LINJÄR ALGEBRA II LEKTION 8+9

Storlek: px
Starta visningen från sidan:

Download "LINJÄR ALGEBRA II LEKTION 8+9"

Transkript

1 LINJÄR ALGEBRA II LEKTION 8+9 JOHAN ASPLUND Innehåll. Kvadratiska former. Allmänna linjära avbildningar Matriser för allmänna linjära avbildningar. Uppgifter Extrauppgift från tenta Extrauppgift från tenta 5. Kvadratiska former Tidigare har vi jobbat med linjära uttryck och linjärkombinationer såsom a x + + a n x n. Vi kommer nu kolla på liknande uttryck, fast där alla termer har grad. Det vill säga uttryck på formen Q(x) = a x + + a n x n + termer på formen a k x i x j där x i x j. Dessa uttryck kallas för kvadratiska former och kan skrivas på formen x T Ax där A R n n. Givet en kvadratisk form Q(x) kan vi alltid hitta en symmetrisk matris A så att x T Ax = Q(x). I detta fallet använder vi notationen Q A (x) för att betona att det är den kvadratiska formen som ges av matrisen A. Korstermerna a k x i x j gör att kvadratiska formerna är svåra att begripa sig på. Det vi kan göra är att ortogonalt diagonalisera A (eftersom den alltid kan göras symmetrisk). Det finns alltså en ortogonal matris S och en diagonalmatris D så att A = SDS T. Gör vi sedan variabelbytet x = Sy får vi Q A (x) = x T Ax = (Sy) T A(Sy) = y T S T ASy = y T Dy = Q D (y). Vi kan alltså göra ett variabelbyte, för att få en kvadratisk form i y som endast innehåller termer på formen a i yi. Mer precist så vet vi om att så där λ i är egenvärdena till matrisen A. D = λ... λ n Q A (x) = Q D (y) = y T Dy = λ y + + λ n y n,. Allmänna linjära avbildningar En allmän linjär avbildning mellan två reella vektorrum V och W är en avbildning sådan att () f(x + y) = f(x) + f(y) för alla x, y V. () f(λx) = λf(x) för alla x V och λ R. Till en avbildning har vi två viktiga begrepp. f : V W,

2 JOHAN ASPLUND Definition. (Kärna och bild). Låt f : V W vara en linjär avbildning. Vi definierar sedan kärnan (eng. kernel) av f som ker(f) = { x V f(x) = }, och vi definierar bilden (eng. image) av f som im(f) = { y W f(x) = y för något x V }. Anmärkning.. Det är ett faktum att ker(f) V och im(f) W båda är delrum av V respektive W. Definition. (Injektiv avbildning). En linjär avbildning f kallas för injektiv om för alla x, y V. f(x) = f(y) x = y, Definition.4 (Surjektiv avbildning). En avbildning f kallas för surjektiv om det för alla y W finns ett x V så att f(x) = y. Anmärkning.5. Om en linjär avbildning f är både injektiv och surjektiv kallas den för bijektiv. Sats.6 (Karaktärisering av injektiva och surjektiva funktioner). Låt f : V W vara en linjär avbildning. Då gäller det att f är injektiv om och endast om ker(f) = {}. f är surjektiv om och endast om im(f) = W. Rent intuitivt säger denna sats att om f(x) = endast har lösnignen så är f injektiv. Den säger också att om ekvationen f(x) = y har en lösning för alla y, så är den surjektiv. Definition.7 (Rangen av en linjär avbildning). Om f : V W är en linjär avbildning kan vi definiera dess rang genom rank(f) = dim(im(f)). Sats.8 (Dimensionssatsen). Om f : V W är en linjär avbildning så gäller det att rank(f) + dim(ker(f)) = dim(v ). Linjära avbildningar har en väldigt bra egenskap, som följer ur dimensionssatsen. Sats.9. En linjär avbildning är injektiv om och endast om den är surjektiv. Om vi ser på definitionen av injektivitet och surjektivitet och betraktar en linjär avbildning f : V W, så ser vi att om dim(v ) < dim(w ) känns det naturligt att f inte kan vara surjektiv, eftersom vi avbildar något mindre på något större. På samma sätt känns det naturligt att om dim(v ) > dim(w ) så kan inte f vara injektiv. Definition. (Isomorfi). Om en linjär avbildning f : V W är en bijektiv kallas den för en isomorfi. V och W kallas då för isomorfa, och detta betecknas med V = W. Sats.. Alla vektorrum med dimension n är isomorfa med R n. Denna sats dödar linjär algebra. Detta säger att alla ändligdimensionella vektorrum är R n, och R n är relativt lätt att förstå. Alltså reduceras all linjär algebra ner till att endast förstå R n. Beviset för denna sats är förvånansvärt lätt. Beviset går ut på att välja en bas {v,..., v n } i ett vektorrum V, och sedan avbildar man v i e i. Det vill säga att man identiferar varje basvektor med en standardbasvektor. Detta definierar en linjär avbildning som är bijektiv på grund av det faktum att en bas genererar hela rummet och en är linjärt oberoende. Sats.. Det gäller att V = W om och endast om dim(v ) = dim(w ) Anmärkning.. Denna sats är extremt viktig och säger att dimensionen bestämmer vilket vektorrumet är. Om dim(v ) = dim(w ) = n så vet vi att V = R n = W, så V och W är båda R n.

