden melln ekvtionslösning och förenkling. Studenten skrev cos(x) = 60º = 1/. Diskussion och slutstser Mterilet omfttr 5 tentmin. Det betyder tt om fem studenter begår ett särskilt fel så motsvrr det omkring 10 % v studentern som ingår i studien. Eftersom mterilet som studien bserr sig på är gnsk litet och br kommer från ett studieprogrm på KTH, så kn mn inte dr någon säker slutsts om hur stor ndel v studentern på KTH som skulle gör dett fel. Andelen vrierr säkert från progrm till progrm. Det progrm som studien bserr sig på är Öppen ingång, vilket innebär tt studentern senre väljer vilket progrm de vill gå. Mn hittr lltså dess studenter på ll progrm senre, men mn kn ändå inte hävd tt de skulle representer ll progrm, eftersom det inte finns någon nledning tt tro tt t.ex. de studenter från Öppen ingång som senre väljer progrmmet Elektroteknik skulle representer den genomsnittlig studenten på Elektroteknik. Men syftet med denn studie är inte tt kunn fstslå hur mång som gör viss fel, utn tt identifier viktig fel som förekommer. Om fem v de 5 studentern som studien bserr sig på hr gjort ett fel så är det tillräckligt mång för tt mn kn säg

7 tt det är ett fel som mång gör. Dessutom måste mn tänk på tt vi inte hr kunnt beskriv ll fel. De fel som vi inte hr kunnt beskriv döljer snnolikt ytterligre exempel på liknnde brister. De svgste studentern knske inte lämnr in något lösningsförslg lls. Trigonometri är ett område som mång studenter hr rbett med på gymnsiet, men inte tillräckligt mycket för tt behärsk det väl. Mång studenter uttrycker i undervisningssitutioner tt trigonometrisk ekvtioner är svår. Dett vspegls tydligt v lösningsfrekvensern på uppgiftern om trigonometri. Det är uppenbrt tt mång hr problem på dett område, och den kvlittiv nlysen visr tt mång studenter sknr även de mest grunläggnde kunskpern om de trigonometrisk funktionern. En slutsts kn vr tt mn på KTH måste ägn mer tid åt de trigonometrisk funktionern i mtemtikundervisningen. Potenser och logritmer verkr också vr områden som studentern inte behärskr så väl som mn på KTH önskr. Mn kn tyck tt det som studentern fller på är ett gnsk isolert fel, när de misslycks tt omvndl en kvdrtrot till en potens. Men den stor mängd vrinter som finns föreslgn i studenterns lösningr visr en stor generell osäkerhet om hur mn skll hnter potenser, eller knske formler i störst llmänhet. Dett hänger smmn med den ktegori som klls nvändnde v felktig, omotiverde formler. Om studentern vore mer vn vid tt vgör om en formel som de tror sig minns kn vr riktig, skulle de knske kunn klr v både potenser och logritmer bättre. En slutsts kn vr tt mn på ett tidigt stdium i mtemtikundervisningen bör prt om formler. Studentern kn behöv reflekter över vd det innebär tt en formel är snn, giltig, eller flsk. Mn kn också t upp vd det innebär tt bevis eller flsifier en formel. Det vore nog också br tt i en inlednde kurs behndl både potenser och logritmer från börjn. De fel som här beskrivs som bristnde räknefärdighet eller hntering v ekvtioner och uttryck verkr vr llvrlig. De visr på grundläggnde brister i mång studenters begrepps- och kommuniktionskompetens, definierde enligt [1]. Dess brister hr i mång fll snnolikt sitt ursprung i missförstånd eller luckor redn under grundskoletiden. Mång studenter verkr osäkr över likhetstecknets funktion, och över ekvtionslösning i llmänhet. Det är mycket svårt tt uppsktt hur mång studenter det kn hndl om, men en gissning kn vr melln 10 och 0 procent v studentern. En slutsts kn vr tt studentern behöver nvänd mtemtik mer, och tt presenttionen v mtemtisk resonemng måste lyfts frm mer i undervisningen. Referenser 1. Plm, T., Bergqvist, E., Eriksson, I., Hellström, T. och Häggström, C-M.: En tolkning v målen med den svensk gymnsiemtemtiken och tolkningens konsekvenser för uppgiftskonstruktion. Umeå Universitet, Pm nr 199 (004).. Ljung, B-O., Oscrsson, E. och Rosén, B.: Översiktsdignos i mtemtik inför skolstrten på treårig gymnsielinjer. Rpport från PRIM-gruppen nr 7, LHS, Stockholm (1991).

