Arbete A2 Jodets elektroniska vibrationsspektrum

Storlek: px
Starta visningen från sidan:

Download "Arbete A2 Jodets elektroniska vibrationsspektrum"

Transkript

1 Arbete A2 Jodets elektroniska vibrationsspektrum 1. INLEDNING I detta övningsarbete studeras övergångarna mellan olika elektroniska tillstånd i jodmolekylen och speciellt den finstruktur i dessa som förorsakas av vibrationstillstånden. Med hjälp av det uppmätta transmittansspektret och valda litteraturvärden löses de variabler som beskriver det elektroniska excitationstillståndet. I beräkningarna används Morse-potentialen för att beskriva energins beroende av avståndet mellan jodatomerna. 2. TEORI Molekyler kan rotera och vibrera på specifika energinivåer. Atomer och molekyler har också flera olika energitillstånd, övergångar mellan dessa kan ses som pikar i det elektroniska absorptionsspektret. Vibrations- och rotationstillstånden orsakar finstrukturer i absorptionsspektrets pikar. Det lägsta elektroniska tillståndet kallas för grundtillstånd och alla energetiskt högre liggande tillstånd för exciterade tillstånd. Alla elektroniska tillstånd motsvarar en specifik elektronfördelning. Den potentialenergi varje elektron upplever vid ett visst tillstånd är en funktion av molekylens bindningslängd och kan beskrivas med en potentialenergikurva. Flera tillstånds energetik beskrivs ofta med ett potentialenergidiagram. I bild 1 ses potentialenergidiagrammet för de tre lägsta tillstånden för en jodmolekyl. För beräkningen av elektroniska energier för atomer och molekyler måste approximativa metoder användas så att Schrödinger-ekvationen för dessa kan lösas. För molekyler kan Born-Oppenheimer approximationen användas som en approximativ metod, denna baserar sig på den stora skillnaden i massa mellan atomkärnorna och elektronerna. Då elektronerna är betydligt lättare än kärnorna kan man anta att elektronmolnet reagerar på kärnans rörelser omedelbart (nästan utan fördröjning). Därmed kan man ur kärnans ögonblickliga geometri (avståndet mellan kärnorna = molekylens bindningslängd = R) lösa den elektroniska energin för denna specifika bindningslängd. Detta kan upprepas för alla avstånd mellan kärnorna som är möjliga, slutresultatet ger då den elektroniska energin som funktion av avståndet mellan kärnorna. Vid potentialenergikurvans minimum finns jämviktsbindningslängden (Re) som motsvarar det mest stabila avståndet mellan kärnorna vid en viss elektronkonfiguration. 1

2 Bild 1. Potentialenergidiagram för jod. Kurvan X beskriver det elektroniska X grundtillståndet och kurvorna A och B exciterade elektrontillstånd. R e är jämviktsbindningslängden för tillstånd X. De horisontella linjerna i energinivådiagrammet motsvarar olika vibrationstillstånd för ett visst elektroniskt tillstånd. NPE i bilden motsvarar nollpunktsenergin. En del av vågfunktionerna för de olika tillstånden har i bilden presenterats som ljusgråa kurvor. Den mest sannolika övergången berkrivs av ν a, denna övergång ger den bästa täckningen av vågfunktionerna. Potentialen mellan de elektroniska tillståndens kärnor kan beskrivas med den anharmoniska Morsepotentialen (1) U(R) = D e [1 exp( a(r R e ))] 2, 2

3 där D e är djupet på potentialgropen (den spektroskopiska dissociationsenergin), R är avståndet mellan kärnorna och R e är jämviktsavståndet mellan kärnorna. Faktorn a beskriver potentialgropens bredd och alltså också dess branthet. (2) a = k e 2hcD e = ν e π 2μc D e h där µ = m1m2/(m1+m2) är den reducerade massan, ν e är vibrationens frekvens i vågtal (cm -1 ) och k e är bindningens kraftkonstant som definieras som k e = 4π 2 c 2μ(ν e ) 2. Ekvation (2) beskriver a- variabeln i Morse-potentialens exciterade tillstånd. Enligt allmän praxis markeras storheter som anknyter till grundtillståndet med och de som anknyter till det exciterade tillståndet med. Morse-potentialen definierar den potential vid vilken jodmolekylen kan vibrera. Systemets Schrödinger-ekvation har formen (3) ħ 2 2μ 2 Ψ + V(R)Ψ = EΨ där V(R) är systemets potentialenergi. Då ekvation (1) sätts in i Schrödinger-ekvationen på potentialenergins plats och ekvationen löses, fås den kvantmekaniska oscillatorns kvantifierade enhetsenergier (4) E v = (υ ) v e (υ ) 2 v ex e Den första termen är den harmoniska oskillatorns energi och den andra termen är en korrigeringsfaktor som beror på potentialens anharmonicitet. I korrigeringsfaktorn är x e anharmonicitetsfaktorn, υ är vibrationskvanttalet (0, 1,...) och v e är vibrationsvågtalet. Ur ekvation (5) fås beroendet mellan anharmonicitetsfaktorn (x e ) och vibrationsvågtalet (v e). (5) x e = a2 h 8π 2 μν e = ν e 4D e Molekylens totalenergi är summan av den elektroniska energin, vibrationsenergin och rotationsenergin. Energiskillnaden för en övergång mellan två tillstånd är därmed ΔE total = 3