3 LINJÄR ALGEBRA II LEKTION 8+9 Definition.4 (Sammansättning av linjära avbildningar). Om f : U V och f : V W är två linjär avbildningar så kan vi tala om dess sammansättning, som är funktionen f f som definieras som (f f )(x).= f (f (x)). Sats.5. Om f : U V och f : V W är två linjära avbildningar, så är dess sammansättning f f också linjär. Matriser för allmänna linjära avbildningar. Eftersom alla vektorrum essentiellt är R n, genom att vi avbildar en bas på en bas i R n, så kan vi också tala om en matris till en allmän linjär avbildning. Om vi låter f : V W vara en linjär avbildning, så kan vi för alla x V hitta koordinatkolonnen till x i R n. Vi kan också för alla f(x) W hitta koordinatkolonnen till f(x) i R m. V W R n R m. Uppgifter Extrauppgift från tenta. Låt Y vara ytan i E = (R, ) som består av alla punkter (x, x, x ) som uppfyller Q A (x) = x + x + x x x =. Bestäm ytans typ, ytans minsta avstånd från origo samt punkterna på ytan där detta minsta avstånd antas. Lösning. Dessa uppgifter är allmänt ganska räknetunga, men efter man löst ett par uppgift så brukar man kunna lösa uppgifterna på rutin. Det första vi gör är att vi skapar A. Detta gör vi genom att plocka ut koefficienterna i Q A (x), och ser till att den blir symmetrisk. Så A = = Denna matris kan vi beräkna egenvärdena till. Nästa steg är att ortogonalt diagonalisera A. Det vill säga vi vill hitta en ON-bas i alla egenrum var för sig, och sedan slå ihop dessa till en ON-bas i R som består av egenvektorer. Vi kan sedan hitta S och D. Vi får att egenvärdena är ±, så vi hittar en ON-bas i vardera egenrum. E( ): Vi får A I = Alltså är E( ) = t + s Vi gör om basen u = {u, u } = till en ON-bas med hjälp av Gram-Schmidt. Skapa basen B = {v, v }. Då sätter vi först v = u u = =

4 4 JOHAN ASPLUND Sedan får vi enligt Gram-Schmidt Vi får täljaren så v = u u, v, v u u, v, v. u u, v, v = = v = Alltså är en ON-bas i E( ) lika med B = E( ): Vi får Detta gör att så E( ) = t A + I = 4. Alltså är en ON-bas i E( ) lika med B =. B B =, är en ON-bas i R som består av egenvektorer till A. Alltså kan vi skapa S = D = Om vi sedan gör substitutionen x = Sy får vi alltså Q A (x) = Q D (y) = y T Dy = y + y + y = y + y + y =. Detta är en enmantlad hyperboloid. Det kortaste avståndet till origo från denna yta får man genom att man går längs den axeln vars koefficient är högst. Men eftersom både y - och y -axlarna har koefficient så är det minsta avståndet till origo, och alla sådana punkter uppfyller y + y =, det vill säga att de ligger på enhetscirkeln i y y -planet. Så det är alla punkter så att y + y =. Substituerar vi tillbaka till x får vi x = Sy = y = y y y y y y

5 där y + y =. LINJÄR ALGEBRA II LEKTION Extrauppgift från tenta. Den linjära operatorn F : P P ges av F (p) = p + p + p. (a) Finn F :s standardmatris. (b) Ange dimensionen av F :s kärna. (c) Ange dimensonen av F :s bild. (d) Avgör om F är injektiv, surjektiv eller bijektiv. Lösning. (a) Naivt sett så vill vi hitta bilden av standardbasvektorerna i F. Standardbasen i P är {, x, x, x }. Vi har F () = F (x) = Alltså har vi följande på grund av linjäritet F a a a a F (x ) = x + F (x ) = x + 6x + 6 = F (a + a x + a x + a x ) = (6a + a + a ) + (6a + a )x + a x a + a + 6a 6 a = + 6a a = 6 Alltså är F :s standardmatris a a a a a + a + 6a a [F ] = + 6a a (b) För att hitta dimensionen av ker(f ) så hittar vi dimensionen av N([F ]). Vi ser direkt ur [F ] att N([F ]) = t så dim(n([f ])) = dim(ker(f )) =. (c) Ur dimensionssatsen får vi dim(im(f )) =. (d) F är inte injektiv eftersom dim(ker(f )). Alltså är den inte heller surjektiv och kan inte heller vara bijektiv. address: johan.asplund@math.uu.se

UPPSALA UNIVERSITET Matematiska institutionen Styf. Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 2004

UPPSALA UNIVERSITET Matematiska institutionen Styf. Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 2004 UPPSALA UNIVERSITET Matematiska institutionen Styf Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 24 Skrivtid: Fem timmar. Tillåtna hjälpmedel: Skrivdon. Lösningarna skall vara

Läs mer

LINJÄR ALGEBRA II LEKTION 3

LINJÄR ALGEBRA II LEKTION 3 LINJÄR ALGEBRA II LEKTION 3 JOHAN ASPLUND INNEHÅLL Basbyten Kolonnrum, radrum och nollrum 3 Linjära avbildningar från R n till R m 4 Uppgifter 3 46:3 3 47:a 3 48:3a 4 48:a 4 49:9 4 40:7a,b BASBYTEN Om

Läs mer

Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 12 mars 2013 kl

Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 12 mars 2013 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 12 mars 2013 kl 14.00-19.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 533 DEL A Planet H ges av ekvationen 3x y + 5z + a) Bestäm en linje N som är vinkelrät mot H ( p) b) Bestäm en linje L som inte skär planet H ( p)

Läs mer

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n.