8

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn

Läs mer

Sidor i boken

Sidor i boken Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00 Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:

Läs mer

Vilken rät linje passar bäst till givna datapunkter?

Vilken rät linje passar bäst till givna datapunkter? Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.

Läs mer

Preliminär sammanfattning av erfarenheter från projektet Gymnasieskolans mål och högskolans förväntningar i matematik

Preliminär sammanfattning av erfarenheter från projektet Gymnasieskolans mål och högskolans förväntningar i matematik Preliminär smmnfttning v erfrenheter från projektet Gymnsieskolns mål och högskolns förväntningr i mtemtik Underlg för diskussioner vid KTH Mtemtik om plnering inför HT2005. Mikel Cronhjort, Lrs Filipsson,

Läs mer

Lösningar och kommentarer till uppgifter i 1.2

Lösningar och kommentarer till uppgifter i 1.2 Lösningr och kommentrer till uppgifter i.2 202 d) t t 2 25 t (t 5)(t + 5) Med hjälp v konjugtregeln kn vi fktoriser nämnren. Eftersom nämnren inte får bli noll är ej t 5 eller t 5 tillåtn. 206 Först presenterr

Läs mer

Rationella uttryck. Förlängning och förkortning

Rationella uttryck. Förlängning och förkortning Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

Kan det vara möjligt att med endast

Kan det vara möjligt att med endast ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp

Läs mer

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det

Läs mer

MATEMATISK STATISTIK I FORTSÄTTNINGSKURS. Tentamen måndagen den 17 oktober 2016 kl 8 12

MATEMATISK STATISTIK I FORTSÄTTNINGSKURS. Tentamen måndagen den 17 oktober 2016 kl 8 12 Kurskod: TAMS65 Provkod: TEN MATEMATISK STATISTIK I FORTSÄTTNINGSKURS Tentmen måndgen den 7 oktober 206 kl 8 2 Hjälpmedel: Formelsmling i mtemtisk sttistik utgiven v mtemtisk institutionen och/eller formelsmling

Läs mer

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba. Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.

Läs mer

Generaliserade integraler

Generaliserade integraler Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017 KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Integraler och statistik

Integraler och statistik Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8 Kurs plnering.se NpMC vt011 1(9) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 011 Krvgränser 4 Del I, 8 uppgifter utn miniräknre 5 Del II, 9 uppgifter med miniräknre 8 Förslg på lösningr

Läs mer

Gör slag i saken! Frank Bach

Gör slag i saken! Frank Bach Gör slg i sken! Frnk ch På kppseglingsbnn ser mn tävlnde båtr stgvänd lite då och då under kryssrn. En del v båtrn seglr för styrbords hlsr och ndr för bbords. Mn kn undr vem som gör rätt och hur mn kn

Läs mer

temaunga.se EUROPEISKA UNIONEN Europeiska socialfonden

temaunga.se EUROPEISKA UNIONEN Europeiska socialfonden temung.se T E M AG RU P P E N U N G A I A R B E T S L I V E T n n u k k s g n u r All e d u t s r e l l e b job EUROPEISKA UNIONEN Europeisk socilfonden »GÅ UT GYMNASIET«Mång ung upplever stress och tjt

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE. GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

Finaltävling den 20 november 2010

Finaltävling den 20 november 2010 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010:

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010: Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning 6-7, 00: Genomgånget på föreläsningrn 6-0. Här gick vi inte igenom något nytt mteril, utn räknde igenom Blndde

Läs mer

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i

Läs mer

13 Generaliserade dubbelintegraler

13 Generaliserade dubbelintegraler Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll

Läs mer

Induktion LCB 2000/2001

Induktion LCB 2000/2001 Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n

Läs mer

MA002X Bastermin - matematik VT16

MA002X Bastermin - matematik VT16 MA00X Bstermin - mtemtik VT6 Något om trigonometri Mikel Hindgren februri 06 Cirkelns ekvtion Exempel Beräkn vståndet melln punktern (4, 6) och (, ). 7 6 5 4 d (, ) 4 = (4, 6) 6 = 4 4 5 6 Pythgors sts:

