8 RELATIV RÖRELSE Inledning. Relativ rörelse 8 1

Storlek: px
Starta visningen från sidan:

Download "8 RELATIV RÖRELSE Inledning. Relativ rörelse 8 1"

Transkript

1 Relativ rörelse RELATIV RÖRELSE Inledning Den grundläggande lagen i den klassiska mekaniken är Newtons accelerationslag ma = F Som Newton själv noterade finns det en fundamental svårighet gömd i denna ekvation, nämligen det faktum att ekvationen bara kan gälla i vissa koordinatsystem. Detta följer av att accelerationsvektorn a kan ändras när man byter koordinatsystem medan kraftvektorn F förblir densamma. Kraften på enpar tikel beskriver dess växelverkan med andra partiklar och beror alltså av vilka objekt som finns i omgivningen, men den har inget med valet av koordinatsystem att göra. Observera att vi här talar om vektorerna själva och inte om deras komponenter! Komponenterna av kraftvektorn ändras när vi byter koordinatsystem, men vektorn själv är invariant i den meningen att den har en given storlek och pekar i en bestämd riktning. Accelerationen däremot måste alltid relateras till något visst koordinatsystem fär att vara meningsfull. Exempel: Den gravitationskraft varmed jorden påverkar månen är riktad från månen mot jorden. Newtons accelerationslag säger oss då attmånens acceleration likaså är riktad från månen mot jorden. Detta stämmer om vi beskriver månens rörelse i ett koordinatsystem med origo i jordens medelpunkt och axelriktningar betsämda av fixstjärnorna. Om vi däremot väljer ett koordinatsystem med origo i månens medelpunkt blir månens acceleration uppenbarligen noll, fastän gravitationskraften fortfarande finns kvar och fortfarande pekar från månen mot jorden. 1 Detta avsnitt är hämtat från ett kompendium av A. Kihlberg och G. Niklasson De koordinatsystem i vilka Newtons lagar gäller kallar vi inertialsystem. Ett problem som bekymrade Newton och många efter honom är att det inte finns någon grundläggande princip som talar om för oss vilka system som är inertialsystem. Det enda man kan säga är att om man hittat ett inertialsystem så har man hittat dem alla, eftersom två olika inertialsystem bara kan skilja sig åt genom att det ena utför en ren translationsrörelse med konstant hastighet relativt det andra. System som inte är inertialsystem kallar man därför för accelererade koordinatsystem. Frågan om ett visst koordinatsystem är ett inertialsystem eller ej avgörs som alla fysikaliska frågor i sista hand av experiment. Om mätresultaten stämmer med beräkningar baserade på Newtons accelerationslag så är systemet ett inertialsystem, annars inte. Eftersom mätresultat aldrig kan vara exakta och fullständiga kan man aldrig ge ett absolut svar, utan man får nöja sig med att säga att systemet kan betraktas som ett inertialsystem för en viss klass av fenomen eller inom en viss mätnoggrannhet. Exempel: När man studerar hur en bil rör sig längs en väg eller hur en utkastad projektil rör sig genom luften kan man i allmänhet betrakta ett koordinatsystem fixerat i jordytan som ett inertialsystem. Om man noggrannt studerar fallrörelse i lufttomt rum finner man emellertid små avvikelser från accelerationslagens förutsägelser. Mera påtagliga sådana avvikelser visar sig i storskaliga rörelser som strömmarna i värdshaven eller vindarna kring ett lågtryck. Dessa fenomen påverkas märkbart av jordens rotationsrörelse. För att beskriva dem korrekt med hjälp av Newtons mekanik måste vi utgå från ett koordinatsystem fixerat i jordens medelpunkt med axelriktningar bestämda av fixstjärnorna. Vill man

2 Relativ rörelse 8 2 studera ännu storslagnare fenomen, som t ex planeternas rörelser, duger inte heller detta som inertialsystem, utan man får gå till ett system fixerat i solen. Och så vidare. Man kan fråga sig om det överhuvud taget finns något absolut inertialsystem, i vilket Newtons lagar är exakt giltiga. Frågan är strängt taget meningslös, eftersom vi vet att den klassiska mekaniken av andra skäl har ett begränsat giltighetsområde. Newtons teori kan betraktas som ett gränsfall av mera allmängiltiga teorier som kvantmekanik och allmän relativitetsteori. Särskilt den allmänna relativitetsteorin kastar ett nytt ljus över begreppet inertialsystem. Även om man i princip bör arbeta i ett inertialsystem när man tillämpar Newtons lagar så är det ofta opraktiskt att göra såṁan får t ex en mycket klumpig beskrivning av havsströmmars rörelser om man anger dem relativt ett stjärnfixt system. Funktionen hos en mekanisk apparat i ett svängande och dykande flygplan studerar man lämpligen i ett flygplansfixerat koordinatsystem, fastän det inte är ett inertialsystem. Vi behöver därför en metod att transformera accelerationslagen så att vi direkt kan arbeta i accelererade koordinatsystem utan att varje gång behöva ta omvägenöver ett inertialsystem. I detta kapitel skall vi presentera en sådan metod. 8.2 Grundläggande formler och begrepp Låt oss studera rörlesen hos en given partikel iförhållande till två olika koordinatsystem. Det ena koordinatsystemet antages vara ett inertialsystem, medan det andra är ett accelererat system. Partikelns lägevektor relativt inertialsystemet skriver vi som r = xe x + ye y + ze z där vi infört beteckningarna e x = î, e y = ĵ och e z = ˆk för basvektorerna i inertialsystemet, och där x, y och z är koordinaterna. För att beteckna koordinater och lägevektorer i det accelererade koordinatsystemet använder vi grekiska bokstäver. Lägevektorn skrivs alltså som ρ=ξe ξ +ηe η +ζe ζ där e ξ, e η och e ζ är basvektorerna i det accelererade systemet, och ξ, η och ζ är partikelns koordinater i detta system. Om båda koordinatsystemen har samma origo är r och ρ samma vektor. I annat fall gäller sambandet r = ρ + R där R är vektorn från origo O i inertialsystemet till origo Ω i det accelererade systemet. e z O e x I Y r(t) 1 ρ(t) Q Ω QQQs e R(t) ξ e y I fortsättningen skall vi använda ordet absolut för att beteckna hastighet och acceleration i förhållande till inertialsystemet och relativ för att beteckna motsvarande storheter i förhållande till det accelererade systemet. Vår uppgift är att finna sambanden mellan de absoluta och de relativa storheterna. För att göra detta utgår vi från ovanstående samband mellan den absoluta lägevektorn r och den relativa lägevektorn ρ, vilket vi skriver på formen e ζ r = ξe ξ + ηe η + ζe ζ + R Den absoluta hastigheten v finner vi genom att bilda tidsderivatan av r, varvidvimåste ta hänsyn till att såväl vektorn R som basvektorerna e ξ, e η och e ζ kan vara tidsberoende. e η