4 ΔE elektronisk + ΔE vibration + ΔE rotation. Eftersom molekylers rotationsenergier är betydligt mindre än den elektroniska energin och vibrationsenergin behöver de inte beaktas. På detta sätt få energiskillnaden mellan två på varandra följande linjer (skift) i det elektroniska vibrationsspektrets finstruktur till (6) ΔE 1 = E υ +1 E υ = hν e [1 2x e (1 + υ )] Ifall de linjer som granska är υ och υ + s (t.ex. linjerna υ = 20 och υ + s = 30, om s = 10, s beskriver avståndet mellan de linjer som granskas) beskrivs energiskillnaden mellan linjerna av ekvation (7). (7) ΔE s = ΔE υ +s E υ = shν e [1 (s + 1)x e ] 2shν e x e υ Ekvation (7) kan även skrivas i vågtalsenheter (cm -1 ) [Ekvation (8)]. (8) Δν s = sν e [1 (s + 1) x e ] 2sν e x e υ Om övergångarna (linjerna) i spektret uppmätts noggrant, kan man som värde på s i ekvation (8) använda siffran ett, då granskar man två övergångar som följer på varandra. På grund av spektrets resolution används värdet 10 för s i detta arbete. Ur ekvation (8) kan man se, att energiskillnaden Δν s är lineärt beroende av kvanttalet υ. Genom att mäta avståndet för två toppar i spektret (s = 10) med flera olika värden på υ och rita upp en graf av Δν s som funktion av kvanttalet υ fås en linje, vars riktningskoefficient är 2sν e x e och skärningspunkt sν e [1 (s + 1) x e ]. En dylik graf kallas för en Birge-Sponer graf. Enligt ekvation (6) blir avståndet mellan energinivåerna mindre i ett anharmoniskt fall då υ växer. Då ΔE = 0 har dissociationsgränsen för tillstånd B uppnåtts och samtidigt också maxvärdet på υ, υ max. [Se ekvation (9)]. (9) hν e [1 2x e (1 + υ )] = 0 υ max = 1 1 2x max Dissociationsenergin ( D 0 ) är alltså energiskillnaden mellan den lägsta och högsta vibrationsenerginivån. Nollpunktsenergin (NPE) fås då ur skillnaden mellan djupet på 4

5 potentialenergigropen ( D e ) och dissociationsenergin ( D 0 ) [se bild 1]. Djupet på potentialenergigropen fås ur ekvation (10). (10) D e = D ν e 1 4 ν e x e = ν e 4 ( 1 x e x e ) I ekvation (10) är ν e /2 nollpunktsenergin i en harmonisk potential. I nollpunktsenergin för en anharmonisk potential måste korrigeringen av anharmonisiteten ν e x e /4 beaktas. Vågtalet för övergången mellan två elektroniska tillstånd kan beräknas ur ekvation (11). (11) ν ν" ν = σ e + (υ ) ν e (υ ) ν e x e [(υ" ) ν e (υ" ) ν e x e ], där σ e är energiskillnaden mellan potentialkurvornas minima (elektrontillståndens energiskillnad) och n kvanttalet för den linje (övergång) som valts ut i spektret. Storleken på övergångens energi fås alltså genom att från skillnaden mellan potentialenergiernas minima subtrahera grundtillståndets vibrationsenergi och addera det exciterade tillståndets vibrationsenergi (se bild 1). Övergångarna sker huvudsakligen från tillståndet υ" = 0 till olika vibrationstillstånd υ. Med hjälp av ekvation (11) kan räkna ut flera olika värden på σ e genom att använda olika litteraturvärden för variablerna för det elektroniska grundtillståndet (se del 5: Beräkningar och arbetsbeskrivning) och olika värden på υ. Den relativa fyllnadsgraden för de olika vibrationstillstånden för samma elektroniska tillstånd kan beräknas ur Boltzmanns fördelningslag då energiskillnaden mellan tillstånden och temperaturen är kända (12) N υ=1 = exp ( ΔE hc ) = exp ( N υ=0 k B T k B T ). I ekvation (12) är kb Boltzmanns konstant och T temperaturen i Kelvin (K). Enligt Boltzmanns fördelningslag är vibrationstillståndet υ = 0 för det elektroniska grundtillståndet mest fyllt vid rumstemperatur. Detta betyder att största delen av de skift som sker kommer att ske från tillståndet υ" = 0. 5

6 Enligt Frank och Condons princip är övergångarna mellan olika elektroniska tillstånd så snabba, att avståndet mellan atomkärnorna (bindningslängden) inte hinner ändras under övergången vilket innebär att övergångarna sker lodrätt i diagrammet. Vibrationstillstånden beskrivs av vågfunktioner som vid stora värden på υ befinner sig nära de klassiska vändpunkterna (se bild 1, B-tillståndets funktion) vilket betyder att vågfunktionens amplitud är som störst vid potentialkurvans extrempunkter. Övergångens sannolikhet beskrivs av övergångsmomentet, vars värde beror på överlappet av vågfunktionerna som beskriver fyllnadsgraden av start- och sluttillstånden. Då vågfunktionernas överlapp är stort är också värdet på övergångsmomentet stort och då är en övergång sannolik. Den mest sannolika övergången är alltså υ = stor υ" = 0. Enligt den här principen kan man bestämma värdet på potentialenergikurvan för ett exciterat elektroniskt tillstånd då kärnornas avstånd är R = R e. (13) V (R e ) = G + NPE σ e = G(υ υ" = 0) ν e 1 4 ν e x e σ e I ekvation (13) är G* frekvensen för den i intensitet starkaste spektrallinjen i vågtal (se bild 1). Det exciterade elektroniska tillståndets bindningslängd kan nu beräknas från ekvation (14) då R e är känd. (14) R e = R e + 1 a ln (1 + (R e ) V ) D e 3. Begrepp som anknyter till arbetet Absorptionsspektrum, transmittansspektrum Harmonisk och anharmonisk oscillation Elektroniskt tillstånd, vibrationstillstånd Dissociationsenergi Energitillståndens fyllnadsgrad vid olika energier, Boltzmanns fördelning Frank och Condons princip 6

7 4. Arbetets utförande Vibrationsspektret för jod (I2) mäts ur jodgas i våglängdsområdet nm. Joden finns färdig i en kvartskyvett. Kyvettens temperatur kan justeras (till t.ex. 31 C) med den externa värmemanteln. För mätningen behövs ingen referenskyvett. Jodångans spektrum mäts med en Cary100 UV/Visspektrometer, bruksanvisningen för denna finns bredvid apparaturen. Bild 2. Spektralbältet som orsakas av absorptionsövergångarna mellan olika elektroniska tillstånd i jodgas som transmittansspektrum i våglängdsområdet nm. I spektret kan man se finstruktur som orsakas av vibrationstillstånd. Övergångarna B, υ X, υ" = 0; B, υ X, υ" = 1 och B, υ X, υ" = 2 överlappar delvis varandra. Ur transmittansspektret avläses minimivärdena. 5. Beräkningar och arbetsbeskrivning I spektret går det att se två serier av bälten som delvis överlappar varandra (övergångarna B, υ X, υ" = 0 och B, υ X, υ" = 1 ) samt något mindre klart en tredje bältserie (övergångarna B, υ X, υ" = 2). Tolka ur spektret övergångarna som sker från tillståndet υ" = 0 (de våglängder som motsvarar ett visst värde på kvanttalet υ") genom att använda toppidentifierings-funktionen i programmen Scan eller Origin. Som hjälp i tolkningen kan följande värden användas: 7

8 υ (nm) 555,95 548,22 536,97 527,52 519,64 Läs spektrallinjerna för kvanttalets värden Omvandla efter detta våglängderna (nm) till vågtal (cm -1 ). Räkna också för Birgen och Sponers graf ut skillnaden mellan vågtalen υ och υ Rita upp Birgen och Sponers graf med Δν 10 som y-axel och ν som x-axel. Anpassa en linje till punktgruppen och lös variablerna ν e och ν e x e ur ekvation (8). Lös efter detta D 0 och D e. Energiskillnaden σ e mellan elektroniska tillstånd fås genom att räkna övergångarna ν n för olika värden på υ (välj ungefär 5 talpar kring den maximala absorbansen) och genom att räkna medelvärdet på dessa. För ν e och ν e x e används värdena ν e = 214,6 cm -1 och ν e x e = 0,6 cm -1. Räkna vidare ut a, k e och V (R e ). För termen G = G(υ υ = 0) i ekvation (13) används ett vågtalsvärde som motsvara frekvensen på den till intensiteten största spektrallinjen. Märk ut denna övergång i spektret du skrivit ut. Lös bindningslängden för det exciterade tillståndet ( R e ) ur ekvation (14) genom att använda värdet R e = 2,667 Å. Lös slutligen med ekvation (1) potentialenergin för cirka 20 jodmolekyler som funktion av bindningslängden R och rita upp en potentialenergikurva som beskriver det elektroniska excitationstillståndet. Rapportera i arbetsbeskrivningen alla uträknade resultat (ν e, ν e x e, D 0, D e, σ e, a, k e, R e ) med insättningsexempel i sina rätta enheter (cm -1, Å) och jämför de uträknade storheterna med motsvarande litteraturvärden (se referens i slutet, 1 dyne = 10-5 N). Tabellera resultaten med sina respektive litteraturvärden i samma tabell. I uträkningar måste det klart visas hur enheterna i uträkningen konverteras. Felberäkning behöver inte göras. Skriv en arbetsbeskrivning som följer de allmänna instruktionerna. Svara dessutom på följande frågor: 1. Varför syns inte övergången B, = 0 X, υ" = 0 i jodets elektroniska vibrationsspektrum? De övergångar som kan observeras för jod sker vid kvanttalen υ = Varför syns inte övergångar till högre kvanttal (υ > 50)? 8

9 2. Granska bild 2 och förklara varför avståndet mellan topparna i finstrukturen minskar då vi går från mitten av bilden åt vänster. Varför minskar topparnas intensitet samtidigt och vilket fenomen beskriver den nästan jämna linjen vid cirka 500 nm? 3. Vad betyder Frank och Condons princip? Hur syns principen i detta arbete? 4. Räkna med ekvation (12) fyllnadsgraden för det elektroniska grundtillståndet vid de tre lägsta vibrationstillstånden (N υ=0 ; N υ=1 ; N υ=2 ) vid temperaturerna 298,15 och 398,15 K. Den energiskillnader mellan vibrationstillstånden som behövs i ekvation (12) kan räknas ut med ekvationen ΔE = E υ +1 E υ = hcν e [1 2x e (1 + υ )]. Vad kan du konstatera om tillståndens fyllnadsgrad vid dessa temperaturer? 5. Hur påverkas spektret av en temperaturhöjning? 6. Litteratur Atkins, P.W. och de Paula, J. Physical Chemistry. Oxford University Press, Oxford, 8th edition, 2006, s och Atkins, P.W. och de Paula, J. Physical Chemistry. Oxford University Press, Oxford, 7th edition, 2002, s och Atkins, P.W. Physical Chemistry. Oxford University Press,Oxford, 6th edition, 1998, s ja D alterio, R., Mattson, R., och Harris, R. Potential Curves for the I2 Molecule: An undergraduate physical chemistry experiment. J. Chem. Educ. 51, , McNaught, I. J. The Electronic Spectrum of Iodine Revisited. J. Chem. Educ. 57, ,

1. INLEDNING 2. TEORI. Arbete A6 Vibrations-rotationsspektrum

1. INLEDNING 2. TEORI. Arbete A6 Vibrations-rotationsspektrum Arbete A6 Vibrations-rotationsspektru 1. INLEDNING I detta övningsarbete undersöks det spektroskopiska ätdata so fås från rotationsfinstrukturen so hör till vibrationsövergångar i en olekyl i gasfas. Vibrationsövergångar

Läs mer

A12. Laserinducerad Fluorescens från Jodmolekyler

A12. Laserinducerad Fluorescens från Jodmolekyler GÖTEBORGS UNIVERSITET CHALMERS TENKISKA HÖGSKOLA Avdelningen för Experimentell Fysik Göteborg april 2004 Martin Sveningsson Mats Andersson A12 Laserinducerad Fluorescens från Jodmolekyler Namn... Utförd

Läs mer

Vibrationspektrometri. Matti Hotokka Fysikalisk kemi

Vibrationspektrometri. Matti Hotokka Fysikalisk kemi Vibrationspektrometri Matti Hotokka Fysikalisk kemi Teoretisk modell Translationer, rotationer och vibrationer z r y x Beaktas inte Translationer Rotationer Rotationspektrometri senare Vibrationer Basmodell

Läs mer

TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Göteborgs Universitet Datum: LÄS DETTA FÖRST!

TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Göteborgs Universitet Datum: LÄS DETTA FÖRST! TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Del: QSM Göteborgs Universitet Datum: 111206 Tid: 8.30 14.30 Ansvariga: Gunnar Nyman tel: 786 9035 Jens Poulsen tel: 786 9089 Magnus Gustafsson

Läs mer

1. INLEDNING 2. TEORI. Arbete A4 Ab initio

1. INLEDNING 2. TEORI. Arbete A4 Ab initio Arbete A4 Ab initio 1. INLEDNING Med Ab inition-metoder kan man, utgående från kvantmekanikens grundlagar, beräkna egenskaper som t.ex. elektronisk energi, jämviktskonformation eller dipolmoment för atomära

Läs mer

Tentamen i Modern fysik, TFYA11, TENA

Tentamen i Modern fysik, TFYA11, TENA IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11, TENA Tisdagen den 26/4 2011 kl. 08.00-12.00 i TER3 Tentamen består av 4 sidor (inklusive denna sida)

Läs mer

Kvantmekanik och kemisk bindning I 1KB501

Kvantmekanik och kemisk bindning I 1KB501 Kvantmekanik och kemisk bindning I 1KB501 TENTAMEN, 013-06-05, 8.00-13.00 Tillåtna hjälpmedel: Miniräknare, bifogade formelsamlingar. Börja på nytt blad för varje nytt problem, och skriv din kod på varje

Läs mer

Arbete A1 Atomens spektrum

Arbete A1 Atomens spektrum Arbete A1 Atomens spektrum 1. INLEDNING I arbetet presenteras de elektroniska energitillstånden och spektret för den enklaste atomen, väteatomen. Väteatomens emissionsspektrum mäts med en gitterspektrometer

Läs mer

MOLEKYLSPEKTROSKOPI I INFRARÖTT

MOLEKYLSPEKTROSKOPI I INFRARÖTT MOLEKYLSPEKTROSKOPI I INFRARÖTT Uppgift Bestämma - rotationsenergier, tröghetsmoment och bindningsavstånd för H 35 Cl i två vibrationstillstånd - den fundamentala vibrationsfrekvensen för H 37 Cl - förhållandet

Läs mer

Andra föreläsningen kapitel 7. Patrik Lundström

Andra föreläsningen kapitel 7. Patrik Lundström Andra föreläsningen kapitel 7 Patrik Lundström Kvantisering i klassisk fysik: Uppkomst av heltalskvanttal För att en stående våg i en ring inte ska släcka ut sig själv krävs att den är tillbaka som den

Läs mer

Arbete TD7 Datorövning i reaktionskinetik

Arbete TD7 Datorövning i reaktionskinetik Arbete TD7 Datorövning i reaktionskinetik 1. INLEDNING I detta arbete används en dator för att med kvantmekanik, statistisk termodynamik och transitionstillståndsteori räkna ut aktiveringsenergin, hastighetskonstanten

Läs mer

Utveckling mot vågbeskrivning av elektroner. En orientering

Utveckling mot vågbeskrivning av elektroner. En orientering Utveckling mot vågbeskrivning av elektroner En orientering Nikodemus Karlsson Februari 00 . Bohrs Postulat Niels Bohr (885-96) ställde utifrån iakttagelser upp fyra postulat gällande väteatomen ¹:. Elektronen

Läs mer

Kvantbrunnar -Kvantiserade energier och tillstånd

Kvantbrunnar -Kvantiserade energier och tillstånd Kvantbrunnar -Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på

Läs mer

1. INLEDNING 2. TEORI. Arbete TD3 Temperaturberoendet för en vätskas ångtryck

1. INLEDNING 2. TEORI. Arbete TD3 Temperaturberoendet för en vätskas ångtryck Arbete TD3 Temperaturberoendet för en vätskas ångtryck 1. INLEDNING En vätskas ångtryck växer då vätskan värms upp och allt fler molekyler får en tillräckligt stor mängd kinetisk energi för att lösgöra

Läs mer

Lösningar Heureka 2 Kapitel 14 Atomen

Lösningar Heureka 2 Kapitel 14 Atomen Lösningar Heureka Kapitel 14 Atomen Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 14 14.1) a) Kulorna från A kan ramla på B, C, D, eller G (4 möjligheter). Från B kan de ramla

Läs mer

KEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från

KEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från KEMA00 Magnus Ullner Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från http://www.kemi.lu.se/utbildning/grund/kema00/dold Användarnamn: Kema00 Lösenord: DeltaH0 F2 Periodiska systemet

Läs mer

Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057).

Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057). LULEÅ TEKNISKA UNIVERSITET Hans Weber, Avdelningen för Fysik, 2004 Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057). 1. Partikel i en en dimensionell

Läs mer

Kvantbrunnar Kvantiserade energier och tillstånd

Kvantbrunnar Kvantiserade energier och tillstånd Kvantbrunnar Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på

Läs mer

Kvantmekanik. Kapitel Natalie Segercrantz

Kvantmekanik. Kapitel Natalie Segercrantz Kvantmekanik Kapitel 38-39 Natalie Segercrantz Centrala begrepp Schrödinger ekvationen i en dimension Fotoelektriska effekten De Broglie: partikel-våg dualismen W 0 beror av materialet i katoden minimifrekvens!

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:

Läs mer

Extrauppgifter som kompletterar uppgifterna i Foot:

Extrauppgifter som kompletterar uppgifterna i Foot: Extrauppgifter som kompletterar uppgifterna i Foot: K1.1 a) Beräkna vågtal och våglängd för Balmer-α (H α ), Balmer-β (H β ) och Paschen-α i väte. b) Jämför skillnaden mellan vågtalen för H α och H β med

Läs mer

2.4. Bohrs modell för väteatomen

2.4. Bohrs modell för väteatomen 2.4. Bohrs modell för väteatomen [Understanding Physics: 19.4-19.7] Som vi sett, är den totala energin för elektronen i väteatomen E = 1 2 mv2 = e2 8πɛ 0 r. Eftersom L = mvr för cirkulära banor, så kan

Läs mer

Arbete A3 Bestämning av syrakoefficienten för metylrött

Arbete A3 Bestämning av syrakoefficienten för metylrött Arbete A3 Bestämning av syrakoefficienten för metylrött 1. INLEDNING Elektromagnetisk strålning, t.ex. ljus, kan växelverka med materia på många olika sätt. Ljuset kan spridas, reflekteras, brytas, passera

Läs mer

Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0

Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0 LÖSNINGAR TILL Deltentamen i kvantformalism, atom och kärnfysik med tillämpningar för F3 9-1-15 Tid: kl 8.-1. (MA9A. Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. Poäng: Vid varje uppgift

Läs mer

LABORATION ENELEKTRONSPEKTRA

LABORATION ENELEKTRONSPEKTRA LABORATION ENELEKTRONSPEKTRA Syfte och mål Uppgiften i denna laboration är att studera atomspektra från väte och natrium i det synliga våglängdsområdet och att med hjälp av uppmätta våglängder från spektrallinjerna

Läs mer

2.4. Bohrs modell för väteatomen

2.4. Bohrs modell för väteatomen 2.4. Bohrs modell för väteatomen [Understanding Physics: 19.4-19.7] Som vi sett, är den totala energin för elektronen i väteatomen E = 1 2 mv2 = e2 8πɛ 0 r. Eftersom L = mvr för cirkulära banor, så kan

Läs mer

Tentamen Fysikaliska principer

Tentamen Fysikaliska principer Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 2016 8:00 12:00 Tentamen består

Läs mer

Bestämning av livslängden för singlettexciterad naftalen

Bestämning av livslängden för singlettexciterad naftalen Bestämning av livslängden för singlettexciterad naftalen Jesper Hagberg Simon Pedersen 0 november 20 Chalmers Tekniska Högskola Institutionen för Kemi och Bioteknik Fysikalisk Kemi Handledare Nils Carlsson

Läs mer

Tentamen i Materia, 7,5 hp, CBGAM0

Tentamen i Materia, 7,5 hp, CBGAM0 Fakulteten för teknik- och naturvetenskap Tentamen i Materia, 7,5 hp, CBGAM0 Tid Måndag den 9 januari 2012 08 15 13 15 Lärare Gunilla Carlsson tele: 1194, rum: 9D406 0709541566 Krister Svensson tele: 1226,

Läs mer

Tentamen i Modern fysik, TFYA11/TENA

Tentamen i Modern fysik, TFYA11/TENA IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Onsdagen den 27/3 2013 kl. 08.00-12.00 i T1 och T2 Tentamen består av 2 A4-blad (inklusive detta)

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 204-08-30. a Vid dissociationen av I 2 åtgår energi för att bryta en bindning, dvs. reaktionen är endoterm H > 0. Samtidigt bildas två atomer ur en molekyl,

Läs mer

Tentamen, Kvantfysikens principer FK2003, 7,5 hp

Tentamen, Kvantfysikens principer FK2003, 7,5 hp Tentamen, Kvantfysikens principer FK2003, 7,5 hp Tid: 17:00-22:00, tisdag 3/3 2015 Hjälpmedel: utdelad formelsamling, utdelad miniräknare Var noga med att förklara införda beteckningar och att motivera

Läs mer

Räkneuppgifter i Kemisk struktur och bindning Del 2. Bioinformatik Xbio3

Räkneuppgifter i Kemisk struktur och bindning Del 2. Bioinformatik Xbio3 Räkneuppgifter i Kemisk struktur och bindning Del 2 Bioinformatik Xbio3 Sammanställd av: Nessima Salhi-Benachenhou David Edvardsson Sten Lunell Avdelningen för kvantkemi Uppsala universitet November 2008

Läs mer

Molekylmekanik. Matti Hotokka

Molekylmekanik. Matti Hotokka Molekylmekanik Matti Hotokka Makroskopiskt material Består av enskilda molekyler Makroskopiskt material För att förstå det makroskopiska materialets egenskaper måste enskilda molekyler undersökas Modeller

Läs mer

Kvantmekanik - Gillis Carlsson

Kvantmekanik - Gillis Carlsson Kvantmekanik - Föreläsning 1 Gillis Carlsson gillis.carlsson@matfys.lth.se LP2 Föreläsningarna i kvantmekanik LP1 V1): Repetition av kvant-nano kursen. Sid 5-84 V2 : V3 : Formalism (I). Sid 109-124, 128-131,

Läs mer

Rydbergs formel. Bohrs teori för väteliknande system

Rydbergs formel. Bohrs teori för väteliknande system Chalmers Tekniska Högskola och Göteborgs Universitet Sektionen för Fysik och Teknisk Fysik Arne Rosén, Halina Roth Uppdaterad av Erik Reimhult, januari A4 Enelektronspektrum Namn... Utförd den... Godkänd

Läs mer

Tentamen. TFYA35 Molekylfysik, TEN1 24 oktober 2016 kl Skrivsal: G34, G36, G37

Tentamen. TFYA35 Molekylfysik, TEN1 24 oktober 2016 kl Skrivsal: G34, G36, G37 Thomas Ederth IFM / Molekylär Fysik ted@ifm.liu.se Tentamen TFYA35 Molekylfysik, TEN1 24 oktober 216 kl. 8.-13. Skrivsal: G34, G36, G37 Tentamen omfattar 6 problem som vardera kan ge 4 poäng. För godkänt

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

Milstolpar i tidig kvantmekanik

Milstolpar i tidig kvantmekanik Den klassiska mekanikens begränsningar Speciell relativitetsteori Höga hastigheter Klassisk mekanik Kvantmekanik Små massor Små energier Stark gravitation Allmän relativitetsteori Milstolpar i tidig kvantmekanik

Läs mer

Vågrörelselära & Kvantfysik, FK januari 2012

Vågrörelselära & Kvantfysik, FK januari 2012 Räkneövning 9 Vågrörelselära & Kvantfysik, FK00 9 januari 0 Problem 4.3 En elektron i vila accelereras av en potentialskillnad U = 0 V. Vad blir dess de Broglie-våglängd? Elektronen tillförs den kinetiska

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 203-0-9. Sambandet mellan tryck och temperatur för jämvikt mellan fast och gasformig HCN är givet enligt: ln(p/kpa) = 9, 489 4252, 4 medan kokpunktskurvan

Läs mer

Instuderingsfrågor, Griffiths kapitel 4 7

Instuderingsfrågor, Griffiths kapitel 4 7 Joakim Edsjö 15 oktober 2007 Fysikum, Stockholms Universitet Tel.: 08-55 37 87 26 E-post: edsjo@physto.se Instuderingsfrågor, Griffiths kapitel 4 7 Teoretisk Kvantmekanik II HT 2007 Tanken med dessa frågor

Läs mer

Atomer, ledare och halvledare. Kapitel 40-41

Atomer, ledare och halvledare. Kapitel 40-41 Atomer, ledare och halvledare Kapitel 40-41 Centrala begrepp Kvantiserade energinivåer i atomer Elektronspinn och finstruktur Elektronen i en atom både banimpulsmoment, som karakteriseras av kvanttalet

Läs mer

Molekylvibrationer FYTA11. 9 september Datoruppgift. Handledare: Christian Holzgräfe

Molekylvibrationer FYTA11. 9 september Datoruppgift. Handledare: Christian Holzgräfe 9 september 2013 FYTA11 Datoruppgift Molekylvibrationer Handledare: Christian Holzgräfe E-post: christian.holzgraefe@thep.lu.se Telefon: 046-222 3492 Individuell rapport inlämnas före angiven deadline.

Läs mer

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik Föreläsning 7 Kvantfysik 2 Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det

Läs mer

Tentamen i fysik B2 för tekniskt basår/termin VT 2014

Tentamen i fysik B2 för tekniskt basår/termin VT 2014 Tentamen i fysik B för tekniskt basår/termin VT 04 04-0-4 En sinusformad växelspänning u har amplituden,5 V. Det tar 50 μs från det att u har värdet 0,0 V till dess att u har antagit värdet,5 V. Vilken

Läs mer

Alla svar till de extra uppgifterna

Alla svar till de extra uppgifterna Alla svar till de extra uppgifterna Fö 1 1.1 (a) 0 cm 1.4 (a) 50 s (b) 4 cm (b) 0,15 m (15 cm) (c) 0 cm 1.5 2 m/s (d) 0 cm 1.6 1.2 (a) A nedåt, B uppåt, C nedåt, D nedåt 1.7 2,7 m/s (b) 1.8 Våglängd: 2,0

Läs mer

KVANTFYSIK för F Inlämningsuppgifter I6

KVANTFYSIK för F Inlämningsuppgifter I6 CHALMERS TEKNISKA HÖGSKOLA Mikroteknologi och nanovetenskap Elsebeth Schröder (schroder vid chalmers.se) 29-11-28 (rev: 29-12-2) KVANTFYSIK för F3 29 Inlämningsuppgifter I6 Bedömning: Bedömningen av de

Läs mer

Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och

Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och Institutionen för Fysik Göteborgs Universitet LÖSNINGAR TILL TENTAMEN I FYSIK A: MODERN FYSIK MED ASTROFYSIK Tid: Lördag 3 augusti 008, kl 8 30 13 30 Plats: V Examinator: Ulf Torkelsson, tel. 031-77 3136

Läs mer

Atom- och kärnfysik med tillämpningar -

Atom- och kärnfysik med tillämpningar - Atom- och kärnfysik med tillämpningar - Föreläsning 8 Gillis Carlsson gillis.carlsson@matfys.lth.se 19 Oktober, 2012 Föreläsningarna i kvantmekanik LP1 V1: Repetition av kvant-nano kursen. Sid 5-84 V2:

Läs mer

KEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från

KEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från KEMA00 Magnus Ullner Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från http://www.kemi.lu.se/utbildning/grund/kema00/dold Användarnamn: Kema00 Lösenord: DeltaH0 Repetition F2 Vågfunktion

Läs mer

Svar och anvisningar

Svar och anvisningar 160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:

Läs mer

BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/ Bastermin

BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/ Bastermin Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag till Repetitionsuppgifter BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/

Läs mer

Föreläsning 1. Elektronen som partikel (kap 2)

Föreläsning 1. Elektronen som partikel (kap 2) Föreläsning 1 Elektronen som partikel (kap 2) valenselektroner i metaller som ideal gas ström från elektriskt fält mikroskopisk syn på resistans, Ohms lag diffusionsström Vår första modell valenselektroner

Läs mer

Vågrörelselära & Kvantfysik, FK januari 2012

Vågrörelselära & Kvantfysik, FK januari 2012 Räkneövning 10 Vågrörelselära & Kvantfysik, FK2002 9 januari 20 Problem 42.1 Vad är det orbitala rörelsemängdsmomentet, L, för en elektron i a) 3p-tillståndet b) 4f-tillståndet? Det orbitala rörelsemängdsmomentet

Läs mer

Atomer och molekyler, Kap 4. Molekyler. Kapitel 4. Molekyler

Atomer och molekyler, Kap 4. Molekyler. Kapitel 4. Molekyler Kapitel 4. Molekyler 1 Överblick Överblick Så här långt har vi fokuserat på enskilda fria atomer, men i naturen är det egentligen bara ädelgaserna som uppträder som fria atomer. Alla andra grundämnen hittas

Läs mer

4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella

4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella KVANTMEKANIKFRÅGOR Griffiths, Kapitel 4-6 Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths.

Läs mer

Hückels metod. Matti Hotokka

Hückels metod. Matti Hotokka Hükels metod Matti Hotokka Konjugerade dubbelbindningar Alternerande enkla oh dubbla bindningar Cykliska föreningar kallas aromatiska Plan geometri Butadien Bensen Naphtalen Konjugerade dubbelbindningar

Läs mer

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter!

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter! KVANTMEKANIKFRÅGOR, GRIFFITHS Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths. 1 Kapitel

Läs mer

Kinetisk Gasteori. Daniel Johansson January 17, 2016

Kinetisk Gasteori. Daniel Johansson January 17, 2016 Kinetisk Gasteori Daniel Johansson January 17, 2016 I kursen har vi under två lektioner diskuterat kinetisk gasteori. I princip allt som sades på dessa lektioner sammanfattas i texten nedan. 1 Lektion

Läs mer

TENTAMEN I KVANTFYSIK del 1 (5A1324 och 5A1450) samt KVANTMEKANIK (5A1320) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 2007

TENTAMEN I KVANTFYSIK del 1 (5A1324 och 5A1450) samt KVANTMEKANIK (5A1320) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 2007 TENTAMEN I KVANTFYSIK del (5A4 och 5A45) samt KVANTMEKANIK (5A) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 7 HJÄLPMEDEL: Formelsamling i Fysik (teoretisk fysik KTH), matematiska tabeller, dock

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 2012-05-23 1. a Molekylerna i en ideal gas påverkar ej varandra, medan vi har ungefär samma växelverkningar mellan de olika molekylerna i en ideal blandning.

Läs mer

c = λ ν Vågrörelse Kap. 1. Kvantmekanik och den mikroskopiska världen Kvantmekanik 1.1 Elektromagnetisk strålning

c = λ ν Vågrörelse Kap. 1. Kvantmekanik och den mikroskopiska världen Kvantmekanik 1.1 Elektromagnetisk strålning Kap. 1. Kvantmekanik och den mikroskopiska världen Modern teori för atomer/molekyler kan förklara atomers/molekylers egenskaper: Kvantmekanik I detta och nästa kapitel: atomers egenskaper och periodiska

Läs mer

TILLÄMPAD ATOMFYSIK Övningstenta 2

TILLÄMPAD ATOMFYSIK Övningstenta 2 TILLÄMPAD ATOMFYSIK Övningstenta 2 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.

Läs mer

Övergångar mellan vibrationsnivåer i grundtillståndet. Infraröd spektroskopi

Övergångar mellan vibrationsnivåer i grundtillståndet. Infraröd spektroskopi Övergångar mellan vibrationsnivåer i grundtillståndet Infraröd spektroskopi Lägre energier än VIS Infraröd spektroskopi Övergångar mellan vibrationsnivåer i grundtillståndet Intensiteten är relaterad till

Läs mer

Laboration 1: Gravitation

Laboration 1: Gravitation Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver

Läs mer

F3: Schrödingers ekvationer

F3: Schrödingers ekvationer F3: Schrödingers ekvationer Backgrund Vi behöver en ny matematik för att beskriva elektroner, atomer och molekyler! Den nya fysiken skall klara av att beskriva: Experiment visar att för bundna system så

Läs mer

Dugga i FUF040 Kvantfysik för F3/Kf3

Dugga i FUF040 Kvantfysik för F3/Kf3 Dugga i FUF040 Kvantfysik för F3/Kf3 fredagen den 23 oktober 2015 kl 14.00-16.00 i V Examinator: Måns Henningson, ankn 3245. Inga hjälpmedel. Ringa in bokstaven svarande mot det unika rätta svaret på svarsblanketten!

Läs mer

s 1 och s 2 är icke kvantmekaniska partiklar? e. (1p) Vad blir sannolikheterna i uppgifterna b, c och d om vinkeln = /2?

s 1 och s 2 är icke kvantmekaniska partiklar? e. (1p) Vad blir sannolikheterna i uppgifterna b, c och d om vinkeln = /2? FK003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 7e mars 018, kl 17:00 - :00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du klarar

Läs mer

Laboration 1: Gravitation

Laboration 1: Gravitation Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 32 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

7. Atomfysik väteatomen

7. Atomfysik väteatomen Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det nödvändigt att betrakta

Läs mer

FYTA11: Molekylvibrationer

FYTA11: Molekylvibrationer FYTA: Molekylvibrationer Daniel Nilsson 2/ 202 Introduktion Övningens syfte var att undersöka normalmoderna hos molekyler, i synnerhet vattenmolekyler, och studera dessas variation beroende på olika parametrar.

Läs mer

KVANTFYSIK för F3 2009 Inlämningsuppgifter I5

KVANTFYSIK för F3 2009 Inlämningsuppgifter I5 ALMERS TEKNISKA ÖGSKOLA Mikroteknologi och nanovetenskap Elsebeth Schröder (schroder vid chalmers.se) 2009-11-12 KVANTFYSIK för F3 2009 Inlämningsuppgifter I5 Bedömning: Bedömningen av de inlämnade lösningarna

Läs mer

VIII. Spinn- och magnetisk växelverkan

VIII. Spinn- och magnetisk växelverkan VIII. Spinn- och magnetisk växelverkan För att undvika sammanblandning kommer vi nu att förtydliga beteckningarna från tidigare kapitel. Vi skriver nu elektronmassan m e (inte m som tidigare) och det magnetiska

Läs mer

Tentamensskrivning i FYSIKALISK KEMI Bt (Kurskod: KFK 162) den 19/ kl

Tentamensskrivning i FYSIKALISK KEMI Bt (Kurskod: KFK 162) den 19/ kl Tentamensskrivning i FYSIKALISK KEMI Bt (Kurskod: KFK 162) den 19/10 2010 kl 08.30-12.30 Observera! Börja på nytt ark för varje ny deluppgift. Tillåtna hjälpmedel 1. Miniräknare av valfri typ. 2. Utdelad

Läs mer

VI. Reella gaser. Viktiga målsättningar med detta kapitel. VI.1. Reella gaser

VI. Reella gaser. Viktiga målsättningar med detta kapitel. VI.1. Reella gaser I. Reella gaser iktiga målsättningar med detta kapitel eta vad virialutvecklingen och virialkoefficienterna är Kunna beräkna första termen i konfigurationsintegralen Känna till van der Waal s gasekvation

Läs mer

Tentamen: Atom och Kärnfysik (1FY801)

Tentamen: Atom och Kärnfysik (1FY801) Tentamen: Atom och Kärnfysik (1FY801) Torsdag 1 november 2012, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum

Läs mer

Väteatomen. Matti Hotokka

Väteatomen. Matti Hotokka Väteatomen Matti Hotokka Väteatomen Atom nummer 1 i det periodiska systemet Därför har den En proton En elektron Isotoper är möjliga Protium har en proton i atomkärnan Deuterium har en proton och en neutron

Läs mer

Kvantfysik SI1151 för F3 Tisdag kl

Kvantfysik SI1151 för F3 Tisdag kl TEORETISK FYSIK KTH Kvantfysik SI5 för F3 Tisdag 3008 kl. 8.00-3.00 Skriv på varje sida Namn och problemnummer Motivera noga Otillräckliga motiveringar leder till poängavdrag Hjälpmedel Teoretisk fysiks

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats

Läs mer

Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen

Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen Föreläsning Att uppbygga en bild av atomen Rutherfords experiment Linjespektra och Bohrs modell Vågpartikel-dualism Korrespondensprincipen Fyu0- Kvantfysik Atomens struktur Atomen hade ingen elektrisk

Läs mer

Kapitel 7. Atomstruktur och periodicitet

Kapitel 7. Atomstruktur och periodicitet Kapitel 7 Atomstruktur och periodicitet Avsnitt 7.1 Elektromagnetisk strålning Fyrverkeri i olika färger Copyright Cengage Learning. All rights reserved 2 Avsnitt 7.2 Materians karaktär Illuminerad saltgurka

Läs mer

FYTA11: Molekylvibrationer

FYTA11: Molekylvibrationer FYTA: Molekylvibrationer Nils Hermansson Truedsson 0--6 Introduktion Följande rapport redogör för simuleringsövningen Molekylvibrationer. Syftet med övningen var att undersöka s.k. normalmoder hos vattenmolekyler

Läs mer

BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL12/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2 22 mars 216 8: 12: Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

Läs mer

Laboration i Tunneltransport. Fredrik Olsen

Laboration i Tunneltransport. Fredrik Olsen Laboration i Tunneltransport Fredrik Olsen 9 maj 28 Syfte och Teori I den här laborationen fick vi möjlighet att studera elektrontunnling över enkla och dubbla barriärer. Teorin bakom är den som vi har

Läs mer

Re(A 0. λ K=2π/λ FONONER

Re(A 0. λ K=2π/λ FONONER FONONER Atomerna sitter inte fastfrusna på det regelbundna sätt som kristallmodellerna visar. De rubbas ur sina jämviktslägen av tillförd värme, ljus, ljud, mekaniska stötar mm. Atomerna i kristallen vibrerar

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 35-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

1. Mekanisk svängningsrörelse

1. Mekanisk svängningsrörelse 1. Mekanisk svängningsrörelse Olika typer av mekaniska svängningar och vågrörelser möter oss överallt i vardagen allt från svajande höghus till telefoner med vibrationen påslagen hör till denna kategori.

Läs mer

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Tentamen i FTF140 Termodynamik och statistisk fysik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Onsdagen den /, kl 4.-8. i Maskin -salar. Hjälpmedel: Physics Handbook,

Läs mer

Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet

Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet Kapitel 7 Innehåll Kapitel 7 Atomstruktur och periodicitet Kvantmekanik Aufbau Periodiska systemet Copyright Cengage Learning. All rights reserved 2 Kapitel 7 Innehåll 7.1 Elektromagnetisk strålning 7.2

Läs mer

Tentamen Fysikaliska principer

Tentamen Fysikaliska principer Linko pings Universitet Institutionen fo r fysik, kemi och biologi Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 2015 14:00

Läs mer

Molekylorbitaler. Matti Hotokka

Molekylorbitaler. Matti Hotokka Molekylorbitaler Matti Hotokka Betrakta två väteatomer + ( ) ( ) 1s A 1 s B 1 s ( A) 1 s( B) + s 1 ( A) s 1 ( B) ' 1 s ( A) 1 s( B) Vätemolekylens molekylorbitaler När atomerna bildar en molekyl smälter

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel Lösningsförslag till deltentamen i IM601 Fasta tillståndets fysik Heisenbergmodellen Måndagen den 0 augusti, 01 Teoridel 1. a) Heisenbergmodellen beskriver växelverkan mellan elektronernas spinn på närliggande

Läs mer

Lösningar del II. Problem II.3 L II.3. u= u MeV = O. 2m e c2= MeV. T β +=

Lösningar del II. Problem II.3 L II.3. u= u MeV = O. 2m e c2= MeV. T β += Lösningar del II Problem II.3 Kärnan 14 O sönderfaller under utsändning av en positiv elektron till en exciterad nivå i 14 N, vilken i sin tur sönderfaller till grundtillståndet under emission av ett γ

Läs mer

FACIT till ÖVNINGSUPPGIFTER Sven Larsson FYSIKALISK KEMI. Kap. 1 BAKGRUND

FACIT till ÖVNINGSUPPGIFTER Sven Larsson FYSIKALISK KEMI. Kap. 1 BAKGRUND FACIT till ÖVNINGSUPPGIFTER Sven Larsson FYSIKALISK KEMI.(a) E = 3.983 ev. Kap. BAKGRUND.(a) 6s-orbitalen har två elektroner i grundtillståndet för Pb +. Vi vet ej om andra joner finns i liten mängd.,3

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik Curt Nyberg, Igor Zoric

GÖTEBORGS UNIVERSITET Institutionen för fysik Curt Nyberg, Igor Zoric GÖTEBORGS UNIVERSITET 06-11 10 Institutionen för fysik Curt Nyberg, Igor Zoric PROJEKTTENTAMEN I FASTA TILLSTÅNDETS FYSIK FYN160, ht 2006 Inlämningsuppgifterna ersätter tentamen. Du skall lösa uppgifterna

Läs mer

Kvantmekanik II (FK5012), 7,5 hp

Kvantmekanik II (FK5012), 7,5 hp Joakim Edsjö Fysikum, Stockholms Universitet Tel.: 8-5537876 E-post: edsjo@physto.se Lösningar till Kvantmekanik II (FK51, 7,5 hp 3 januari 9 Lösningar finns även tillgängliga på http://www.physto.se/~edsjo/teaching/kvant/index.html.

Läs mer

Svar och anvisningar

Svar och anvisningar 15030 BFL10 1 Tenta 15030 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Enligt superpositionsprincipen ska vi addera elongationerna: y/cm 1 1 x/cm b) Reflektionslagen säger att reflektionsvinkeln är

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 15 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 : Kapitel 15.1 15.8 Ljud och

Läs mer