Läs mer

RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell

Läs mer

SPEL OM PENGAR FÖR - EN FRÅGA FÖR SKOLAN? VERKTYG, ÖVNINGAR OCH KUNSKAPSBANK FÖR ARBETE MED SPEL OM PENGAR I SKOLAN

SPEL OM PENGAR FÖR - EN FRÅGA FÖR SKOLAN? VERKTYG, ÖVNINGAR OCH KUNSKAPSBANK FÖR ARBETE MED SPEL OM PENGAR I SKOLAN Övningr och verktyg för år 7-9 och gymnsiet SPEL OM PENGAR - EN FRÅGA FÖR SKOLAN? ANPASSAT FÖR BLAND ANNAT SVENSKA, SPEL I KONSTHISTORIEN BILD, MATEMATIK OCH SAMHÄLLSKUNSKAP IILLEGALT SPEL VERKTYG, ÖVNINGAR

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR MATEMATIKPROV, LÅNG LÄROKURS 905 BESKRIVNING AV GODA SVAR De beskrivningr v svrens innehåll och poängsättningr som ges här är inte bindnde för studentexmensnämndens bedömning Censorern beslutr om de kriterier

Läs mer

Svar till uppgifter 42 SF1602 Di. Int.

Svar till uppgifter 42 SF1602 Di. Int. Svr till uppgifter 42 SF62 Di. Int. Svr kortuppgifter. 3: i) Om f(x) är kontinuerlig på [, ] kn mn då skriv lim k k n= f(n/k) på ett enklre sätt? k Svr: J, dett är f(x)dx. (Rit en bild med grfen v f(x)

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6 Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter

Läs mer

Bokstavsräkning. Regler och knep vid bokstavsräkning

Bokstavsräkning. Regler och knep vid bokstavsräkning Mtemtik Bokstvsräkning Du står nu inför en ny kurs i mtemtik, där meningen är tt du sk tillgodogör dig ny teorier, som smtlig leder frm till övningr och uppgifter. Även om du förstått vd teorin sk nvänds

Läs mer

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1 F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så

Läs mer

Matris invers, invers linjär transformation.

Matris invers, invers linjär transformation. Mtris invers, invers linjär trnsformtion. Påminnelse om mtris beräkningr: ddition, multipliktion med sklärer och mtrisprodukt Algebrisk egenskper hos mtrisddition och multipliktion med ett tl (Ly Sts..,

Läs mer

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger )

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger ) Intrduktinskurs i mtemtik 1 v 5 Algerisk uttrk: Räknelgr: lgen distriutiv lgr ssitiv lgr kmmuttiv, Ptenser: 1 n L n gånger --------------------------------------- n udd tl, jämnt tl n, n n n 4 4.. ---------------------------------------

Läs mer

24 Integraler av masstyp

24 Integraler av masstyp Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter

Läs mer

Ett förspel till Z -transformen Fibonaccitalen

Ett förspel till Z -transformen Fibonaccitalen Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.

Läs mer

Bilaga 1. Beskrivning av uppgifterna och provresultaten

Bilaga 1. Beskrivning av uppgifterna och provresultaten Bilg 1. Beskrivning v uppgiftern oh provresultten 1997-00 I det följnde redoviss lydelsen på de olik uppgifter som ingår i testet oh resulttet för de fyr år som testet hittills hr nvänts. Härigenom kn

Läs mer

12 frågor om patent RESEARCHA-ÖVNING

12 frågor om patent RESEARCHA-ÖVNING reser 12 frågor om ptent En uppfinning är i sig ett llmänt begrepp och kn omftt vrje ny idé på ll möjlig områden. En uppfinning måste däremot, för tt kunn beviljs ptent, uppfyll viss bestämd kriterier.

Läs mer

Långtidssjukskrivna. diagnos, yrke, partiell sjukskrivning och återgång i arbete. En jämförelse mellan 2002 och 2003 REDOVISAR 2004:7.

Långtidssjukskrivna. diagnos, yrke, partiell sjukskrivning och återgång i arbete. En jämförelse mellan 2002 och 2003 REDOVISAR 2004:7. REDOVISAR 2004:7 Långtidssjukskrivn dignos, yrke, prtiell sjukskrivning och återgång i rbete En jämförelse melln 2002 och 2003 Smmnfttning Kvinnor svrr för 65 procent v de långvrig sjukskrivningrn som

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

Bilaga 1. Beskrivning av uppgifterna och provresultaten

Bilaga 1. Beskrivning av uppgifterna och provresultaten Bilg 1. Beskrivning v uppgiftern oh provresultten 1997-003 I det följnde redoviss lydelsen på de olik uppgifter som ingår i testet oh resulttet för de fyr år som testet hittills hr nvänts. Härigenom kn