3 Relativ rörelse 8 3 Detta ger v = ξe ξ + ηe η + ζe ζ + + ξė ξ +ηė η +ζė ζ +Ṙ är representerar de tre första termerna partikelns relativa hastighet v rel, d v s den hastighet en observatör fixerad i det accelererade systemet skulle tillordna partikeln, om han inte vore medveten om att hans koordinatsystem rör sig. De återstående termerna representerar den hastighet partikeln får genom att följa med koordinatsystemet i dess rörelse. Dessa termer bildar tillsammans medföringshastigheten v med. Vi kan alltså skriva den absoluta hastigheten på formen v=v rel + v med förstå än de två andra bidragen. Den uppträder endast för roterande koordinatsystem, och vi skall senare diskutera dess innebörd utförligare. Bland annat skall vi se att det är coriolisaccelerationen som förklarar varför vindarna kring ett lågtryck och strömmarna i världshaven uppför sig som de gör. För ögonblicket nöjer vi oss med den formella definitionen och skriver alltså den absoluta accelerationen på formen där a=a rel + a med + a cor a rel = ξe ξ + ηe η + ζe ζ a med = ξë ξ + ηë η + ζë ζ + R a cor = 2( ξė ξ + ηė η + ζė ζ ) där v rel = ξe ξ + ηe η + ζe ζ v med = ξė ξ + ηė η + ζė ζ + Ṙ Newtons accelerationslag, som ju gälleri inertialsystem, får nu formen m(a rel + a med + a cor )=F Den absoluta accelerationen a finner vi på motsvarande sätt genom att derivera v m a p tiden och därvid ta hänsyn till tidsberoendet iallaingående termer. En rättframuträkning ger resultatet a = ξe ξ + ηe η + ζe ζ + + 2( ξė ξ + ηė η + ζė ζ )+ + ξë ξ +ηë η +ζë ζ + R där de tre första termerna i analogi med motsvarande termer i uttrycket för hastigheten utgör den relativa accelerationen a rel. De fyra sista termerna kommer enbart av koordinatsystemets rörelse, och de bildar tillsammans medföringsaccelerationen a med. I motsats till vad som gällde för hastigheten finner vi emellertid att accelerationen innehåller ytterligare tre termer, vilka beror av den relativa rörelsen och av koordinatsystemets rörelse. Dessa termer utgör den så kallade coriolisaccelerationen a cor, som kanske är lite svårare att Ett annat sätt att skriva samma ekvation är ma rel = F ma med ma cor Det första skrivsättet är det ur formell synpunkt mera naturliga och det som bäst återspeglar filosofin i Newtons mekanik. I högerledet står de verkande krafterna och i vänsterledet den acceleration de ger upphov till. Det senare skrivsättet är emellertid ofta ibättre samklang med hur en observatör som följer med det accelererade systemet upplever situationen. En observatör på jorden har t ex ingen direkt upplevelse av att hans koordinatsystem rör sig, och när han talar om en partikels acceleration menar han vanligen bara den relativa accelerationen. Ekvationen ovan visar att man kan räkna med Newtons andra lag på vanligt sätt även i ett accelererat koordinatsystem, om man lägger till ett par extra termer till kraften i högerledet. Man skriver alltså accelerationslagen på formen ma rel = F + F med + F cor

4 Relativ rörelse 8 4 där F med = ma med F cor = ma cor Sådana extra termer kallar vi fiktivkrafter, därför att de inte representerar växelverkan med omgivningen utan egentligen bara är accelerationsbidrag som flyttats över till fel sida av ekvationen. Ett exempel som vi skall stöta på är centrifugalkraften, som erhålles som ett specialfall av F med för roterande koordinatsystem. Det är ofta bekvämt att räkna med fiktivkrafter, och trots namnet kan de upplevas som mycket påtagliga, vilket många Lisebergsbesökare kan intyga. Vare sig vi väljer att arbeta med begreppet fiktivkrafter eller inte, måste vi kunna beräkna medföringsaccelerationen och coriolisaccelerationen. I följande avsnitt skall vi studera hur man går tillväga för att göra detta i olika situationer. 8.3 Koordinatsystem med ren translationsrörelse Vi skall börja med att betrakta den enklaste situationen, nämligen den att axelriktningarna i det accelererade systemet är fixa. Systemet säges dåutföra ren translationsrörelse. Eftersom basvektorerna e ξ, e η och e ζ är konstanta blir alla deras tidsderivator noll. Uttrycket för medföringshastigheten förenklas då till v med = Ṙ vilket helt enkelt är den hastighet varmed origo i det accelererade koordinatsystemet rör sig. På samma sätt reduceras uttrycket för medföringsaccelerationen till a med = R och coriolisaccelerationen försvinner helt och hållet. Accelerationslagen får alltså formen m(a rel + R) =F Exempel: En järnvägsvagn rör sig horisontellt och rätlinjigt med hastigheten v(t). Ställ upp rörelseekvationen för en partikel som glider på ett lutande plan i vagnen! t v(t) Vi väljer koordinatsystem enligt figuren med ξaxeln längs planet. Under förutsättning att partikeln inte lyfter från planet får den relativa accelerationen formen a rel = ξe ξ η θ t j ξ Medföringsaccelerationen kan skrivas R = ae x = a(e ξ cos θ + e η sin θ) där θ är planets lutningsvinkel och a = v(t) är vagnens acceleration. De krafter som verkar på partikelnär tyngdkraften W, normalkraften N och friktionskraften F. Dessa skriver vi på följande sätt: W = mg(e ξ sin θ e η cos θ) N = N e η F = F e ξ

5 Relativ rörelse 8 5 N Y F θ? W Accelerationslagen blir alltså m(a rel + R) =W+N+F vilket kan skrivas på den alternativa formen där ma rel = W + N + F + F med F med = m R Partikelns rörelse på det lutande planet kan alltså beskrivas genom att man utöver tyngdkraften och kontaktkrafterna inför en fiktiv kraft vilken är motriktad vagnens acceleration. F N Y F med? W Efter uppdelning i komponenter längs e ξ och e η ger accelerationslagen de två ekvationerna m( ξ + a cos θ) = mg sin θ F ma sin θ = mg cos θ + N Ur den andra av dessa ekvationer kan normalkraften N lösas: N = mg cos θ + ma sin θ Beroende på storlek och tecken hos vagnens acceleration a kan olika situationer inträffa. Vi noterar t ex att om a har ett tillräckligt stort negativt värde blir N negativ, vilket signalerar att partikeln lyfter från planet, såvida den inte är fastklistrad. I det fall att partikeln glider nedför planet gäller att F = fn, där f är friktionstalet. Accelerationen längs planet kan då lösas ur den första av ovanstående ekvationer, vilket ger ξ =(g fa)sinθ (a+fg)cosθ Vi ser här att ξ blir negativ om vagnens acceleration a har ett tillräckligt stort positivt värde. Det betyder att om partikeln ges en begynnelsehastighet nedför planet kommer dess rörelse att bromsas upp och eventuellt kan den istället börja glida uppåt längs planet. Man kan också genom att sätta ξ = 0 i ovanstående ekvationer studera villkoret för att partikeln skall kunna ligga i jämvikt på planet. Betrakta t ex specialfallet att planet är lodrätt, d v s θ =90. Jämviktsvillkoren blir då F = mg N = ma vilka är möjliga att satisfiera under förutsättning att a g/f. F ma? W N 8.4 Koordinatsystem med ren rotationsrörelse Antag att det accelererade koordinatsystemets rörelse består i att det roterar med vinkelhastigheten ω kring en viss axel A. Origo antages vara fixerat och kan få sammanfalla med origo i inertialsystemet. Som exempel kan man tänka på ett koordinatsystem fixerat på en roterande karusell med origo