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n. Övningar Linjära rum 1 Låt v 1,, v m vara vektorer i R n Ge bevis eller motexempel till följande påståenden Satser ur boken får användas a) Om varje vektor i R n kan skrivas som linjär kombination av v

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

LINJÄR ALGEBRA II LEKTION 6

LINJÄR ALGEBRA II LEKTION 6 LINJÄR ALGEBRA II LEKTION 6 JOHAN ASPLUND INNEHÅLL 1 Inre produktrum 1 2 Cauchy-Schwarz olikhet 3 3 Ortogonala projektioner och Gram-Schmidts process 3 4 Uppgifter 4 61:13(a) 4 61:23(a) 4 61:29 5 62:7

Läs mer

SF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017

SF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017 SF64 Algebra och geometri Tentamen med lösningsförslag onsdag, januari 7. (a) För vilka värden på k har ekvationssystemet (med avseende på x, y och z) kx + ky + z 3 x + ky + z 4x + 3y + 3z 8 en entydig

Läs mer

KTH, Matematik. Del I. (totalt 15 poäng, inklusive bonuspoäng). (1) Betrakta följande mängder i R 3 :

KTH, Matematik. Del I. (totalt 15 poäng, inklusive bonuspoäng). (1) Betrakta följande mängder i R 3 : KTH, Matematik Tentamen i Linjär algebra, SF64, för F och D, den 3:e juni, 9 OBS Svaret skall motiveras och lösningen skrivas, ordentligt och klart Inga hjälpmedel är tillåtna Betg enligt följande tabell:

Läs mer

Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA

Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA UPPSALA UNIVERSITET Matematiska institutionen Volodymyr Mazorchuk Ryszard Rubinsztein Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA 007 08 16 Skrivtid:

Läs mer

TMV142/186 Linjär algebra Z/TD

TMV142/186 Linjär algebra Z/TD MATEMATIK Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Chalmers tekniska högskola Datum: 2018-08-27 kl 1400 1800 Tentamen Telefonvakt: Anders Hildeman ank 5325 TMV142/186 Linjär algebra Z/TD Skriv

Läs mer

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 17 april 2010 kl

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 17 april 2010 kl Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF604, den 7 april 200 kl 09.00-4.00. DEL I. En triangel i den tredimensionella rymden har sina hörn i punkterna

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 04-05-0 DEL A. Planet P innehåller punkterna (,, 0), (0, 3, ) och (,, ). (a) Bestäm en ekvation, på formen ax + by + cz + d = 0, för planet P. (

Läs mer

TMV166 Linjär algebra för M, vt 2016

TMV166 Linjär algebra för M, vt 2016 TMV166 Linjär algebra för M, vt 2016 Lista över alla lärmål Nedan följer en sammanfattning av alla lärmål i kursen, uppdelade enligt godkänt- och överbetygskriterier. Efter denna lista följer ytterligare

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2010-10-22 DEL A (1) Uttrycket (x, y, z) (1, 1, 1) + s(1, 3, 0) + t(0, 5, 1) definierar ett plan W i rummet där s och t är reella parametrar. (a)

Läs mer

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016 SF624 Algebra och geometri Tentamen Torsdag, 9 juni 26 Skrivtid: 8: 3: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på

Läs mer

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning? Repetition, Matematik 2, linjär algebra 10 Lös ekvationssystemet 5 x + 2 y + 2 z = 7 a x y + 3 z = 8 3 x y 3 z = 2 b 11 Ange för alla reella a lösningsmängden till ekvationssystemet 2 x + 3 y z = 3 x 2

Läs mer

Tentamen i ETE305 Linjär algebra , 8 13.

Tentamen i ETE305 Linjär algebra , 8 13. LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk ( p) ( p) ( p) ( p) ( p) ( p) Tentamen i ETE Linjär algebra, 8. Inga hjälpmedel. Ej räknedosa. Resultatet meddelas vi e-post. För godkänt räcker

Läs mer

16.7. Nollrum, värderum och dimensionssatsen

16.7. Nollrum, värderum och dimensionssatsen 170 16 LINJÄRA AVBILDNINGAR 16.7. Nollrum, värderum och dimensionssatsen Definition 16.33. Låt F : V W vara en linjär avbildning. 1. Nollrummet till F definierar vi som mängden av alla u V, vilkas bild

Läs mer

Uppgifter, 2015 Tillämpad linjär algebra

Uppgifter, 2015 Tillämpad linjär algebra Geometri. Uppgifter, 25 Tillämpad linjär algebra. Uppgift. Låt (,, ), B = (, 2, 3), C = (,, ) vara punkter i R 3. () Beskriva på parameter form alla plan som innehåler A, B och C. Ger ett system av linjära

Läs mer

Crash Course Algebra och geometri. Ambjörn Karlsson c januari 2016

Crash Course Algebra och geometri. Ambjörn Karlsson c januari 2016 Crash Course Algebra och geometri Ambjörn Karlsson c januari 2016 ambjkarlsson@gmail.com 1 Contents 1 Projektion och minsta avstånd 4 2 Geometriska avbildningar och avbildningsmatriser 5 3 Kärnan 6 3.1

Läs mer

SF1624 Algebra och geometri Bedömningskriterier till tentamen Fredagen den 22 oktober, 2010

SF1624 Algebra och geometri Bedömningskriterier till tentamen Fredagen den 22 oktober, 2010 SF1624 Algebra och geometri Bedömningskriterier till tentamen Fredagen den 22 oktober, 2010 Allmänt gäller följande: Om lösningen helt saknar förklarande text till beräkningar och formler ges högst två

Läs mer

Uppgifter, 2014 Tillämpad linjär algebra

Uppgifter, 2014 Tillämpad linjär algebra Geometri. Uppgifter, 24 Tillämpad linjär algebra. Uppgift. Låt A = (,, ), B = (, 2, 3), C = (,, ) vara punkter i R 3. () Beskriva på parameter form alla plan som innehåler A, B och C. Ger ett system av

Läs mer

1 basen B = {f 1, f 2 } där f 1 och f 2 skall uttryckas i koordinater i standardbasen.

1 basen B = {f 1, f 2 } där f 1 och f 2 skall uttryckas i koordinater i standardbasen. Akademin för teknik och miljö Rolf Källström telefonkontakt med examinator via tentamensvakten Matematiktentamen Ingenjörer, lärare, m fl Linjär algebra maa. 5 6 Skrivtid: 9... Inga hjälpmedel. Lösningarna

Läs mer

Inför tentamen i Linjär algebra TNA002.

Inför tentamen i Linjär algebra TNA002. Inför tentamen i Linjär algebra TNA002. 1. Linjära ekvationssytem (a) Omskrivningen av ekvationssystem på matrisform samt utföra radoperationer. (b) De 3 typer av lösningar som dyker upp vid lösning av

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. (1 p) (c) Bestäm avståndet mellan A och linjen l.

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. (1 p) (c) Bestäm avståndet mellan A och linjen l. SF64 Algebra och geometri Lösningsförslag till tentamen 5.6. DEL A. Betrakta följande punkter i rummet: A = (,, ), B = (,, ) och C = (,, ). (a) Ange en parametrisk ekvation för linjen l som går genom B

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF624 Algebra och geometri Lösningsförslag till tentamen 202-2-3 DEL A Betrakta punkterna A = (2, 2) och B = (6, 4) och linjen (, 3) + t(2, ) i planet (a) Det finns exakt en punkt P på linjen så att triangeln

Läs mer

November 24, Egenvärde och egenvektor. (en likformig expansion med faktor 2) (en rotation 30 grader moturs)

November 24, Egenvärde och egenvektor. (en likformig expansion med faktor 2) (en rotation 30 grader moturs) Fö : November 4, 7 Egenvärde och egenvektor Definition s 9: Låt A resp T : R n R n vara en n n-matris resp en linjär avbildning En icke-trivial vektor v R n kallas en egenvektor till A resp till T med

Läs mer

16.7. Nollrum, värderum och dimensionssatsen

16.7. Nollrum, värderum och dimensionssatsen 86 6 LINJÄRA AVBILDNINGAR 6.7. Nollrum, värderum och dimensionssatsen Definition 6.36. Låt F : V W vara en linjär avbildning.. Nollrummet till F definierar vi som mängden av alla u V som avbildas på nollvektorn,

Läs mer

6.1 Skalärprodukt, norm och ortogonalitet. TMV141 Linjär algebra E VT 2011 Vecka 6. Lärmål 6.1. Skalärprodukt. Viktiga begrepp

6.1 Skalärprodukt, norm och ortogonalitet. TMV141 Linjär algebra E VT 2011 Vecka 6. Lärmål 6.1. Skalärprodukt. Viktiga begrepp 6.1 Skalärprodukt, norm och ortogonalitet TMV141 Linjär algebra E VT 2011 Vecka 6 Skalärprodukt Norm/längd Normerad vektor/enhetsvektor Avståndet mellan två vektorer Ortogonala vektorer Ortogonala komplementet

Läs mer

Linjär Algebra, Föreläsning 20

Linjär Algebra, Föreläsning 20 Linjär Algebra, Föreläsning 20 Tomas Sjödin Linköpings Universitet Symmetriska avbildningar, repetition F : E E sägs vara symmetrisk om (F (u) v) = (u F (v)) gäller för all u, v i det Euklidiksa rummet

Läs mer

Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl

Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 08.00-1.00. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. Bonuspoäng

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera

Läs mer

ax + y + 4z = a x + y + (a 1)z = 1. 2x + 2y + az = 2 Ange dessutom samtliga lösningar då det finns oändligt många.

ax + y + 4z = a x + y + (a 1)z = 1. 2x + 2y + az = 2 Ange dessutom samtliga lösningar då det finns oändligt många. LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Linjär algebra 8 kl 4 9 INGA HJÄLPMEDEL. För alla uppgifterna, utom 3, förklara dina beteckningar och motivera lösningarna väl. Alla baser får antas

Läs mer

KTH, Matematik. Övningar till Kapitel , 6.6 och Matrisframställningen A γ av en rotation R γ : R 2 R 2 med vinkeln γ är

KTH, Matematik. Övningar till Kapitel , 6.6 och Matrisframställningen A γ av en rotation R γ : R 2 R 2 med vinkeln γ är KTH, Matematik Övningar till Kapitel 5.5-5.6, 6.6 och 8.3-8.6. Matrisframställningen A γ av en rotation R γ : R R med vinkeln γ är ( cos(γ sin(γ. sin(γ cos(γ Då R α+β = R α R β, är matrisen ( cos(α + β

Läs mer

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng.

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. ATM-Matematik Mikael Forsberg 34-4 3 3 Matematik med datalogi, mfl. Linjär algebra mag4 6 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor. TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på

Läs mer

DEL I 15 poäng totalt inklusive bonus poäng.

DEL I 15 poäng totalt inklusive bonus poäng. Matematiska Institutionen KTH TENTAMEN i Linjär algebra, SF604, den 5 december, 2009. Kursexaminator: Sandra Di Rocco Svaret skall motiveras och lösningen skrivas ordentligt och klart. Inga hjälpmedel

Läs mer

Egenvärden och egenvektorer. Linjär Algebra F15. Pelle

Egenvärden och egenvektorer. Linjär Algebra F15. Pelle Egenvärden och egenvektorer Linjär Algebra F1 Egenvärden och egenvektorer Pelle 2016-03-07 Egenvärde och egenvektor Om A är en n n matris så kallas ett tal λ egenvärde och en kolonnvektor v 0 egenvektor

Läs mer

Kryssproblem (redovisningsuppgifter).

Kryssproblem (redovisningsuppgifter). Uppsala Universitet Matematiska Institutionen Bo Styf Linjär algebra II, 5 hp ES, KandFy, Q, X -8- Kryssproblem (redovisningsuppgifter. Till var och en av de åtta lektionerna hör tre problem som du skall

Läs mer

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6 Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av

Läs mer

SF1624 Algebra och geometri Bedömningskriterier till tentamen Tisdagen den 15 december, 2009

SF1624 Algebra och geometri Bedömningskriterier till tentamen Tisdagen den 15 december, 2009 SF1624 Algebra och geometri Bedömningskriterier till tentamen Tisdagen den 15 december, 2009 Allmänt gäller följande: Om lösningen helt saknar förklarande text till beräkningar och formler ges högst två

Läs mer

8(x 1) 7(y 1) + 2(z + 1) = 0

8(x 1) 7(y 1) + 2(z + 1) = 0 Matematiska Institutionen KTH Lösningsförsök till tentamensskrivningen på kursen Linjär algebra, SF60, den juni 0 kl 08.00-.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.

Läs mer

1 x 1 x 2 1 x x 2 x 2 2 x 3 2 A = 1 x 3 x 2 3 x x 4 x 2 4 x 3 4

1 x 1 x 2 1 x x 2 x 2 2 x 3 2 A = 1 x 3 x 2 3 x x 4 x 2 4 x 3 4 KARLSTADS UNIVERSITET Avdelningen för matematik Tentamen i Linjär Algebra, 7,5p för MAGA4 Mån -6-7, 8.5-3.5 på Kau Ansvarig lärare: Ilie Barza, tel.54-7 5 95 Hjälpmedel: Skrivdon. Maximalt antal poäng:

Läs mer

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 010 kl 14.00-19.00. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen. Betygsgränser:

Läs mer

Linjär algebra F1, Q1, W1. Kurslitteratur

Linjär algebra F1, Q1, W1. Kurslitteratur UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Linjär algebra för F1, Q1, W1 Kurslitteratur Höstterminen 2006 Eriksson Lind Persson Tengstrand, Algebra för universitet och högskolor, Band II (Linjär Algebra),

Läs mer

Basbyten och linjära avbildningar

Basbyten och linjära avbildningar Föreläsning 11, Linjär algebra IT VT2008 1 Basbyten och linjära avbildningar Innan vi fortsätter med egenvärden så ska vi titta på hur matrisen för en linjär avbildning beror på vilken bas vi använder.

Läs mer

A = (3 p) (b) Bestäm alla lösningar till Ax = [ 5 3 ] T.. (3 p)

A = (3 p) (b) Bestäm alla lösningar till Ax = [ 5 3 ] T.. (3 p) SF1624 Algebra och geometri Tentamen med lösningsförslag fredag, 21 oktober 216 1 Låt A = [ ] 4 2 7 8 3 1 (a) Bestäm alla lösningar till det homogena systemet Ax = [ ] T (3 p) (b) Bestäm alla lösningar

Läs mer

Kursinformation. Kurslitteratur: H. Anton och C. Rorres: Elementary Linear Algebra, 10:e upplagan. Wiley 2011 (betecknas A nedan).

Kursinformation. Kurslitteratur: H. Anton och C. Rorres: Elementary Linear Algebra, 10:e upplagan. Wiley 2011 (betecknas A nedan). Uppsala Universitet Matematiska Institutionen Bo Styf Linjär algebra II, 5 hp ES, KandFy, Q, X 2011-08-29 Kursinformation. Undervisning: 17 föreläsningar och 10 lektioner (om vardera 2 45 minuter). Under

Läs mer

1. (a) (1p) Undersök om de tre vektorerna nedan är linjärt oberoende i vektorrummet

1. (a) (1p) Undersök om de tre vektorerna nedan är linjärt oberoende i vektorrummet 1 Matematiska Institutionen, KTH Lösningar till tentamensskrivning på kursen Linjär algebra, SF1604, för CDA- TE, CTFYS och vissa CL, fredagen den 13 mars 015 kl 08.00-13.00. Examinator: Olof Heden. OBS:

Läs mer

Tentamen i Linjär algebra (TATA31/TEN1) ,

Tentamen i Linjär algebra (TATA31/TEN1) , Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN) 9 6, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst

Läs mer

Prov i matematik F2, X2, ES3, KandFys2, Lärare, Frist, W2, KandMat1, Q2 LINJÄR ALGEBRA II

Prov i matematik F2, X2, ES3, KandFys2, Lärare, Frist, W2, KandMat1, Q2 LINJÄR ALGEBRA II UPPSALA UNIVERSITET Matematiska institutionen Volodymyr Mazorchuk Bo Styf Prov i matematik F, X, ES, KandFys, Lärare, Frist, W, KandMat1, Q LINJÄR ALGEBRA II 010 08 4 Skrivtid: 1400 1900 Tillåtna hjälpmedel:

Läs mer

Linjär algebra kurs TNA002

Linjär algebra kurs TNA002 Linjär algebra kurs TNA002 Lektionsanteckningar klass ED1 I detta dokument finns ett utdrag av de tavelanteckningar som uppkommit under lektionstid under kursen TNA002. Alltså kan detta dokument långt

Läs mer

4x az = 0 2ax + y = 0 ax + y + z = 0

4x az = 0 2ax + y = 0 ax + y + z = 0 LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING LINJÄR ALGEBRA 206-03-4 kl 8 3 INGA HJÄLPMEDEL Lösningarna skall vara försedda med ordentliga motiveringar Alla koordinatsystem får antas vara ortonormerade

Läs mer

Stöd inför omtentamen i Linjär algebra TNA002.

Stöd inför omtentamen i Linjär algebra TNA002. LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Stöd inför omtentamen i Linjär algebra TNA002. Läsråd: Detta är ett stöd för dig som vill repetera inför en omtentamen. 1. Börja

Läs mer

Linjär algebra II. Alex Loiko. Vi går vidare med vektorrum och definierar nya begrepp. i=1

Linjär algebra II. Alex Loiko. Vi går vidare med vektorrum och definierar nya begrepp. i=1 Linjär algebra II Alex Loiko Lektion 2: vektorrum, forts. Vi går vidare med vektorrum och definierar nya begrepp. Definition. En linjärkombination av ett antal element (vektorer) v, v 2,... v n är ett

Läs mer

Linjär algebra Föreläsning 10

Linjär algebra Föreläsning 10 Linjär algebra Föreläsning 10 IT-programmet, Chalmers 2006 Samuel Bengmark Repetition Handlade om kvadratiska matriser. Kvadratiska ekvationssystem har: Unik lösning omm Det(A) 0. Har oändligt antal lösningar

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar IV Innehåll Nollrum och

Läs mer

Exempelsamling :: Diagonalisering

Exempelsamling :: Diagonalisering Exempelsamling :: Diagonalisering Mikael Forsberg :: 8 oktober Uppgifter om diagonalisering. Hitta en matris som diagonaliserar matrisen A = ( Vad blir diagonalmatrisen D? Vad betder D geometriskt? Vad

Läs mer

Kursinformation. Kurslitteratur: H. Anton och C. Rorres: Elementary Linear Algebra, 9:e upplagan. Wiley, 2005 (betecknas A nedan).

Kursinformation. Kurslitteratur: H. Anton och C. Rorres: Elementary Linear Algebra, 9:e upplagan. Wiley, 2005 (betecknas A nedan). Uppsala Universitet Matematiska Institutionen Bo Styf Linjär algebra II, 5 hp ES, KandFy, Q, X 20010-08-31 Kursinformation. Undervisning: 17 föreläsningar och 8 lektioner (om vardera 2 45 minuter). Under

Läs mer

Lösning av tentamensskrivning på kursen Linjär algebra, SF1604, för CDATE, CTFYS och vissa CL, tisdagen den 20 maj 2014 kl

Lösning av tentamensskrivning på kursen Linjär algebra, SF1604, för CDATE, CTFYS och vissa CL, tisdagen den 20 maj 2014 kl 1 Matematiska Institutionen, KTH Lösning av tentamensskrivning på kursen Linjär algebra, SF1604, för CDATE, CTFYS och vissa CL, tisdagen den 20 maj 2014 kl 08.00-13.00. Examinator: Olof Heden. OBS: Inga

Läs mer

Linjär Algebra M/TD Läsvecka 1

Linjär Algebra M/TD Läsvecka 1 Linjär Algebra M/TD Läsvecka 1 Omfattning: Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll: Olika aspekter av linjära ekvationssystem: skärning mellan geometriska objekt, linjärkombination

Läs mer

LÖSNINGAR TILL LINJÄR ALGEBRA kl 8 13 LUNDS TEKNISKA HÖGSKOLA MATEMATIK. 1. Volymen med tecken ges av determinanten.

LÖSNINGAR TILL LINJÄR ALGEBRA kl 8 13 LUNDS TEKNISKA HÖGSKOLA MATEMATIK. 1. Volymen med tecken ges av determinanten. LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR TILL LINJÄR ALGEBRA 2018-08-29 kl 8 1 1 Volymen med tecken ges av determinanten a 2 2 2 4 2 1 2a 1 = a 2 2 2 0 4 2 = 4(a 2)(1 a) 0 2a 1 Parallellepipedens volym

Läs mer

Problemsamling i Linjär Algebra II. Erik Darpö

Problemsamling i Linjär Algebra II. Erik Darpö Problemsamling i Linjär Algebra II Erik Darpö ii Notation Inklusion Samma som A B Matriserna A och B är radekvivalenta I n Enhetsmatrisen av storlek n n R n Vektorrummet av alla kolonnvektorer av storlek

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri Föreläsning 10 Institutionen för matematik KTH 21 november 2016 Dagens och veckans ämnen Idag: Allmänna vektorrum, baser, koordinater, kap 4.1-4.4: Vektorrum och delrum, igen Bas, igen Koordinater med

Läs mer

Tentamen i Linjär algebra (TATA31/TEN1) ,

Tentamen i Linjär algebra (TATA31/TEN1) , Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN) 7 8 9, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst

Läs mer

Oändligtdimensionella vektorrum

Oändligtdimensionella vektorrum Oändligtdimensionella vektorrum Vi har i den här kursen huvudsakligen studerat ändligtdimensionella vektorrum. Dessa är mycket användbara objekt och matriskalkyl ger en bra metod att undersöka dom med.

Läs mer

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016 SF4 Algebra och geometri Tentamen Torsdag, 7 mars Skrivtid: 8:-: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på tentamen

Läs mer

17. Övningar ÖVNINGAR Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av. x 1 x 2 2x 2 + 3x 3 2x 1 x 3

17. Övningar ÖVNINGAR Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av. x 1 x 2 2x 2 + 3x 3 2x 1 x 3 192 17 ÖVNINGAR 17. Övningar 17.1. Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av F(eX) = ey = e x 1 x 2 2x 2 + 3x 3 2x 1 x 3, G(eX) = e x 1 x 2 x 2 2 x 2 + x 3 Undersök

Läs mer

Lösningar till MVE021 Linjär algebra för I

Lösningar till MVE021 Linjär algebra för I Lösningar till MVE Linjär algebra för I 7-8-9 (a Vektorer är ortogonala precis när deras skalärprodukt är Vi har u v 8 5h + h h 5h + 6 (h (h När h och när h (b Låt B beteckna basen {v, v } Om vi sätter

Läs mer

Linjär Algebra, Föreläsning 9

Linjär Algebra, Föreläsning 9 Linjär Algebra, Föreläsning 9 Tomas Sjödin Linköpings Universitet Euklidiska rum Vi ska nu införa en extra struktur på vektorrum, en så kallad skalärprodukt, vilken vi kan använda för att definiera längd

Läs mer

Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot

Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot Kursen bedöms med betyg,, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

LÖSNINGAR TILL LINJÄR ALGEBRA kl LUNDS TEKNISKA HÖGSKOLA MATEMATIK

LÖSNINGAR TILL LINJÄR ALGEBRA kl LUNDS TEKNISKA HÖGSKOLA MATEMATIK LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR TILL LINJÄR ALGEBRA 2017-08-24 kl 14 19 1. Vi får ū = 1 2 + 1 2 + 0 2 = 2, v = 1 2 + 2 2 + 2 2 = 3 och ū v = 1 1+1 2+0 2 = 3. Om φ är vinkeln mellan ū och v

Läs mer

8. Euklidiska rum 94 8 EUKLIDISKA RUM

8. Euklidiska rum 94 8 EUKLIDISKA RUM 94 8 EUKLIDISKA RUM 8. Euklidiska rum Definition 8.. En skalärprodukt på vektorrummet V är en funktion som till varje par av element u och v i V ordnar ett reellt tal u v eller u v med följande egenskaper:.

Läs mer

e = (e 1, e 2, e 3 ), kan en godtycklig linjär

e = (e 1, e 2, e 3 ), kan en godtycklig linjär Linjära avbildningar II Förra gången visade vi att givet en bas i rummet, e = (e 1, e 2, e 3 ), kan en godtycklig linjär avbildning F : R 3 R 3 representeras av en matris: Om vi betecknar en vektor u:s

Läs mer

Uppgifter om funktioner

Uppgifter om funktioner Uppgifter om funktioner Mikael Forsberg September 27, 2004 1. Med hjälp av uttrycket y = x 2 så definierar vi tre funktioner: f 1 : R x x 2 R, f 2 : R x x 2 R f 3 : R x x 2 R, där R = {x R : x 0} Eftersom

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri Föreläsning 8 Institutionen för matematik KTH 16 november 2016 Matriser och linjära avbildningar Dagens ämnen (kap 3.3 och 3.4): Exempel på linjära avbildningar Nollrum och Bildrum Dimensionssatsen / Rangsatsen

Läs mer

För ingenjörs- och distansstudenter Linjär Algebra ma014a 2015 02 26. ATM-Matematik Mikael Forsberg 0734-41 23 31

För ingenjörs- och distansstudenter Linjär Algebra ma014a 2015 02 26. ATM-Matematik Mikael Forsberg 0734-41 23 31 ATM-Matematik Mikael Forsberg 074-4 För ingenjörs- och distansstudenter Linjär Algebra ma04a 0 0 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

A = x

A = x Matematiska Institutionen KTH Lösningar till några övningar på linjära avbildningar och egenvärden och ehenvektorer inför lappskrivning nummer 5 på kursen linjär algebra SF604, ht 07.. (a) A(2,, 0) A(2(,

Läs mer

x + y z = 2 2x + 3y + z = 9 x + 3y + 5z = Gauss-Jordan elemination ger: Area = 1 2 AB AC = 4. Span(1, 1 + x, x + x 2 ) = P 2.

x + y z = 2 2x + 3y + z = 9 x + 3y + 5z = Gauss-Jordan elemination ger: Area = 1 2 AB AC = 4. Span(1, 1 + x, x + x 2 ) = P 2. 1 Matematiska Institutionen KTH Exam for the course Linjär algebra, 5B1307, Januari 14, 008, 14:00-19:00 Kursexaminator: Sandra Di Rocco Minst 15 poäng ger betyg 3, minst poäng ger betyg 4 och mins 8 poäng

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2011-06-09 DEL A (1) Betrakta ekvationssystemet x y 4z = 2 2x + 3y + z = 2 3x + 2y 3z = c där c är en konstant och x, y och z är de tre obekanta.

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri Föreläsning 16 Institutionen för matematik KTH 5 december 2017 Modul 6 Veckans arbete 1. Idag: Ortonormalt, kap 7.1-7.2 a. Ortogonala och ortonormala baser b. Gram-Schmidts metod c. Ortogonala matriser

Läs mer

Examination: En skriftlig tentamen den XX mars samt möjlighet till en omtentamen. Tider och lokaler meddelas senare.

Examination: En skriftlig tentamen den XX mars samt möjlighet till en omtentamen. Tider och lokaler meddelas senare. Kursprogram till Linjär algebra II, SF1604, för D1, vt10. Kursledare och föreläsare: Olof Heden Lindstedtsvägen 25 rum 3641 Tel:790 62 96 (mobil: 0730 547 891) e-post: olohed@math.kth.se Övningar: grupp

Läs mer

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t SF624 Algebra och geometri Tentamen med lösningsförslag måndag, 3 mars 207 Betrakta vektorerna P =, Q = 3, u = Låt l vara linjen som går genom 2 0 P och Q och låt l 2 vara linjen som är parallell med u

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista

Läs mer

(d) Mängden av alla x som uppfyller x = s u + t v + (1, 0, 0), där s, t R. (e) Mängden av alla x som uppfyller x = s u där s är ickenegativ, s 0.

(d) Mängden av alla x som uppfyller x = s u + t v + (1, 0, 0), där s, t R. (e) Mängden av alla x som uppfyller x = s u där s är ickenegativ, s 0. TM-Matematik Mikael Forsberg, 734-4 3 3 Rolf Källström, 7-6 93 9 För Campus och Distans Linjär algebra mag4 och ma4a 6 5 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta

Läs mer

REPETITION. [F ] = a. a m1... a mn Sådan att [F (v)] = [F ][v].

REPETITION. [F ] = a. a m1... a mn Sådan att [F (v)] = [F ][v]. REPETITION (1) Låt F : R n R m vara en linjär avbildning. Då är F (x 1,..., x n ) = (f 1 (x 1,..., x n ),..., f m (x 1,..., x n )) där f 1 (x 1,..., x n ) = a 11 x 1 +... + a 1n x n,..., f m (x 1,...,

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2013-10-28 DEL A 1. Vi har matriserna 1 1 1 1 1 0 3 0 A = 1 1 1 1 1 1 1 1 och E = 0 0 0 1 0 0 1 0. 1 0 0 1 0 1 0 0 (a) Bestäm vilka elementära

Läs mer

Lösningar till utvalda uppgifter i kapitel 8

Lösningar till utvalda uppgifter i kapitel 8 Lösningar till utvalda uppgifter i kapitel 8 8. Alla vektorer som är normaler till planet, d v s vektorer på formen (0 0 z) t, avbildas på nollvektorn. Dessa kommer därför att vara egenvektorer med egenvärdet

Läs mer

där β R. Bestäm de värden på β för vilka operatorn är diagonaliserbar. Ange även för respektive av dessa värden en bas av egenvektorer till F.

där β R. Bestäm de värden på β för vilka operatorn är diagonaliserbar. Ange även för respektive av dessa värden en bas av egenvektorer till F. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algebra Datum: 7 januari 04 Skrivtid:

Läs mer

Examination: En skriftlig tentamen den 15 mars samt möjlighet till en omtentamen. Tider och lokaler meddelas senare.

Examination: En skriftlig tentamen den 15 mars samt möjlighet till en omtentamen. Tider och lokaler meddelas senare. Kursprogram till Linjär algebra II, SF1604, för D1, vt12. Kursledare och föreläsare: Olof Heden Lindstedtsvägen 25 rum 3641 Tel:790 62 96 (mobil: 0730 547 891) e-post: olohed@math.kth.se Övningar: grupp

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av

Läs mer

Vektorer. Kapitel 1. Vektorbegreppet. 1.1 Låt u=(4,0, 1,3) och v=(2,1,4, 2). Beräkna vektorn 2u 3v.

Vektorer. Kapitel 1. Vektorbegreppet. 1.1 Låt u=(4,0, 1,3) och v=(2,1,4, 2). Beräkna vektorn 2u 3v. Kapitel 1 Vektorer Vektorbegreppet 1.1 Låt u=(4,0, 1,3) och v=(2,1,4, 2). Beräkna vektorn 2u 3v. 1.2 Rita ut vektorerna u=(3,1) och v=( 2,2) i samma koordinatsystem. Illustrera additionerna/subtraktionerna

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A SF624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 200 DEL A ( Betrakta det komplexa talet w = i. (a Skriv potenserna w n på rektangulär form, för n = 2,, 0,, 2. ( (b Bestäm

Läs mer

MVE022 Urval av bevis (på svenska)

MVE022 Urval av bevis (på svenska) MVE22 Urval av bevis (på svenska) J A S, VT 218 Sats 1 (Lay: Theorem 7, Section 2.2.) 1. En n n-matris A är inverterbar precis när den är radekvivalent med indentitesmatrisen I n. 2. När så är fallet gäller

Läs mer

LÖSNINGAR LINJÄR ALGEBRA LUNDS TEKNISKA HÖGSKOLA MATEMATIK

LÖSNINGAR LINJÄR ALGEBRA LUNDS TEKNISKA HÖGSKOLA MATEMATIK LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR ALGEBRA 2017-10-2 1 Om vi skriver ekvationssystemet på matrisform AX = Y, så vet vi att systemet har en entydig lösning X = A 1 Y då det A 0 Om det A

Läs mer