Läs mer

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning. TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys

Läs mer

Repetitionsuppgifter i matematik

Repetitionsuppgifter i matematik Lärrprogrmmet Ingång Mtemtik och Lärnde Repetitionsuppgifter i mtemtik Inför vårterminens mtemtikstudier kn det vr r tt repeter grundläggnde räknefärdigheter. Dett mteril innehåller uppgifter inom följnde

Läs mer

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket

Läs mer

Uttryck höjden mot c påtvåolikasätt:

Uttryck höjden mot c påtvåolikasätt: Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:

Läs mer

HF1703, Inledande matematik (Byggproduktion) DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER

HF1703, Inledande matematik (Byggproduktion) DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER Den trigonometrisk enhetscirkeln är en cirkel med rdie = och mittpunkt i origo B(0,) C(,0) O D(0,) I en rätvinklig tringel definierr vi

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b.

1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b. UPPSAA UNIVERSITET Mtemtisk institutionen Slling (070-6527523) PROV I MATEMATIK AUTOMATATEORI 18 okt 2012 SKRIVTID: 8-13. HJÄPMEDE: Ing. MOTIVERA AA ÖSNINGAR NOGGRANT. BETYGSGRÄNSER: För etygen 3, 4 respektive

Läs mer

Uppsala Universitet Matematiska Institutionen T Erlandsson

Uppsala Universitet Matematiska Institutionen T Erlandsson Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015. FÖRSÄTTSBLAD Institutionen för Nturgeogrfi och Ekosystemvetenskper Institutionen för Teknik och Smhälle Frågor för tentmen EXTA50 Smhällsmätning, 9 hp, kl. 8-13 12 jnuri, 2015. Denn tentmen rätts nonymt.

Läs mer

9. Vektorrum (linjära rum)

9. Vektorrum (linjära rum) 9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet

Läs mer

Internetförsäljning av graviditetstester

Internetförsäljning av graviditetstester Internetförsäljning v grviditetstester Mrkndskontrollrpport från Enheten för medicinteknik 2010-05-28 Postdress/Postl ddress: P.O. Box 26, SE-751 03 Uppsl, SWEDEN Besöksdress/Visiting ddress: Dg Hmmrskjölds

Läs mer

IE1204 Digital Design

IE1204 Digital Design IE1204 Digitl Design F1 F3 F2 F4 Ö1 Booles lgebr, Grindr MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombintorisk kretsr F7 F8 Ö4 F9 Ö5 Multipleor KK2 LAB2 Låskretsr, vippor, FSM F10 F11 Ö6

Läs mer

Sammanfattning, Dag 9

Sammanfattning, Dag 9 Smmnfttning, Dg 9 Idg studerde vi begrepp sklärprudokt (eller innerprodukt), norm och ortogonlitet på ett llmänt vektorrum. Vi börjde med en kort repetition på smm begrep för vektorrummet R 3. I rummet

Läs mer

Kontinuerliga variabler

Kontinuerliga variabler Kontinuerlig vribler c 005 Eric Järpe Högskoln i Hlmstd Antg tt vi kunde mät med oändligt stor noggrnnhet hur stor strömstyrk en viss typ v motstånd klrr. Ing mätningr skulle då vr exkt lik. Om vi mätte

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT. Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild

Läs mer

Studieplanering till Kurs 3b Grön lärobok

Studieplanering till Kurs 3b Grön lärobok Studieplnering till Kurs 3b Grön lärobok Den här studieplneringen hjälper dig tt häng med i kursen. Plneringen följer lärobokens uppdelning i kpitel och vsnitt. Iblnd får du tips på en inspeld genomgång

Läs mer

14. MINSTAKVADRATMETODEN

14. MINSTAKVADRATMETODEN 4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv

Läs mer

Lösningar basuppgifter 6.1 Partikelns kinetik. Historik, grundläggande lagar och begrepp

Lösningar basuppgifter 6.1 Partikelns kinetik. Historik, grundläggande lagar och begrepp Lösningr bsuppgifter 6.1 Prtikelns kinetik. Historik, grundläggnde lgr och begrepp B6.1 1-2) Korrekt 3) elktig (Enheten skll inte vr med här; om exempelvis m 2 = 10 kg, så är m 2 g = 98,1. Uttrycket m