6 Relativ rörelse 8 i mittpunkten. Ett annat exempel är ett koordinatsystem fixerat i jorden med origo i jordens medelpunkt. '$ η I ξ ω &% Villkoret att origo är fixerat innebär att tidsderivatorna av R försvinner ur uttrycken för hastighet och acceleration. Basvektorerna e ξ, e η och e ζ är däremot tidsberoende, och vi behöver finna uttryck för deras tidsderivator. För den skull börjar vi med det mera allmänna problemet att finna tidsderivatan av en vektor V, som roterar kring en axel A med vinkelhastigheten ω. Ett bekvämt sätt att matematiskt beskriva rotationsrörelsen är att introducera en rotationsvektor ω, definierad av uttrycket ω = ωe A där e A är en enhetsvektor längs rotationsaxeln. A e A ω V Pi P V θ Rotationsriktningen, tecknet på vinkelhastigheten ω och riktningen hos e A är relaterade till varandra enligt skruvregeln. Rotationsrörelsen innebär att spetsen hos den roterande vektorn V beskriver en cirkel kring rotationsaxeln. Av figuren framgår att cirkelns radie är V sin θ, där V är beloppet av V,ochθär vinkeln mellan vektorerna ω och V. Under tidsintervallet t vrider sig vektorn V såattdenfår tillskottet V. Tidsderivatan av V definieras som dv dt = lim V t 0 t och man inser att detta blir en vektor som tangerar cirkeln och är vinkelrät mot ω och V.Igränsen då t 0gäller att V ω tv sin θ och tidsderivatans belopp ges alltså av dv dt = lim V t 0 t = ωv sin θ Kombinerar vi detta med ovanstående argument om riktningen hos derivatan finner vi att resultatet kan skrivas som en vektoriell produkt: dv dt = ω V Detta gäller alltså för varje roterande vektor, inklusive basvektorerna e ξ, e η och e ζ. Vi kan nu beräkna de olika bidrag till hastigheten och accelerationen som definierades i avsnitt 1. För medföringshastigheten finner vi t ex med Ṙ =0: v med = ξė ξ + ηė η + ζė ζ + Ṙ = = ξω e ξ + ηω e η + ζω e ζ = = ω (ξe ξ + ηe η + ζe ζ ) där termerna inom parentes i sista ledet igenkänns som komponentframställningen av den relativa lägevektorn ρ. Resultatet blir alltså v med = ω ρ På samma sätt kan vi gå vidareochberäkna högre derivator. För andraderivatan av basvektorn e ξ finner vi t ex ë ξ = dω dt e ξ + ω (ω e ξ ) där vi tagit hänsyn till att rotationsvektorn ω kan vara tidsberoende. Såväl vinkelhastigheten som rotationsaxelns riktning kan ändras med tiden.

7 Relativ rörelse 8 7 Det äe nu en enkel sak att beräkna medföringsaccelerationen och coriolisaccelerationen enligt definitionerna i avsnitt 1. Med användning av ovanstående formler finner vi att a med = dω ρ + ω (ω ρ) dt a cor = 2ω v rel Medföringsaccelerationen består som synes av två termer. Ett vanligt specialfall är att rotationsvektorn är konstant, och i så fall överlever endast den sista av dessa. Genom att utföra de vektoriella multiplikationerna finner man att den representerar en acceleration som alltid är riktad in mot rotationsaxeln och har storleken lω 2,där l är det vinkelräta avståndet från rotationsaxeln. Detta bidrag är känt under namnet centripetalaccelerationen. ω ρ ω (ω ρ) Av uttrycket för coriolisavvelerationen framgår att den endast uppträder för partiklar som rör sig relativt det roterande systemet. Vidare ser man att coriolisaccelerationen alltid är vinkelrät mot den relativa hastigheten. Exempel: En person som åker karusell har ingen acceleration relativt karusellen. Däremot har han en centripetalacceleration på grund av att han följer med karusellen och alltså rör sig i en cirkulär bana. För att åstadkomma en sådan acceleration krävs enligt Newtons andra lag en kraft som är riktad åt samma håll som accelerationen, d v s in mot centrum. Denna så kallade centripetalkraft utgörs av friktionskraft från underlaget, tryckkraft från en stolsrygg eller något liknande, och den är alltsåenpåtaglig reell kraft som kommer från kontakten med materiella objekt i omgivningen. Någon annan kraft behöver inte införas. Karusellåkaren vill emellertid gärna beskriva situationen på ett helt annat sätt. an upplever sig vara påverkadavenutåtriktad centrifugalkraft som uppstår på grund av rotationen och som precis uppväger centripetalkraften så attåkaren förblir i vila relativt karusellen. Som vi förut sett är skillnaden mellan Newtons synsätt och krausellåkarens synsätt egentligen bara att en term, som enligt Newton hör hemma i vänsterledet av ekvationen ma = F. av karusellåkaren omedvetet flyttas över till högersidan av ekvationen och därigenom tolkas som en kraft. Antag att vår karusellåkare kastar iväg en boll eller något annat föremål. När handen har släppt fóremålet påverkas det inte längre av någon annan kraft än tyngdkraften och ett försumbart luftmotstånd. En iakttagare utanför karusellen kommer därför att se föremålet beskriva en kastparabel vars projektion på horisontalplanet är en rät linje. För iakttagaren på den roterande karusellen ser emellertid den räta linjen ut som en spiral, d v s han upplever att föremålets bana hela tiden böjer av åt ena sidan. Det ser alltså ut som om föremålet påverkas av en mystisk sidoriktad kraft. Denna är inget annat än corioliskraften, d v s den tidigare introducerade fiktivkraft som svarar mot coriolisaccelerationen. För att beskriva situationen i mera matematiska termer förenklar vi karusellen till en horisontell vändskiva som roterar

8 Relativ rörelse 8 8 kring en vertikal axel med den konstanta vinkelhastigheten ω. Påskivan finns en partikel med massan m, vars rörelse vi vill undersöka. Om vi inför ett roterande koordinatsystem med ξaxeln och ηaxeln i skivans plan finner vi att η F ξ η ω = ωe ζ ρ a rel = ξe ξ + ηe η ξ a med = ω (ω ρ) = ω 2 ρ e ξ e η e ζ a cor = 2ω v rel =2ω ξ η 0 = 2ω( ηe ξ + ξe η ) Rörelseekvationerna i komponentform blir således m( ξ 2ω η ω 2 ξ) = F ξ m( η +2ω ξ ω 2 η) = F η Dessa kan sedan studeras i olika specialfall. Man kan t ex bestämma den kraft som krävs för att partikeln skall vara i vila relativt skivan, vilket innebär att ξ och η skall vara konstanta. Man finner då F ξ = mω 2 ξ F η = mω 2 η vilket är den centripetalkraft som enligt observatören på karusellen krävs för att kompensera den utåtriktade centrifugalkraften. En annan tänkbar rörelse är att partikeln rör sig utåt längs ξaxeln med den konstanta farten v rel relativt skivan, vilket betyder att η = ζ = 0, ξ = v rel och η =0. Mankantextänka sig att partikeln glider i ett spår på skivan. Den kraft som krävs för att realisera en sådan rörelse ges av F ξ = mω 2 ξ F η = 2mωv rel En observatör som följer med skivan i dess rotation skulle kunna beskriva situationen genom att säga att det krävs dels en kraft in mot centrum för att kompensera centrifugalkraften, dels en kraft åt vänster för att kompensera den åt höger verkande corioliskraften. För en observatör utanför skivan existerar emellertid varken centrifugalkraft eller corioliskraft. an ser helt enkelt en partikel som rör sig i en spiralformad bana under inverkan av en kraft med komponenterna F ξ och Fη enligt ovan. Ett annat intressant specialfall är att partikeln är fritt rörlig på skivan men bromsas av en glidfriktion med friktionstalet f. Friktionskraften är motriktad den relativa hastigheten och ges av uttrycket F = fmg v rel v rel vilket efter komponentuppdelning och insättning i ovanstående rörelseekvationer leder till ett mycket komplicerat

9 Relativ rörelse 8 9 system av differentialekvationer, som vi inte kan lösa analytiskt. 8.5 Det allmänna fallet Rörelsen hos ett godtyckligt koordinatsystem består dels i att origo flyttar sig, dels i att koordinataxlarna ändrar riktning. Origos rörelse kan vi alltid beskriva med hjälp av en translationsvektor R(t). Man frågar sig om koordinataxlarnas rörelse på liknande sätt alltid kan beskrivas med hjälpavenrotationsvektor ω(t). Svaret är ja, vilket vi nu skall bevisa. Vi börjar med att konstatera arr tidsderivatan av en godtycklig vektor själv är en vektor, som kan delas upp i komposanter längs basvektorerna e ξ, e η och e ζ. Alltså kan vi alltid skriva O e z e x e y e ζ e η AK A R(t) A A R A ω(t) Ω j e ξ vilket leder till slutsatsen att a 11 = 0. På samma sätt ser vi att a 22 = a 33 =0. Vidare gäller att hur än basvektorerna vrider sig såmåste de förbli ortogonala mot varandra. Alltså gäller t ex att e ξ e η =0 vilket efter derivering m a p tiden ger ė ξ e η + e ξ ė η =0 Insättning av komposantframställningen för ė ξ och ė η ger nu sambandet och på samma sätt a 12 = a 21 a 23 = a 32 a 31 = a 13 Endast tre av koefficienterna a ij är alltså oberoende av varandra. Vi kan sammansätta dessa till en vektor ω genom definitionen ω = a 23 e ξ + a 31 e η + a 12 e ζ och vi finner då att ė ξ = ω e ξ ė ξ = a 11 e ξ + a 12 e η + a 13 e ζ ė η = a 21 e ξ + a 22 e η + a 23 e ζ ė ζ = a 31 e ξ + a 32 e η + a 33 e ζ där koefficienterna a 11,a 12, etc är tills vidare okända storheter. De kan emellertid inte se ut hur som helst, eftersom basvektorerna måste uppfylla vissa villkor. För det första är de enhetsvektorer, vilket t ex innebär att e ξ e ξ =1 Deriverar vi denna likhet m a p tiden finner vi att ė ξ e ξ =0 ė η = ω e η ė ζ = ω e ζ vilket visar att koordinataxlarna utför rotationsrörelse bestämd av vektorn ω. Notera att inget hindrar att koefficienterna a ij och därmed rotationsvektorn ω är tidsberoende. Vikannumedutgångspunkt från definitionerna i avsnitt 1 skriva ner de allmänna uttrycken för medförningsaccelerationen och coriolisaccelerationen för ett koordinatsystem med godtycklig rörelse: a med = dω R + ρ + ω (ω ρ) dt a cor = 2ω v rel

10 Relativ rörelse 8 10 Exempel: Ett tåg passerar en plan, horisontell kurva med radien b och retarderas så att farten varierar enligt v = v 0 ct där c och v 0 är konstanter. Inför ett rörligt koordinatsystem med ζaxeln vertikalt uppåt och ξaxeln i tågets rörelseriktning. Bestäm medföringsaccelerationen och coriolisaccelerationen för en partikel i tåget som befinner sig nära origo! Vi har att e η O b e ξ ω = v b e ζ = v 0 ct e ζ b R = be η v rel = ξe ξ + ηe η + ζe ζ För att beräkna medföringsaccelerationen bildar vi först derivatorna av R, som ju är en roterande vektor: Ṙ = ω R R = dω R + ω (ω R) dt Medföringsaccelerationen kan alltså skrivas a med = dω dt (R + ρ)+ω [ω (R+ρ)] sidan av R, och en explicit beräkning ger då a med = ce ξ + v2 b e η Coriolisaccelerationen blir e ξ e η e ζ v a cor =2 0 0 b =2 v ξ η ζ b ( ηe ξ+ ξe η ) För en partikel i fritt fall som endast påverkas av tyngdkraften blir rörelseekvationerna m( ξ 2 v η c) b = 0 m( η +2 v ξ+ b b ) = 0 m ζ = mg Alternativt kan man skriva de två första ekvationerna som m ξ = m(2 v η + c) b m η = m(2 v ξ b + v2 b ) där termerna i högerledet representerar fiktivkrafter. 8. Tillämpning på rörelse relativt jorden Vi skall nu tillämpa den allmänna teorin på ett koordinatsystem som är fixerat i jorden. Låt oss lägga origo på jordytan, ξaxeln åt öster,, ηaxeln åt norr och ζaxeln vertikal uppåt. ω α O η I R ζ Eftersom partikeln förutsätts vara nära origo kan vi försumma vektorn ρ vid

11 Relativ rörelse 8 11 Rotationsvektorn för koordinatsystemet är densamma som för jorden, d v s den är riktad längs jordaxeln från sydpolen mot nordpolen och har en storlek svarande mot 2π radianer per dygn. Egentligen är rotationsvektorn inte exakt konstant, utan både storlek och riktning fluktuerar en smula, men fluktuationerna är helt försumbara i detta sammanhang. Koordinatsystemets translationsrörelse beskrivs av vektorn R från jordens medelpunkt O till vårt rörliga origo Ω. Medföringsaccelerationen kan alltså skrivas a med = R + ω (ω ρ Vektorn R utför ren rotationsrörelse, och vi finner alltså dess tidsderivator genom upprepad vektoriell multiplikation med rotationsvektorn, vilket leder till a med = ω [ω (R + ρ)] Vid rörelse nära punkten Ω kan vi försumma ρ ijämförelse med R, såatt a med = R = ω (ω R) Detta är en centripetalacceleration riktad in mot jordaxeln. Den är störst vid ekvatorn och blir noll vid polerna. e η ω I α e ζ där α är vinkeln mellan jordaxeln och den vertikala ζaxeln och alltsåbestäms av latituden för punkten Ω. Vi finner då att e ξ e η e ζ a cor =2ω v rel =2ω 0 sinα cos α = ξ η ζ [ 2ω ( ζ sin α η cos α)e ξ + ξ cos αe η ξ ] sin αe ζ Vi kan nu skriva ner accelerationslagen, och vi väljer att ta hänsyn till koordinatsystemets rörelse genom att införa fiktiva krafter ihögerledet: där ma rel = F + F med + F cor F med = ma med = m R F cor = ma cor = 2mω v rel S W? F med Låt oss först betrakta en partikel som hänger ientrådoch befinner sig i vila relativt jorden. De krafter som verkar utöver den fiktiva centrigugalkraften F med är kraften S i linan och tyngdkraften W. Vi får alltså jämviktsvillkoret S + W + F med =0 För att beräkna coriolisaccelerationen utgår vi från uttrycken v rel = ξe ξ + ηe η + ζe ζ ω = ωsin αe η + ω cos αe ζ vilket visar att linkraften S måste kompensera såväl tyngdkraften W som centrifugalkraften F med. I själva verket har vi ingen möjlighet att skilja dessa två åt, utan det är deras summa vi normalt mäter när vi väger en

12 Relativ rörelse 8 12 kropp eller bestämmer vertikallinjen med ett lod. Vi sammanför dem därför till en effektiv tyngdkraft W eff = W + F med = W m R Det är denna effektiva tyngdkraft som definierar den vertikala ζriktningen och vi kan därför skriva W eff = mge ζ där g som vanligt betecknar accelerationen vid fritt fall. Denna varierar något mellan olika punkter på jordytan, främst just för att den innehåller ett bidrag från centrifugalkraften. Det är dock ganska komplicerat att beräkna variationen, eftersom man måste ta hänsyn till att jordens form av samma skäl blir något tillplattad. S är eliminerade. Betrakta för den skull en partikel som glider på ett glatt horisontalplan. Då gäller m ξ = 2mω η cos α m η = 2mωξ cos α Efter integration m a p tiden ger detta m ξ = 2mω(η η 0 )cosα m η = 2mω(ξ ξ 0 )cosα där η 0 och ξ 0 är integrationskonstanter. Genom att eliminera η finner vi sedan ξ +(2ωcos α) 2 (ξ ξ 0 )=0 Den allmänna lösningen till denna differentialekvation är ξ = ξ 0 + R 0 cos(2ωt cos α + θ 0 ) där R 0 och θ 0 är integrationskonstanter. Ur ekvationen för η fås vidare? dw eff η = η 0 R 0 sin(2ωt cos α + θ 0 ) Accelerationslagen kan nu skrivas ma rel = F + W eff + F cor där F stårför alla pålagda krafter utöver tyngdkraften. På komponentformfår vi ekvationerna m ξ = F ξ 2mω( ζ sin α η cos α) m η = F η 2mω ξ cos α m ζ = F ζ mg +2mωξ cos α Exempel: För att illustrera hur corioliskraften påverkar rörelsen skall vi studera ett enkelt exempel, därallaandrakrafter Vi ser nu att partikeln rör sig i en cirkelformig bana med ekvationen (ξ ξ 0 ) 2 +(η η 0 ) 2 =R 2 0 Omloppsriktningen bestäms av tecknet påcosα. Man övertygar sig lätt om att banan genomlöps medurspå norra halvklotet, där cos α > 0. På södra halvklotet gäller motsatsen. Partikeln uppför sig alltså som om den påverkades av en kraft riktad åt höger på norra kalvklotet och åt vänster på södra halvklotet. Detta är naturligtvis inget annat än horisontalkomponenten av corioliskraften.

13 Relativ rörelse 8 13 η η 0 '$ &% I R 0 ξ 0 ξ Banradien R 0 beror av partikelns hastighet. Ur ovanstående ekvationer finner vi lätt att vrel 2 = ξ 2 + η 2 =R 2 0 (2ω cos α)2 vilket alltså ger R 0 = v rel 2ω cos α Antag t ex att v rel = 10 m/s och cos α = 0.7. Med ω =2π(24 300) 1 rad/s fås radien R 0 =10 5 m = 10 mil. För normala hastigheter blir banradien mycket stor, vilket återspeglar att corioliskraften är mycket liten. Den kan trots detta spela en väsentlig roll vid storskaliga rörelser. En blick på enkarta över strömmarna i världshaven räcker för att man skall se att de tenderar att cirkulera medurs på norra halvklotet och moturs på södra halvklotet. För vindarna kring ett lågtryck spelar krafter från tryckskillnader en väsentlig roll.

Mekanik Föreläsning 8

Mekanik Föreläsning 8 Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln

Läs mer

Komihåg 5: ( ) + " # " # r BA Accelerationsanalys i planet: a A. = a B. + " # r BA

Komihåg 5: ( ) +  #  # r BA Accelerationsanalys i planet: a A. = a B. +  # r BA 1 Föreläsning 6: Relativ rörelse (kap 215 216) Komihåg 5: ( ) Accelerationssamb: a A = a B + " # r BA + " # " # r BA Accelerationsanalys i planet: a A = a B " d BA # 2 e r + d BA # e # Rullning på plan

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

=v sp. - accelerationssamband, Coriolis teorem. Kraftekvationen För en partikel i A som har accelerationen a abs

=v sp. - accelerationssamband, Coriolis teorem. Kraftekvationen För en partikel i A som har accelerationen a abs 1 Föreläsning 7: Fiktiva (tröghets-)krafter (kap A) Komihåg 6: Absolut och relativ rörelse för en partikel - hastighetssamband: v abs = v O' + # r 1 42 4 3 rel + v rel =v sp - accelerationssamband, Coriolis

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP00, Fysikprogrammet termin 2 Tid: Plats: Ansvarig: Hjälpmedel: Lödag 29 maj 200, kl 8 30 3 30 V-huset Lennart Sjögren,

Läs mer

Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål.

Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål. 1 KOMIHÅG 8: --------------------------------- Hastighet: Cylinderkomponenter v = r e r + r" e " + z e z Naturliga komponenter v = ve t Acceleration: Cylinderkomponenter a = ( r " r# 2 )e r + ( r # + 2

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del FFM50 Tid och plats: Måndagen den 3 maj 011 klockan 14.00-18.00 i V. Lösningsskiss: Christian Forssén Obligatorisk del 1. a 1 och är identiska vid ekvatorn. Centripetalaccelerationen

Läs mer

6.3 Partikelns kinetik - Härledda lagar Ledningar

6.3 Partikelns kinetik - Härledda lagar Ledningar 6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill

Läs mer

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.

Läs mer

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION 1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen

Läs mer

Laboration: Roterande Referenssystem

Laboration: Roterande Referenssystem INSTITUTIONEN FöR FYSIK OCH ASTRONOMI Laboration: Roterande Referenssystem Laborationsinstruktionen innehåller teori, diskussioner och beskrivningar av de experiment som ska göras. Mål: Att få erfarenhet

Läs mer

6.2 Partikelns kinetik - Tillämpningar Ledningar

6.2 Partikelns kinetik - Tillämpningar Ledningar 6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste

Läs mer

" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar

 e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 24 augusti 2009 klockan 08.30-12.30 i V. Lösningsskiss: Christian Forssén. Obligatorisk del 1. Rätt svarsalternativ på de sex frågorna är:

Läs mer

Tentamen i Mekanik - Partikeldynamik TMME08

Tentamen i Mekanik - Partikeldynamik TMME08 Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen

Läs mer

Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.

Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. 1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter kursen och/eller

Läs mer

= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O

= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O 1 KOMIHÅG 15: --------------------------------- Definitioner: Den potentiella energin, mekaniska energin Formulera: Energiprincipen ---------------------------------- Föreläsning 16: FLER LAGAR-härledning

Läs mer

Tillämpad biomekanik, 5 poäng Övningsuppgifter

Tillämpad biomekanik, 5 poäng Övningsuppgifter , plan kinematik och kinetik 1. Konstruktionen i figuren används för att överföra rotationsrörelse för stången till en rätlinjig rörelse för hjulet. a) Bestäm stångens vinkelhastighet ϕ& som funktion av

Läs mer

ALTERNATIVA KOORDINATSYSTEM -Cylindriska koordinatsystem. De polära koordinaterna r och " kan beskriva rörelsen i ett xyplan,

ALTERNATIVA KOORDINATSYSTEM -Cylindriska koordinatsystem. De polära koordinaterna r och  kan beskriva rörelsen i ett xyplan, KOMIHÅG 8: --------------------------------- Rörelsemängd: p = mv, Kinematiska storheter: r ( t), v ( t), a ( t) Kinematiska samband med begynnelsevillkor 1 Föreläsning 9: ALTERNATIVA KOORDINATSYSTEM -Cylindriska

Läs mer

9.2 Kinetik Allmän plan rörelse Ledningar

9.2 Kinetik Allmän plan rörelse Ledningar 9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,

Läs mer

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11 Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER

Läs mer

Datum: , , , ,

Datum: , , , , RR:1 Instruktion till laborationen ROTERANDE REFERENSSYSTEM Författare: Lennart Selander, Svante Svensson Datum: 2000-02-21, 2004-12-02, 2006-12-01, 2012-02-03, 2013-01-22 Mål Att få erfarenhet av de fenomen

Läs mer

Hanno Essén Lagranges metod för en partikel

Hanno Essén Lagranges metod för en partikel Hanno Essén Lagranges metod för en partikel KTH MEKANIK STOCKHOLM 2004 1 Inledning Joseph Louis Lagrange (1763-1813) fann en metod som gör det möjligt att enkelt ta fram rörelseekvationerna för system

Läs mer

Definitioner: hastighet : v = dr dt = r fart : v = v

Definitioner: hastighet : v = dr dt = r fart : v = v KOMIHÅG 8: --------------------------------- Jämvikten kan rubbas: stjälpning, glidning Flexibla system- jämvikt bara i jämviktslägen ---------------------------------- Föreläsning 9: PARTIKELKINEMATIK

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 16 augusti 2010 klockan 14.00-18.00 i V. Lösningsskiss: Christian Forssén. Obligatorisk del 1. Rätt svar på de sex deluppgifterna: SFF SFS.

Läs mer

NEWTONS 3 LAGAR för partiklar

NEWTONS 3 LAGAR för partiklar wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir

Läs mer

LÖSNINGAR TENTAMEN MEKANIK II 1FA102

LÖSNINGAR TENTAMEN MEKANIK II 1FA102 LÖSNINGAR TENTAMEN 16-10-20 MEKANIK II 1FA102 A1 Skeppet Vidfamne 1 har en mast som är 11,5 m hög. Seglet är i överkant fäst i en rå (en stång av trä, ungefär horisontell vid segling). För att kontrollera

Läs mer

Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: e y e z. e z )

Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: e y e z. e z ) 1 Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: H O = "I xz e x " I yz e y + I z e z H G = "I xz ( ) ( G e x " I G yz e y + I G z e z ) # (fixt origo, kroppsfix bas) # (kroppsfix

Läs mer

9.1 Kinetik Rotation kring fix axel Ledningar

9.1 Kinetik Rotation kring fix axel Ledningar 9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn

Läs mer

Repetition Mekanik Fy2 Heureka 2: kap. 2, 3.1-3, version 2016

Repetition Mekanik Fy2 Heureka 2: kap. 2, 3.1-3, version 2016 Repetition Mekanik Fy2 Heureka 2: kap. 2, 3.1-3, 4.1-3 version 2016 Kraftmoment (vridmoment) En krafts förmåga att vrida ett föremål runt en vridningsaxel kallas för kraftmoment (vridmoment). Moment betecknas

Läs mer

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2 Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π

Läs mer

Arbete och effekt vid rotation

Arbete och effekt vid rotation ˆ F rˆ Arbete och effekt vid rotation = Betrakta den masslösa staven med längden r och en partikel med massan m fastsatt i änden. Arbetet som kraften ሜF uträttar vid infinitesimal rotation d blir då: ds

Läs mer

KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi

KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag ----------------------------------------- Föreläsning 11: Arbete och lagrad (potentiell) energi Definition av arbete: U 0"1 = t 1 t 1 # Pdt = # F v dt,

Läs mer

AB2.1: Grundläggande begrepp av vektoranalys

AB2.1: Grundläggande begrepp av vektoranalys AB2.1: Grundläggande begrepp av vektoranalys En vektor är en storhet som dels har icke-negativ storlek dels har riktning i rummet. Två vektorer a och b är lika, a = b, om de har samma storlek och samma

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket

Läs mer

Speciell relativitetsteori inlämningsuppgift 2

Speciell relativitetsteori inlämningsuppgift 2 Speciell relativitetsteori inlämningsuppgift 2 Christian von Schultz 2006 11 29 1 Tre satser Vi definierar en rumslik vektor A som en vektor som har A 2 < 0; en tidslik vektor har A 2 > 0 och en ljuslik

Läs mer

Tentamen i SG1140 Mekanik II för M, I. Problemtentamen

Tentamen i SG1140 Mekanik II för M, I. Problemtentamen 2010-10-23 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del (FFM50) Tid och plats: Tisdagen den 5 maj 010 klockan 08.30-1.30 i V. Lösningsskiss: Per Salomonsson och Christian Forssén. Obligatorisk del 1. Rätt svar på de fyra deluppgifterna

Läs mer

II. Partikelkinetik {RK 5,6,7}

II. Partikelkinetik {RK 5,6,7} II. Partikelkinetik {RK 5,6,7} med kraft att beräkna och förstå Newtons lagar och kraftbegreppet är mycket viktiga för att beskriva och förstå rörelse Kenneth Järrendahl, 1: Tröghetslagen Newtons Lagar

Läs mer

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt i fysik åk 9, VT03 och kompletterande teorimateriel Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt, VT 03 Antal lektioner: fem st. (9 jan, 16 jan, 3 jan, 6 feb,

Läs mer

Andra EP-laborationen

Andra EP-laborationen Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med

Läs mer

Föreläsning 5: Acceleration och tidsderivering (kap ) . Sambandet mellan olika punkters hastigheter i en stel kropp: v A

Föreläsning 5: Acceleration och tidsderivering (kap ) . Sambandet mellan olika punkters hastigheter i en stel kropp: v A 1 Föreläsning 5: Acceleration och tidsderivering (kap 212-215) Komihåg 4: Vinkelhastighetsvektorn " = # e z Skillnadsvektorn mellan två punkter i stel kropp kan bara vrida sig: r BA = " # r BA Sambandet

Läs mer

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från

Läs mer

Tid läge och accelera.on

Tid läge och accelera.on Tid läge och accelera.on Tid t Läge x = x(t) Hastighet v(t) = dx dt x(t) = Acceleration a(t) = dv dt v(t) = t t0 v(t)dt t t 0 a(t)dt Eq 1 Eq 2 Eq 3 MEN KOM IHÅG: 1. För a> de>a skall vara användbart måste.dsberoendet

Läs mer

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Läsåret 11/12 Utförliga lärandemål SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Richard Hsieh Huvudsakligt innehåll: Vektoralgebra och dimensionsbetraktelser. Kraft och kraftmoment. Kraftsystem; kraftpar,

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med

Läs mer

Tentamen Mekanik F del 2 (FFM521 och 520)

Tentamen Mekanik F del 2 (FFM521 och 520) Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Hjälpmedel: Physics Handbook, Beta samt en egenhändigt handskriven A4 med valfritt innehåll (bägge

Läs mer

Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar.

Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar. öreläsning 2,dynamik Partikeldynamik handlar om hur krafter påverkar partiklar. Exempel ges på olika typer av krafter, dessa kan delas in i mikroskopiska och makroskopiska. De makroskopiska krafterna kan

Läs mer

Grundläggande om krafter och kraftmoment

Grundläggande om krafter och kraftmoment Grundläggande om krafter och kraftmoment Text: Nikodemus Karlsson Original character art by Esa Holopainen, http://www.verikoirat.com/ Krafter - egenskaper och definition Vardaglig betydelse Har med påverkan

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 005-05-7 Tentamen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En homogen stång med massan m är fäst i ena änden i en fritt vridbar

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den

Läs mer

Om den lagen (N2) är sann så är det också sant att: r " p = r " F (1)

Om den lagen (N2) är sann så är det också sant att: r  p = r  F (1) 1 KOMIHÅG 12: --------------------------------- Den mekaniska energin, arbetet ---------------------------------- Föreläsning 13: FLER LAGAR-härledning ur N2 Momentlag Hur påverkas rörelsen av ett kraftmoment??

Läs mer

Lösningsförslat ordinarie tentamen i Mekanik 2 (FFM521)

Lösningsförslat ordinarie tentamen i Mekanik 2 (FFM521) Lösningsförslat ordinarie tentamen i Mekanik (FFM5) 08-06-0. Baserat på Klassiker Ett bowlingklot med radie r släpps iväg med hastighet v 0 utan rotation. Initialt glider den mot banan, och friktionen

Läs mer

Veckoblad 1, Linjär algebra IT, VT2010

Veckoblad 1, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Översikt Kursintroduktion Kursens syfte och mål Kursprogram Upprop Inledande föreläsning Föreläsning: Kapitel 1. Introduktion till statik Kapitel 2. Att räkna med krafter

Läs mer

Vi har väl alla stått på en matta på golvet och sedan hastigt försökt förflytta

Vi har väl alla stått på en matta på golvet och sedan hastigt försökt förflytta Niclas Larson Myra på villovägar Att modellera praktiska sammanhang i termer av matematik och att kunna använda olika representationer och se samband mellan dessa är grundläggande förmågor som behövs vid

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

Målsättningar Proffesionell kunskap om mekanik. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.

Målsättningar Proffesionell kunskap om mekanik. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. 1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap om mekanik. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter

Läs mer

Introduktion till Biomekanik, Dynamik - kinetik VT 2006

Introduktion till Biomekanik, Dynamik - kinetik VT 2006 Kinetik Kinematiken: beskrivning av translationsrörelse och rotationsrörelse Kinetik: Till rörelsen kopplas även krafter och moment liksom massor och masströghetsmoment. Kinetiken är ganska komplicerad,

Läs mer

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer

Läs mer

Inre krafters resultanter

Inre krafters resultanter KOMIHÅG 6: --------------------------------- Torr friktion: F " µn Normalkraftens angrepp?? Risk för glidning eller stjälpning ---------------------------------- Föreläsning 7: Inre krafters resultanter

Läs mer

Tentamen i Mekanik - partikeldynamik

Tentamen i Mekanik - partikeldynamik Tentaen i Mekanik - partikeldynaik TMME08 011-01-14, kl 8.00-1.00 Tentaenskod: TEN1 Tentasal: Exainator: Peter Schidt Tentajour: Peter Schidt, Tel. 8 7 43, (Besöker salarna ca 9.00 och 11.00) Kursadinistratör:

Läs mer

Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00

Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 GÖTEBORGS UNIVERSITET HT 018 Institutionen för fysik EXEMPELTENTAMEN Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 Examinator: Hjälpmedel: Carlo Ruberto Valfri tabell- och formelsamling för gymnasiet

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

Mekanik F, del 2 (FFM521)

Mekanik F, del 2 (FFM521) Mekanik F, del (FFM51) Ledningar utvalda rekommenderade tal Christian Forssén, christianforssen@chalmersse Uppdaterad: April 4, 014 Lösningsskissar av C Forssén och E Ryberg Med reservation för eventuella

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 4

LEDNINGAR TILL PROBLEM I KAPITEL 4 LEDNINAR TILL PROBLEM I KAPITEL 4 LP 4.3 Tyngdkraften, normalkraften och friktionskraften verkar på lådan. Antag att normalkraftens angreppspunkt är på avståndet x från lådans nedre vänstra hörn. Kraftekvationen

Läs mer

Lösningsskiss för tentamen Mekanik F del 2 (FFM521/520)

Lösningsskiss för tentamen Mekanik F del 2 (FFM521/520) Lösningsskiss för tentamen Mekanik F del 2 (FFM521/520) Tid och plats: Tisdagen den juni 2014 klockan 08.0-12.0 i M-huset. Lösningsskiss: Christian Forssén Obligatorisk del 1. Ren summering över de fyra

Läs mer

Tentamen i SG1140 Mekanik II för M, I. Problemtentamen

Tentamen i SG1140 Mekanik II för M, I. Problemtentamen 2011-10-22 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Den kvadratiska skivan i den plana mekanismen i figuren har

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)

Läs mer

Tentamen i SG1140 Mekanik II. Problemtentamen

Tentamen i SG1140 Mekanik II. Problemtentamen 010-01-14 Tentamen i SG1140 Mekanik II KTH Mekanik 1. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet

Läs mer

.4-6, 8, , 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse

.4-6, 8, , 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse .4-6, 8, 12.5-6, 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse Exempel på roterande koordinatsystem planpolära eller cylindriska koordinater Storhet Beteckning Enhet Fysikalisk

Läs mer

Stelkroppsmekanik partiklar med fixa positioner relativt varandra

Stelkroppsmekanik partiklar med fixa positioner relativt varandra Stelkroppsmekanik partiklar med fixa positioner relativt varandra Rörelse relativt mass centrum Allmänt partikelsystem Stel kropp translation + rotation (cirkelrörelse) För att kunna beskriva och förstå

Läs mer

SF1626 Flervariabelanalys

SF1626 Flervariabelanalys 1 / 28 SF1626 Flervariabelanalys Föreläsning 2 Hans Thunberg Institutionen för matematik, KTH VT 2018, Period 4 2 / 28 SF1626 Flervariabelanalys Dagens lektion: avsnitt 11.1 11.3 Funktioner från R till

Läs mer

Laboration 1 Mekanik baskurs

Laboration 1 Mekanik baskurs Laboration 1 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Gravitationen är en självklarhet i vår vardag, de är den som håller oss kvar på jorden. Gravitationen

Läs mer

Introhäfte Fysik II. för. Teknisk bastermin ht 2018

Introhäfte Fysik II. för. Teknisk bastermin ht 2018 Introhäfte Fysik II för Teknisk bastermin ht 2018 Innehåll Krafter sid. 2 Resultant och komposanter sid. 5 Kraft och acceleration sid. 12 Interna krafter, friläggning sid. 15 1 Kraftövningar De föremål

Läs mer

Tentamen Mekanik F del 2 (FFM521 och 520)

Tentamen Mekanik F del 2 (FFM521 och 520) Tentamen Mekanik F del (FFM51 och 50 Tid och plats: Lösningsskiss: Fredagen den 17 januari 014 klockan 08.30-1.30. Christian Forssén Obligatorisk del 1. Endast kortfattade lösningar redovisas. Se avsnitt

Läs mer

Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B = v A + ω AB

Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B = v A + ω AB . Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B v A + ω AB motsvarande samband för accelerationer: a B a A + ω ω AB + a AB. Tolka termerna i uttrycket för specialfallet plan rörelse

Läs mer

Spiralkurvor på klot och Jacobis elliptiska funktioner

Spiralkurvor på klot och Jacobis elliptiska funktioner Spiralkurvor på klot och Jacobis elliptiska funktioner Sammanfattning Anders Källén MatematikCentrum LTH anderskallen@gmail.com I den här artikeln ska vi ta en titt på en tillämpning av Jacobis elliptiska

Läs mer

Laboration 2 Mekanik baskurs

Laboration 2 Mekanik baskurs Laboration 2 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Friktionskraft är en förutsättning för att våra liv ska fungera på ett mindre omständigt sätt. Om friktionskraften

Läs mer

" e n och Newtons 2:a lag

 e n och Newtons 2:a lag KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar

Läs mer

Basala kunskapsmål i Mekanik

Basala kunskapsmål i Mekanik Basala kunskapsmål i Mekanik I kunskapsmålen nedan används termerna definiera, förklara och redogöra återkommande. Här följer ett försök att klargöra vad som avses med dessa. Definiera Skriv ner en definition,

Läs mer

Prov Fysik 2 Mekanik

Prov Fysik 2 Mekanik Prov Fysik 2 Mekanik Instruktion för elevbedömning: Efter varje fråga finns tre rutor. Rutan till vänster ska ha en lösning på E-nivå. Om det går att göra en lösning som är klart bättre - på C-nivå - då

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, typgodkänd kalkylator, lexikon, samt en egenhändigt skriven A4-sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, typgodkänd kalkylator, lexikon, samt en egenhändigt skriven A4-sida med valfritt innehåll. Tentamen i Mekanik för F, del 2 (gäller även som tentamen i Mekanik F, del B) Tisdagen 16 augusti 2005, 14.00-18.00, V-huset Examinator: Martin Cederwall Jour: NN, tel. 772???? Tillåtna hjälpmedel: Physics

Läs mer

Biomekanik, 5 poäng Jämviktslära

Biomekanik, 5 poäng Jämviktslära Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande

Läs mer

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5

Läs mer

Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00

Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 GÖTEBORGS UNIVERSITET 181011 Institutionen för fysik Kl 8.30 13.30 Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 Examinator: Hjälpmedel: Betygsgränser: Carlo Ruberto Valfri tabell- och formelsamling

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 19 januari 2013 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

Tentamen i Mekanik SG1130, baskurs P1. Problemtentamen

Tentamen i Mekanik SG1130, baskurs P1. Problemtentamen 010-06-07 Tentamen i Mekanik SG1130, baskurs P1 OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1 Problemtentamen En homogen mast med massan M och längden 10a hålls stående i vertikalt

Läs mer

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2# n KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------

Läs mer

R LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x.

R LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x. Armin Halilovic: EXTRA ÖVNINGAR, SF676 Begynnelsevärdesproblem Enkla DE ALLMÄN LÖSNING PARTIKULÄR LÖSNING SINGULÄR R LÖSNINGG BEGYNNELSEVÄRDESPROBLEM (BVP) Låt ( n) F(,,,, y ( )) vara en ordinär DE av

Läs mer

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi Föreläsning 13/5 Relativistisk kinematik Ulf Torkelsson 1 Relativistisk rörelsemängd, kraft och energi Antag att en observatör O följer med en kropp i rörelse. Enligt observatören O så har O hastigheten

Läs mer

Lösningar Heureka 2 Kapitel 7 Harmonisk svängningsrörelse

Lösningar Heureka 2 Kapitel 7 Harmonisk svängningsrörelse Lösningar Heureka Kapitel 7 Harmonisk svängningsrörelse Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 7 7.1 a) Av figuren framgår att amplituden är 0,30 m. b) Skuggan utför en

Läs mer

Mer Friktion jämviktsvillkor

Mer Friktion jämviktsvillkor KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning

Läs mer

Tentamen Mekanik MI, TMMI39, Ten 1

Tentamen Mekanik MI, TMMI39, Ten 1 Linköpings universitet tekniska högskolan IEI/mekanik Tentamen Mekanik MI, TMMI39, Ten 1 Torsdagen den 14 januari 2016, klockan 14 19 Kursadministratör Anna Wahlund, anna.wahlund@liu.se, 013-281157 Examinator

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 1 september 2012 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

Introduktion till Biomekanik, Dynamik - kinematik VT 2006

Introduktion till Biomekanik, Dynamik - kinematik VT 2006 Dynamik Handlar om kroppar med föränderlig rörelse. Dynamiken indelas traditionellt i kinematik och kinetik. Kinematik: Enbart rörelsebeskrivning, centrala begrepp är sträcka (vinkel) hastighet och acceleration.

Läs mer

Lösningar Heureka 2 Kapitel 3 Rörelse i två dimensioner

Lösningar Heureka 2 Kapitel 3 Rörelse i två dimensioner Lösningar Heureka Kapitel 3 Rörelse i två dimensioner Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik Heureka:Kapitel 3 3.1) Enligt figuren: nordliga förflyttningen: 100+00-100=00m Östliga förflyttningen:

Läs mer

Mekanik FK2002m. Repetition

Mekanik FK2002m. Repetition Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r

Läs mer