Läs mer

Nya regler för plåtbalkar-eurokod 3-1-5

Nya regler för plåtbalkar-eurokod 3-1-5 Bernt Johnsson 008-0-5 Ny regler för plåtlkr-eurokod --5 Bkgrund Med plåtlk mens en lk som är uppyggd v smmnsvetsde plåtr på engelsk plted structure. Plåtlkr nvänds när vlsde lkr inte räcker till eller

Läs mer

freeleaks Funktioner, inverser och logaritmer 1(17)

freeleaks Funktioner, inverser och logaritmer 1(17) freeleks Funktioner, inverser och logritmer (7) Innehåll Förord Funktioner och inverser Multipliktion och division........................ Kvdrer och kvdrtrot......................... Eponentilfunktion

Läs mer

Addition och subtraktion

Addition och subtraktion Sidor i boken 35-39 Addition och subtrktion Vi börjr med lite ritmetik. Heltlsddition innebär ing som helst problem. Här tr vi lämpligen räknedosn till hjälp. Eempel. 3+00+5 = 7 Så länge ll nämnre är lik

Läs mer

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Anlys grundkurs B lb 1 Stefn Gustfsson Per Jönsson Fkulteten för Teknik och Smhälle, 13 1 Viktig informtion om lbortionern Lbortionsdelen på kursen i kursen Anlys grundkurs B exminers genom tt mn gör två

Läs mer

Med induktion menar man vanligen en mycket vanlig resonemangsmetod: man gör flera observationer,

Med induktion menar man vanligen en mycket vanlig resonemangsmetod: man gör flera observationer, Avsnitt 6 INDUKTIVA OC DEDUKTIVA RESONEMANG Med induktion menr mn vnligen en mycket vnlig resonemngsmetod: mn gör fler observtioner, upptäcker ett mönster (eller något som mn tror är ett mönster) därefter

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste

Läs mer

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

Tillämpning av integraler

Tillämpning av integraler CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN MaB VT 2002 LÖSNINGAR 3

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN MaB VT 2002 LÖSNINGAR 3 freeleks NpMB vt00 1() Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 00 3 MB VT 00 LÖSNINGAR 3 Del I, Digitl verktyg är INTE tillåtn 3 Del I # 1 (/0) Linje med riktningskoefficienten 3............

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13 LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,

Läs mer

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov Mtte KONVENT Plgg tillsmmns inför de ntionell proen i mtemtik M te m tik Länktips: Mttecentrm.se Mtteoken.se Formelsmlingen.se Plggkten.se 5 Innehåll: Plggtips Formelsmling Krspro I smrete med retsgirorgnistionen

Läs mer

Målet för dagen var att ge företagen möjlighet att ta del av tjejerna unika kompetens och insikter.

Målet för dagen var att ge företagen möjlighet att ta del av tjejerna unika kompetens och insikter. Vd behöver brnschen vr och gör för tt ttrher fler tjejer till yrken inom teknik, innovtion och design? Den 9 mrs 2018 smldes runt 50 tjejer och kvinnor i åldrrn 14 till 60 år i Stockholm för tt diskuter

Läs mer

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B. Deinitionsmängd FUNKTIONER. DEFINITIONSMÄNGD OCH VÄRDEMÄNGD. Deinition En unktion (eller vbildning ) rån en mängd A till en mängd B är en regel som till någr element i A ordnr högst ett element i B. Att

Läs mer

Användande av formler för balk på elastiskt underlag

Användande av formler för balk på elastiskt underlag Användnde v formler för blk på elstiskt underlg Bilg 2 Sidn 1 v 1 Formler från [ ] hr nvänts i exelberäkningr för någr geometrier och någr lstfll. Dess exempel hr också beräknts med FEM för tt kontroller

Läs mer

Guide - Hur du gör din ansökan

Guide - Hur du gör din ansökan Guide - Hur du gör din nsökn För tt komm till nsökningswebben går du in på www.gymnsievlsjuhärd.se och klickr på Ansökningswebb. Men innn du går dit läs igenom informtion under Ansökn och Antgning. Ansökningswebben

Läs mer

Diarienummer för ursprunglig ansökan: /2005. Projektets nummer och namn: B65 Utveckling av miljöbelastningsprofil, MBP

Diarienummer för ursprunglig ansökan: /2005. Projektets nummer och namn: B65 Utveckling av miljöbelastningsprofil, MBP Dirienummer för ursprunglig nsökn: 464-2737/2005 Projektets nummer och nmn: B65 Utveckling v miljöbelstningsprofil, MBP Dtum för slutrpporten: 2009-12-01 Smmnfttning 3 1 Inledning 4 1.1 Beskrivning och

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer