Del I. Miniräknare ej tillåten. Namn:... Klass/Grupp: Vilket tal är 0,1 större än 3,96? Svar: (1/0) 2. Vilket tal i decimalform ska stå i rutan?

Storlek: px
Starta visningen från sidan:

Download "Del I. Miniräknare ej tillåten. Namn:... Klass/Grupp:... 1. Vilket tal är 0,1 större än 3,96? Svar: (1/0) 2. Vilket tal i decimalform ska stå i rutan?"

Transkript

1 Miniräknare ej tillåten Namn:... Klass/Grupp:... Del I 1. Vilket tal är 0,1 större än 3,96? Svar: (1/0) 2. Vilket tal i decimalform ska stå i rutan? a Svar: a = (1/0) 3. Vilka koordinater har punkten P? y P x Svar: (1/0) 4. Julia gör en kopia av sin teckning med hjälp av skolans kopieringsapparat. Ett ansikte som är 12 cm långt på teckningen blir på kopian 4 cm. I vilken skala kopierar Julia? Svar: (1/0) 5. Vilket ungefärligt värde har 880? Ringa in ditt svar. (1/0) NpMaA vt

2 Miniräknare ej tillåten 6. Sarah köper en begagnad bil för kr. Värdet på bilen kommer att sjunka. I diagrammet visas hur värdet förändras om det sjunker med 10 % respektive 15 % per år. Kr Värde År Antal a) Vilket är värdet efter tre år om den procentuella sänkningen är 10 % per år? Svar: kr (1/0) b) Hur mycket längre tid krävs för att halvera värdet när den procentuella sänkningen är 10 % i stället för 15 % per år? Motivera din lösning i diagrammet och rutan. Svar: år (1/1) NpMaA vt

3 Miniräknare ej tillåten 7. Vilket av följande uttryck motsvarar figurens omkrets? Ringa in ditt svar. a + b 2a + 2b 3a + 2b 3a + 3b 4a + 2b Motivera ditt svar i figuren och rutan. a b (1/1) 8. Sanna ska ta 15 ml medicin två gånger per dag. Hur många dagar räcker en flaska med 0,3 liter medicin? Svar: dagar (0/1) av ett tal är 1. Vilket är talet? Svar: (0/1) NpMaA vt

4 Miniräknare ej tillåten 10. Lös ekvationen 0,3 = 1 Svar: x = (0/1) x 0,5 11. Petter väger p kg och Simon väger s kg. Skriv en formel som visar att Petter väger 12 % mer än Simon. Svar: = (0/1) 12. I en rektangel är den långa sidan 4 cm längre än den korta sidan. Vilket uttryck ska beteckna rektangelns korta sida om rektangelns långa sida betecknas x + 2? Svar: (0/1) 13. Talet 5,83!10 3 är skrivet i grundpotensform. Vilket tal ska du subtrahera med för att åttan ska ändras till en sexa? Svara i decimalform. Svar: (0/1) Stockholms universitet NpMaA vt Skolverket

5 Anvisningar Del I Provtid Hjälpmedel Miniräknarfri del Uppgift 14 Kravgränser 90 minuter för del I. Vi rekommenderar att du använder högst 45 minuter för arbetet med den miniräknarfria delen. Du får inte börja använda miniräknare förrän du har lämnat in dina svar på denna del. Miniräknarfri del: Formelblad och linjal Uppgift 14: Miniräknare, formelblad och linjal Denna del består av uppgifter som ska lösas utan miniräknare. På två av uppgifterna krävs redovisning, som redovisas i figuren och i rutan intill uppgiften. Till övriga uppgifter krävs endast svar. Efter varje uppgift anges maximala antalet poäng som du kan få för ditt svar/din lösning. Denna uppgift är en större uppgift som brukar ta längre tid. I rutan vid uppgiften står det vad läraren ska ta hänsyn till vid bedömningen. Provet (del I + del II) ger totalt högst 61 poäng varav 28 vg-poäng. Undre gräns för provbetyget Godkänt: 20 poäng. Väl godkänt: 36 poäng varav minst 10 vg-poäng. Mycket väl godkänt: Minst 20 vg-poäng. Du ska dessutom ha visat prov på flertalet av de MVG-kvaliteter som de -märkta uppgifterna ger möjlighet att visa. Namn: Födelsedatum: Komvux/gymnasieprogram: Skolverket har den beslutat att provet i matematik A för vt 2010 inte ska återanvändas.

6 Uppgift 14 Det rullade pappret Ett rektangulärt papper kan rullas ihop till ett rör (en cylinder) som figuren visar. Ett rör tillverkas av ett kvadratiskt papper med sidan 10 cm. Rörets diameter blir cirka 3,2 cm. Bestäm rörets (cylinderns) volym. Visa att rörets diameter blir cirka 3,2 cm då pappret har sidan 10 cm. Om längd och bredd är olika långa kan man tillverka två olika rör (cylindrar) beroende på hur pappret rullas. Av rektangulära papper med måtten 10 cm x 20 cm tillverkas två olika rör. Bestäm volymerna på de två rören (cylindrarna). Jämför dessa båda volymer och bestäm förhållandet mellan volymerna. Undersök förhållandet mellan cylindervolymerna från papper med andra mått på sidorna. Vad påverkar volymförhållandet mellan den höga och låga cylindern? Visa att din upptäckt gäller för alla rektangulära papper. (4/7) Vid bedömningen av ditt arbete kommer läraren att ta hänsyn till vilka matematiska kunskaper du har visat och hur väl du har genomfört uppgiften hur väl du har förklarat ditt arbete och motiverat dina slutsatser hur väl du har redovisat ditt arbete. NpMaA vt 2010

7 Anvisningar Del II Provtid Hjälpmedel Del II 120 minuter för Del II. Miniräknare, formelblad och linjal. Del II består av 11 uppgifter. Till de flesta uppgifterna räcker det inte med endast svar, utan där krävs det också att du redovisar dina lösningar förklarar/motiverar dina tankegångar ritar figurer vid behov. Till några uppgifter behöver endast svar anges. De är markerade med Endast svar krävs. Efter varje uppgift anges maximala antalet poäng som du kan få för din lösning. (2/3) betyder att uppgiften kan ge högst 2 g- poäng och 3 vg-poäng. På de -märkta uppgifterna kan du visa MVG-kvaliteter. Det innebär t.ex. att du använder generella metoder, modeller och resonemang, att du analyserar dina resultat och att du redovisar en klar tankegång med korrekt matematiskt språk. Kravgränser Provet (Del I + Del II) ger totalt högst 61 poäng varav 28 vgpoäng. Undre gräns för provbetyget Godkänt: 20 poäng. Väl godkänt: 36 poäng varav minst 10 vg-poäng. Mycket väl godkänt: Minst 20 vg-poäng. Du ska dessutom ha visat prov på flertalet av de MVG-kvaliteter som de -märkta uppgifterna ger möjlighet att visa. Skriv ditt namn, födelsedatum och komvux/gymnasieprogram på de papper som du lämnar in. Skolverket har den beslutat att provet i matematik A för vt 2010 inte ska återanvändas.

8 1. Chokladtårta 6 personer Ingredienser: 100 g mörk choklad 2 dl vetemjöl 100 g smör 1 tsk bakpulver 2 ägg 50 g finhackade nötter 2 dl socker Hur mycket mörk choklad behövs enligt receptet om man ska baka en chokladtårta till 15 personer? (2/0) 2. År 2009 hade Sverige cirka 9 miljoner invånare. Detta år hade 81 % av invånarna Internet i hemmet. 93 % av dessa hade fast uppkoppling. Hur många personer hade Internet via fast uppkoppling? (2/0) 3. Emran ska köpa ett nytt staket till sin trädgård. Staketet ser ut som det på bilden, det vill säga 2 stolpar har 3 brädor mellan sig och 3 stolpar har 6 brädor mellan sig. a) Hur många brädor behövs det om man ska bygga ett staket med 10 stolpar? Endast svar krävs. (1/0) b) Skriv ett samband mellan antalet stolpar och antalet brädor med ord eller formel. (1/1) 4. När klockan är i Stockholm är det tidig morgon kl i Chicago. På en flygbiljett anges start- och landningstider i lokal tid. Hur lång tid tar en flygning där starten i Chicago anges till kl och landning i Stockholm till kl ? (1/1) NpMaA vt

9 5. M och N är mittpunkter på sidorna. Hur stor del av kvadratens area är färgad? Rita av figuren och redovisa din lösning. N M (1/1) 6. Linus har sett reklam för ett sms-lån och vill jämföra det med ett lån på en bank. Sms-lån Låna kr i 30 dagar. Kostnad 375 kr. Låna 3000:- Banklån Årsränta 5,6 % och ingen uppläggningsavgift. Foto: C Reuterfalk a) Beräkna årsräntan i kronor då man lånar kronor på banken. (1/0) b) För sms-lånet är kostnaden 375 kronor för 30 dagar. Vilken årsränta i procent motsvarar detta om kostnaden är lika stor varje månad? (1/1) 7. När Peter och Lisa var på café blev de serverade mjölk till kaffet i en regelbunden tetraeder. Lisa visste att man kan räkna ut volymen av en sådan förpackning med hjälp av formeln: V = k3! 2 12, där k motsvarar kantlängden. Foto: Arla Peter mätte kantens längd på tetraedern till 6 cm och beräknade volymen med hjälp av formeln. På förpackningen står att den innehåller 2 cl mjölk. Ryms det i förpackningen? Motivera ditt svar med beräkningar. (2/1) NpMaA vt

10 8. Anton ska jämföra kostnaden för att trycka reklamblad. Digitaltryckeriet tar en startkostnad på 20 kronor och sedan 24 öre per kopia. Tryckservice AB tar ingen startkostnad men tar 36 öre per kopia. a) Skriv av tabellen och fyll i de värden som saknas. Endast svar krävs. Antal kopior 100 (2/0) 500 Kostnad hos Digitaltryckeriet Kostnad hos Tryckservice AB (2/0) c) Beskriv med en formel kostnaden för tryckning av x reklamblad hos Digitaltryckeriet. (1/1) d) Hur många kopior måste man minst låta trycka för att Digitaltryckeriet ska bli billigare än Tryckservice AB? (1/1) Lårbenet är det längsta benet i människokroppen. Man kan beräkna en människas ungefärliga längd genom att mäta längden på personens lårben. Tabellen nedan visar det linjära förhållandet mellan längden på lårbenet och en mans längd. Lårbenets längd (mm) Ungefärlig längd på en man (cm) , , , ,3 Foto: A McCormack 9. b) Anton har fått 320 kronor att använda till tryckkostnader. Hur många kopior från Digitaltryckeriet får han för denna summa? Vid en utgrävning hittades ett lårben från en man. Längden på lårbenet var 425 mm. Vilken ungefärlig kroppslängd borde mannen ha haft? NpMaA vt (1/1)

11 10. Diagrammet nedan visar antalet examinerade från högskolan i procent av hur många som man beräknade att nyanställa fram till år Journalister Apotekare Bibliotekarier Ekonomer Veterinärer Arkitekter Jurister Civilingenjörer Psykologer Sjukgymnaster Sjuksköterskor Förskollärare Fritidspedagoger Procent Källa: Högskoleverket (Diagrammet gäller utbildningar som började hösten 2008.) a) Emma avläser värdet 180 för journalister. Vad innebär det? (1/1) b) Staplarna för psykologer och civilingenjörer är ungefär lika långa. Emma säger att detta betyder att man bör utbilda lika många psykologer som civilingenjörer. Johanna säger att man inte kan dra den slutsatsen av detta diagram. Vem har rätt och varför? (0/1) 11. De fem talen 6, 1, x, 9 och 4 är alla heltal. a) Vilka värden får medianen för olika värden på x? Motivera. (1/1) b) För vilka värden på x får de fem talen samma värde på median och medelvärde? (0/2) NpMaA vt

12

13 Bedömningsanvisningar Del I vt 2010 Skolverket har den beslutat att provet i matematik A för vt 2010 inte ska återanvändas.

14 Innehåll Inledning... 4 Bedömningsanvisningar... 4 Allmänna bedömningsanvisningar... 4 Positiv bedömning... 4 Uppgifter där endast svar krävs... 4 Uppgifter där fullständig redovisning fordras... 4 Bedömningsanvisningar Del I... 5 Aspektbedömning med stöd av matris... 5 Bedömningsanvisningar uppgift 14 (Max 4/7)... 6 Provsammanställning Bilagor 1. Mål att sträva mot i ämnet matematik enligt kursplan Gy NpMaA vt

15 Inledning Skolverket har uppdragit åt PRIM-gruppen vid Stockholms universitet att ansvara för konstruktion och resultatanalys av nationella kursprov i matematik kurs A för den gymnasiala utbildningen. Vårens A-kursprov består av två delprov Del I och Del II. Del I har en provtid på 90 minuter och Del II har en provtid på 120 minuter. Kravgränser för Godkänt, Väl godkänt och Mycket väl godkänt ges för kursprovet som helhet. Bedömningsanvisningar Bedömningen ska göras med olika kvalitativa poäng, g- och vg-poäng. Vi har bedömt uppgiftens innehåll och elevlösningarnas kvalitet utifrån kursplanen och betygskriterierna. De olika uppgifterna har kategoriserats och olika lösningar till dessa har analyserats. Sedan har svaret, lösningen eller dellösningen poängsatts med g-poäng och/eller vgpoäng. För kortsvarsuppgifterna gäller att korrekt svar bedöms med antingen 1 g-poäng eller 1 vg-poäng. Till de uppgifter som eleverna ska lämna fullständiga lösningar ska arbetena bedömas med g- och vg-poäng. T.ex. innebär beteckningen (2/1) att elevens lösning högst kan ge 2 g-poäng och 1 vg-poäng. Uppgift 14 (Del I) ska aspektbedömas med stöd av en matris. Några uppgifter i provet är markerade med. På dessa uppgifter kan eleven visa MVGkvaliteter. Det kan t.ex. innebära att eleven använder generella metoder, modeller och resonemang, att eleven analyserar sina resultat och redovisar en klar tankegång med korrekt matematiskt språk. Allmänna bedömningsanvisningar Positiv bedömning Elevernas lösningar ska bedömas med högst det antal poäng som anges i bedömningsanvisningarna. Utgångspunkten är att eleverna ska få poäng för lösningens förtjänster och inte poängavdrag för fel och brister. Det går då att ge delpoäng för en lösning som visar att en elev kommit en bit på väg. Uppgifter där endast svar krävs Uppgifter av kortsvarstyp där endast svar krävs ger 1 poäng. Exempel på godtagbara svar ges i bedömningsanvisningarna. Endast svaret beaktas. Uppgifter där fullständig redovisning fordras Enbart svar utan motiveringar ger inga poäng. För full poäng krävs korrekt redovisning med godtagbart svar eller slutsats. Redovisningen ska vara tillräckligt utförlig och uppställd på ett sådant sätt att tankegången lätt kan följas. Korrekt metod eller förklaring till hur uppgiften kan lösas ska ge delpoäng även om det därefter följer en felaktighet, t.ex. räknefel. Om eleven också slutför uppgiften korrekt ger det fler poäng. Till de enskilda uppgifterna finns korrekta svar och bedömningsanvisningar för delpoäng. NpMaA vt

16 Bedömningsanvisningar Del I Till kortsvarsuppgifterna finns godtagbara svar och poäng som detta svar är värt. I uppgift 6b och 7 ska elevens redovisning också bedömas. På den -märkta uppgiften, uppgift 14 i detta delprov, kan eleven visa följande MVG-kvaliteter. Eleven formulerar och utvecklar problemet och/eller använder generella metoder/modeller vid problemlösning. analyserar och tolkar resultat, drar slutsatser samt bedömer rimlighet. genomför matematiska bevis och/eller analyserar matematiska resonemang. redovisar välstrukturerat med lämpligt och korrekt matematiskt språk. Aspektbedömning med stöd av matris Uppgift 14 ska aspektbedömas med stöd av en matris. Bedömningen underlättas om läraren är väl insatt i bedömningsanvisningarna. En modell som används på många skolor är att de lärare som har elever som deltagit i A-kursprovet träffas och diskuterar de bedömningar som gjorts på de autentiska elevarbetena. Uppgift Godtagbara svar Poäng 1. 4,06 1 g 2. 0,2 1 g 3. ( 3 ; 4) 1 g 4. 1:3 ; 4/12 ; 33 % 1 g g 6. a) Svar i intervallet kr 1 g b) Svar i intervallet 2,1 2,5 år (2,3 år) Godtagbart svar. Motivering som t.ex. visar lämpliga avläsningar från graferna. 7. 4a + 2b Korrekt svar. Godtagbar motivering av figurens omkrets. 1 g 1 vg 1 g 1 vg dagar 1 vg 9. 2,5 ; ; vg 10. x = 0,8 1 vg 11. 1,12! s = p ; s + 0,12s = p ; p s =1,12 1 vg 12. x 2 ; x vg 13. 0, vg NpMaA vt

17 Bedömningsanvisningar uppgift 14 (Max 4/7) Uppgiftsspecifik bedömningsmatris till uppgiften Kvalitativa nivåer Bedömningen avser Lägre Högre Metodval och genomförande I vilken grad eleven kan tolka en problemsituation och lösa olika typer av problem. Hur fullständigt och hur väl eleven använder metoder och tillvägagångssätt som är lämpliga för att lösa problemet. Eleven bestämmer volymen av cylindern från det kvadratiska pappret. Eleven bestämmer volymerna till minst ett cylinderpar dvs. de två rör, som bildas av samma rektangulära papper. (1/0) (1/1) Eleven bestämmer förhållandet mellan volymerna hos minst ett cylinderpar där egna värden använts. (1/2) Eleven påbörjar en algebraisk undersökning. (1/3) Matematiska resonemang Förekomst och kvalitet hos värdering, analys, reflektion, bevis och andra former av matematiska resonemang. Eleven visar att omkretsen 10 cm ger diametern 3,2 cm. Eleven jämför volymerna mellan ett cylinderpar. Eleven upptäcker att förhållandet mellan volymerna är lika med förhållandet mellan längderna av papprets sidor. Eleven bevisar algebraiskt eller för ett resonemang som visar att förhållandet mellan volymerna är lika med förhållandet mellan längderna av papprets sidor. (1/0) (1/1) (1/2) (1/3) Redovisning och matematiskt språk Hur klar, tydlig och fullständig elevens redovisning är och hur väl eleven använder matematiska termer, symboler och konventioner. Redovisningen är möjlig att följa och omfattar någon deluppgift. Det matematiska språket kan vara knapphändigt. Redovisningen är möjlig att följa och omfattar minst tre av deluppgifterna. Det matematiska språket är acceptabelt bl.a. genom att korrekta enheter anges. Redovisningen är lätt att följa och omfattar större delen av problemet. Det matematiska språket är lämpligt. (1/0) (2/0) (2/1) MVG-kvalitet Formulerar och utvecklar problem, använder generella metoder/modeller vid problemlösning. Analyserar och tolkar resultat, drar slutsatser samt bedömer rimlighet. Genomför bevis och/eller analyserar matematiska resonemang. Värderar och jämför metoder/modeller. Redovisar välstrukturerat med korrekt matematiskt språk. visar eleven i denna uppgift genom t.ex. att bevisa förhållandet algebraiskt. analysera resultatet av volymförhållandet och dra slutsatser av detta. visa att förhållandet mellan volymerna är lika med förhållandet mellan längderna av papprets sidor. redovisa välstrukturerat med korrekt matematiskt språk. NpMaA vt

18 Här följer bedömda elevarbeten till uppgift 14: Elevarbete A Bedömning Metodval och genomförande Matematiska resonemang Redovisning och matematiskt språk Kvalitativa nivåer Poäng Motivering 1/0 0/0 1/0 Summa 2/0 NpMaA vt

19 Elevarbete B Bedömning Metodval och genomförande Matematiska resonemang Redovisning och matematiskt språk Kvalitativa nivåer Poäng Motivering 1/0 1/0 1/0 Eleven visar att diametern stämmer med ett approximativt värde på π. Summa 3/0 NpMaA vt

20 Elevarbete C Bedömning Metodval och genomförande Matematiska resonemang Redovisning och matematiskt språk Kvalitativa nivåer Poäng Motivering 1/1 1/1 2/0 Summa 4/2 NpMaA vt

21 Elevarbete D NpMaA vt

22 Bedömning Kvalitativa nivåer Poäng Motivering Metodval och genomförande Matematiska resonemang Redovisning och matematiskt språk * * 1/2 0/1 2/0 * Den algebraiska undersökningen utgår inte från samma papper och arbetet visar därför inte ett volymförhållande med egna värden. * Eleven utgår inte från papprets sida för att visa diameterns längd. Summa 3/3 NpMaA vt

23 Elevarbete E NpMaA vt

24 Bedömning Metodval och genomförande Matematiska resonemang Redovisning och matematiskt språk * Kvalitativa nivåer Poäng Motivering 0/2 1/2 2/0 Summa 3/4 * Eleven gör ingen korrekt bestämning av någon volym utan använder genomgående diameter i stället för radie. Detta fel påverkar inte svårighetsgraden i den fortsatta uppgiften. Elevarbete E visar följande MVG-kvaliteter: MVG-kvalitet Formulerar och utvecklar problem, använder generella metoder/modeller vid problemlösning. Analyserar och tolkar resultat, drar slutsatser samt bedömer rimlighet. Genomför bevis och/eller analyserar matematiska resonemang. Värderar och jämför metoder/modeller. visar eleven i denna uppgift genom t.ex. att analysera sina resultat av volymförhållandet och dra slutsatser av detta. Redovisar välstrukturerat med korrekt matematiskt språk. NpMaA vt

25 Elevarbete F NpMaA vt

26 Bedömning Kvalitativa nivåer Poäng Motivering Metodval och genomförande 1/2 Matematiska resonemang Redovisning och matematiskt språk 1/3 Eleven för ett resonemang om varför förhållandena av volymerna är detsamma som förhållandena mellan papprets sidor för ett papper där ena sidan är dubbelt så lång som den andra. 2/1 Summa 4/6 Elevarbete F visar följande MVG-kvaliteter: MVG-kvalitet Formulerar och utvecklar problem, använder generella metoder/modeller vid problemlösning. Analyserar och tolkar resultat, drar slutsatser samt bedömer rimlighet. Genomför bevis och/eller analyserar matematiska resonemang. Värderar och jämför metoder/modeller. Redovisar välstrukturerat med korrekt matematiskt språk. visar eleven i denna uppgift genom t.ex. att analysera sina resultat av volymförhållandet och dra slutsatser av dessa. lösningen till övervägande del är välstrukturerad och lätt att följa även om avslutningen på lösningen uppvisar brister. NpMaA vt

27 Elevarbete G NpMaA vt

28 Bedömning Kvalitativa nivåer Poäng Motivering Metodval och genomförande Matematiska resonemang Redovisning och matematiskt språk 1/3 1/3 2/1 Summa 4/7 Elevarbete G visar följande MVG-kvaliteter: MVG-kvalitet Formulerar och utvecklar problem, använder generella metoder/modeller vid problemlösning. Analyserar och tolkar resultat, drar slutsatser samt bedömer rimlighet. Genomför bevis och/eller analyserar matematiska resonemang. Värderar och jämför metoder/modeller. Redovisar välstrukturerat med korrekt matematiskt språk. visar eleven i denna uppgift genom t.ex. att bevisa likheten algebraiskt. analysera sina resultat av volymförhållandet och dra slutsatser av dessa. bevisa att förhållandet mellan volymerna är lika med förhållandet mellan längderna på papprets sidor. redovisa välstrukturerat med bl.a. lämpliga symboler. NpMaA vt

29 Provsammanställning Kategorisering av uppgifterna 1 13 i Del I Kunskapsområde Betygskriterier Allmän Aritmetik Geometri Statistik Algebra och funktionslära Teknik Historia Godkänt Väl godkänt Uppgift nr g- poäng vgpoäng A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 G1 G2 G3 G4 V1 V2 V3 V4 V x x x x x x x x x x x x x x x 6a 1 0 x x x x 6b 1 1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 8 8 0/1 3/2 2/2 3/3 8 8 Kategorisering av uppgift 14 i Del I Kunskapsområde Betygskriterier Allmän Aritmetik Geometri Statistik Algebra och funktionslära Teknik Historia Godkänt Väl godkänt Mycket väl godkänt Uppgift nr g- poäng vgpoäng A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 G1 G2 G3 G4 V1 V2 V3 V4 V5 M1 M2 M3 M4 M x x x x x x x x x x x x x x x x 1/1 1/2 2/2 0/2 4 7 NpMaA vt

30 Bilaga 1 Mål att sträva mot i ämnet matematik enligt kursplan Gy2000 Skolan skall i sin undervisning i matematik sträva efter att eleverna S1. utvecklar sin tilltro till den egna förmågan att lära sig mera matematik, att tänka matematiskt och att använda matematik i olika situationer, S2. utvecklar sin förmåga att tolka, förklara och använda matematikens språk, symboler, metoder, begrepp och uttrycksformer, S3. utvecklar sin förmåga att tolka en problemsituation och att formulera den med matematiska begrepp och symboler samt välja metod och hjälpmedel för att lösa problemet, S4. utvecklar sin förmåga att följa och föra matematiska resonemang samt redovisa sina tankegångar muntligt och skriftligt, S5. utvecklar sin förmåga att med hjälp av matematik lösa problem på egen hand och i grupp bl.a. av betydelse för vald studieinriktning samt att tolka och värdera lösningarna i förhållande till det ursprungliga problemet, S6. utvecklar sin förmåga att reflektera över sina erfarenheter av begrepp och metoder i matematiken och sina egna matematiska aktiviteter, S7. utvecklar sin förmåga att i projekt och gruppdiskussioner arbeta med sin begreppsbildning samt formulera och motivera olika metoder för problemlösning, S8. utvecklar sin förmåga att utforma, förfina och använda matematiska modeller samt att kritiskt bedöma modellernas förutsättningar, möjligheter och begränsningar, S9. fördjupar sin insikt om hur matematiken har skapats av människor i många olika kulturer och om hur matematiken utvecklats och fortfarande utvecklas, S10. utvecklar sina kunskaper om hur matematiken används inom informationsteknik, samt hur informationsteknik kan användas vid problemlösning för att åskådliggöra matematiska samband och för att undersöka matematiska modeller. NpMaA vt

31 Bedömingsanvisningar Del II vt 2010 Skolverket har den beslutat att provet i matematik A för vt 2010 inte ska återanvändas. Innehåll Bedömningsanvisningar Del II... 4 Kravgränser Maxpoäng Provbetyget Godkänt Provbetyget Väl godkänt MVG-kvalitet Provbetyget Mycket väl godkänt Insamling av provresultat för matematik kurs A Provsammanställning Sammanställning över hur kursprovet berörs av mål och kriterier enligt kursplan Gy Mål att sträva mot Bilagor 1. Mål som eleverna ska ha uppnått efter avslutad kurs A i matematik enligt kursplan Gy Betygskriterier för ämnet matematik enligt kursplan Gy NpMaA vt

32 Bedömningsanvisningar Del II Till så gott som alla uppgifter ska eleverna lämna fullständiga lösningar. Elevlösningarna ska bedömas med g- och vg-poäng. Positiv poängsättning ska tillämpas, dvs. eleverna ska få poäng för lösningarnas förtjänster och inte poängavdrag för deras brister. För de flesta uppgifterna gäller följande allmänna bedömningsanvisningar. För maxpoäng krävs klar och tydlig redovisning av korrekt tankegång med korrekt svar. Till de enskilda uppgifterna finns korrekta svar och bedömningsanvisningar för delpoäng. På de -märkta uppgifterna i detta prov kan eleven visa följande MVG-kvaliteter. Eleven formulerar och utvecklar problemet och/eller använder generella metoder/modeller vid problemlösning (uppgift 5, 8d och 11b) analyserar och tolkar resultat, drar slutsatser samt bedömer slutsatsernas rimlighet och giltighet från olika typer av matematiska problem (uppgift 10b och 11b) redovisar välstrukturerat med lämpligt och korrekt matematiskt språk (uppgift 5 och 11a) g Ansats till lösning t.ex. beräknat åtgång för 3 personer. Redovisad lösning med korrekt svar. 2. Ca 7 miljoner Ansats till lösning t.ex. beräknat antalet Internetanvändare. Redovisad lösning med godtagbart svar. 3. a) 27 brädor Korrekt svar. b) (antal stolpar 1) 3 Ansats till lösning t.ex. Antalet mellanrum är ett mindre än antalet stolpar. Korrekt formulerat samband/uttryck med ord eller formel timmar 55 minuter Ansats till lösning t.ex. beräknat tidsförskjutningen eller beräknat flygtid utan hänsyn till tidsförskjutningen. Lösning som visar lämplig metod med korrekt svar. 5. T.ex. 4,5 12 ; 3 ; 0,375 ; 37,5 % 8 Ansats till lösning t.ex. beräknat arean av det vita eller färgade området. Redovisad lösning med godtagbart svar. Använder generell lösningsmetod och eventuellt ett korrekt algebraiskt språk. Bedömda elevarbeten se sid. 7. Max 2/0 + 1 g + 1 g Max 2/0 + 1 g + 1 g Max 1/0 + 1 g Max 1/1 + 1 g + 1 vg Max 1/1 + 1 g + 1 vg Max 1/1 + 1 g + 1 vg + NpMaA vt

33 6. a) 168 kr Redovisning med korrekt svar. b) 150 % Ansats till lösning t.ex. beräknat årsräntan i kronor. Redovisning med godtagbart svar. 7. Förpackningen rymmer mer än 2 cl Beräknar volymen då k = 6. Gör något av enhetsbytena. Tydlig redovisning med beräkning och korrekt slutsats. 8. a) Digitaltryckeriet: 44 kr och 140 kr ; Tryckservice: 36 kr och 180 kr Minst två rätt ifyllda värden. Korrekt ifylld tabell. b) st Ansats till lösning t.ex. tecknad division eller påbörjad prövning. Redovisning med korrekt svar. c) K(x) = ,24x Ansats till lösning t.ex. angivit ett godtagbart uttryck. Anger godtagbar formel. d) 167 blad Ansats till lösning t.ex. påbörjad prövning, ekvation eller grafisk lösning. Redovisning med godtagbart svar. Använda generell lösningsmetod. Bedömda elevarbeten se sid Ca 163 cm Påbörjad möjlig lösningsmetod t.ex. bestämmer en differens eller ritar en graf. Tydlig redovisning med godtagbart svar baserat på korrekt extrapolering. Bedömda elevarbeten se sid. 11. Max 1/0 + 1 g Max 1/1 + 1 g + 1 vg Max 2/1 + 1 g + 1 g + 1 vg Max 2/0 + 1 g + 1 g Max 2/0 + 1 g + 1 g Max 1/1 + 1 g + 1 vg Max 1/1 + 1 g + 1 vg + Max 1/1 + 1 g + 1 vg NpMaA vt

34 10. a) Att det är 80 % för många som utbildar sig till journalister jämfört med beräknat behov. Lösning som visar någon förståelse. Korrekt tolkning av värdet 180. Max 1/1 + 1 g + 1 vg Bedömda avskrivna autentiska elevarbeten 0/0 Man behöver utbilda många journalister. 1/0 Att det finns ett överflöd av journalister. 1/1 Det är 80 % mer journalister än nödvändigt. 1/1 Ja, du Emma, det innebär att det examineras 80 % mer än behovet Alltså svårt att få jobb. Välj annan utbildning. b) Eftersom diagrammet är i enheten procent och 1 % kan betyda 100 personer för psykologer och 1 % kan betyda personer för civilingenjörer. Alltså har Johanna rätt. Konstaterar vem som har rätt men motiveringen kan vara knapphändig. Med godtagbar motivering. Bedömda avskrivna autentiska elevarbeten 0/0 Johanna, det är bara ungefär hur många. 0/1 Johanna har rätt eftersom det handlar om behovet också. Man kanske behöver jättemånga civilingenjörer medan inte behovet av psykologer är jättestort. 0/1 Johanna har rätt. Det beror på antalet nyanställningar. Antalet civilingenjörer är förmodligen större än antalet psykologer men procentuellt kan de ligga lika för det. Kommentar: Det sista elevarbetet visar MVG-kvalitet genom att analysera och tolka diagrammet och dra slutsatser av detta. 11. a) 4, 5 och 6 Visar förståelse för begreppet median och anger minst ett korrekt värde. Redovisar samtliga värden med motivering. Motiverar att lösningen innehåller samtliga värden. Bedömda elevarbeten se sid. 12. b) 0, 5 och 10 Redovisar ett värde med motivering. Redovisar samtliga värden med motivering. Väljer generell lösningsmetod eller analyserar och drar slutsatser. Båda kriterierna har inte hittats i någon analyserad elevlösning. Bedömda elevarbeten se sid Max 0/1 + 1 vg Max 1/1 + 1 g + 1 vg + Max 0/2 + 1 vg + 1 vg + Uppg. 10b* MVG-kvalitet + *Urklipp från MVG-rutan sid. 16. NpMaA vt

35 Bedömda elevarbeten till uppgift 5 (1/0) (1/1) (1/1) Uppg. 5* + MVG-kvalitet visar eleven i denna uppgift t.ex. genom att - använda generell lösningsmetod. MVG-kvalitet (1/1) Uppg. 5* + MVG-kvalitet visar eleven i denna uppgift t.ex. genom att - använda generell lösningsmetod. MVG-kvalitet *Urklipp från MVG-rutan sid. 16. NpMaA vt

36 (1/1) Uppg. 5* + MVG-kvalitet visar eleven i denna uppgift t.ex. genom att - använda generell lösningsmetod - använda ett korrekt algebraiskt språk. *Urklipp från MVG-rutan sid. 16. MVG-kvalitet + NpMaA vt

37 Bedömda elevarbeten till uppgift 8d (1/1) (1/1) Uppg. 8d* + MVG-kvalitet visar eleven i denna uppgift t.ex. genom att - använda generell lösningsmetod. MVG-kvalitet *Urklipp från MVG-rutan sid. 16. NpMaA vt

Bedömingsanvisningar Del II vt 2010

Bedömingsanvisningar Del II vt 2010 Bedömingsanvisningar Del II vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas. Innehåll Bedömningsanvisningar Del II... 4 Kravgränser... 16 Maxpoäng...

Läs mer

Anvisningar Del I. Namn: Födelsedatum: Komvux/gymnasieprogram: Provtid

Anvisningar Del I. Namn: Födelsedatum: Komvux/gymnasieprogram: Provtid Anvisningar Del I Provtid Hjälpmedel Miniräknarfri del Uppgift 14 Kravgränser 90 minuter för del I. Vi rekommenderar att du använder högst 45 minuter för arbetet med den miniräknarfria delen. Du får inte

Läs mer

Till några uppgifter behöver endast svar anges. De är markerade med Endast svar krävs.

Till några uppgifter behöver endast svar anges. De är markerade med Endast svar krävs. Anvisningar Del II Provtid Hjälpmedel Del II 120 minuter för Del II. Miniräknare, formelblad och linjal. Del II består av 11 uppgifter. Till de flesta uppgifterna räcker det inte med endast svar, utan

Läs mer

Inledning...3. Kravgränser...21. Provsammanställning...22

Inledning...3. Kravgränser...21. Provsammanställning...22 Innehåll Inledning...3 Bedömningsanvisningar...3 Allmänna bedömningsanvisningar...3 Bedömningsanvisningar Del I...4 Bedömningsanvisningar Del II...5 Bedömningsanvisningar uppgift 11 (Max 5/6)...12 Kravgränser...21

Läs mer

Inledning Kravgränser Provsammanställning... 18

Inledning Kravgränser Provsammanställning... 18 Innehåll Inledning... 3 Bedömningsanvisningar... 3 Allmänna bedömningsanvisningar... 3 Bedömningsanvisningar Del I... 4 Bedömningsanvisningar Del II... 5 Bedömningsanvisningar uppgift 8 (Max 5/4)... 12

Läs mer

Nationellt kursprov i MATEMATIK KURS A Våren 2005. Del I

Nationellt kursprov i MATEMATIK KURS A Våren 2005. Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med 10 juni 2005. Nationellt kursprov i MATEMATIK

Läs mer

Bedömningsexempel. Matematik kurs 1c

Bedömningsexempel. Matematik kurs 1c Bedömningsexempel Matematik kurs 1c Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter som är representativa för Del I... 5 Exempeluppgifter som är representativa för Del II och Del III... 9 Exempel

Läs mer

Inledning Kravgränser Provsammanställning... 18

Inledning Kravgränser Provsammanställning... 18 NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001 BEDÖMNINGSANVISNINGAR Innehåll Inledning... 3 Bedömningsanvisningar... 3 Allmänna bedömningsanvisningar... 3 Bedömningsanvisningar Del I... 4 Bedömningsanvisningar

Läs mer

Bedömningsexempel. Matematik kurs 1b

Bedömningsexempel. Matematik kurs 1b Bedömningsexempel Matematik kurs 1b Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter som är representativa för Del I... 5 Exempeluppgifter som är representativa för Del II och Del III... 9 Exempel

Läs mer

Bedömningsexempel. Matematik kurs 1a

Bedömningsexempel. Matematik kurs 1a Bedömningsexempel Matematik kurs 1a Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter som är representativa för Del I... 5 Exempeluppgifter som är representativa för Del II och Del III... 10 Exempel

Läs mer

Inledning Kravgränser... 15

Inledning Kravgränser... 15 Innehåll Inledning... 3 Bedömningsanvisningar... 3 Allmänna bedömningsanvisningar... 3 Bedömningsanvisningar Del I... 4 Bedömningsanvisningar Del II... 6 Bedömningsanvisningar uppgift 9 (Max 5/8)... 9

Läs mer

Innehåll. Inledning... 3

Innehåll. Inledning... 3 Innehåll Inledning... 3 Bedömningsanvisningar... 3 Allmänna bedömningsanvisningar... 3 Bedömningsanvisningar Delprov B... 4 Bedömningsanvisningar Delprov C... 16 Provbetyg... 29 Kopieringsunderlag för

Läs mer

Nationellt kursprov i MATEMATIK KURS A Våren 2005. Del I

Nationellt kursprov i MATEMATIK KURS A Våren 2005. Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med 10 juni 2005. Nationellt kursprov i MATEMATIK

Läs mer

Matematik. Kursprov, vårterminen 2012. Bedömningsanvisningar. för samtliga skriftliga provdelar

Matematik. Kursprov, vårterminen 2012. Bedömningsanvisningar. för samtliga skriftliga provdelar Kursprov, vårterminen 2012 Matematik Bedömningsanvisningar för samtliga skriftliga provdelar 1b Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

Inledning Kravgränser Provsammanställning... 21

Inledning Kravgränser Provsammanställning... 21 NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2001 BEDÖMNINGSANVISNINGAR Innehåll Inledning... 3 Bedömningsanvisningar... 3 Allmänna bedömningsanvisningar... 3 Bedömningsanvisningar Del I... 4 Bedömningsanvisningar

Läs mer

Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar

Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar Kursprov, vårterminen 2012 Matematik Bedömningsanvisningar för samtliga skriftliga provdelar 1c Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

Inledning...5. Bedömningsanvisningar...5 Allmänna bedömningsanvisningar...5 Bedömningsanvisningar Delprov B...6 Bedömningsanvisningar Delprov C...

Inledning...5. Bedömningsanvisningar...5 Allmänna bedömningsanvisningar...5 Bedömningsanvisningar Delprov B...6 Bedömningsanvisningar Delprov C... Innehåll Inledning...5 Bedömningsanvisningar...5 Allmänna bedömningsanvisningar...5 Bedömningsanvisningar Delprov B...6 Bedömningsanvisningar Delprov C...20 Provbetyg...37 Kopieringsunderlag för resultatsammanställning...38

Läs mer

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning

Läs mer

Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar

Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar Kursprov, vårterminen 2012 Matematik Bedömningsanvisningar för samtliga skriftliga provdelar 1a Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del I

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2010. NATIONELLT KURSPROV

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN Del I

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av juni månad 2002. NATIONELLT

Läs mer

1. Skollagen 2. Läroplanen Lpo 94 / Lpf Grundskole- / Gymnasieförordningen

1. Skollagen 2. Läroplanen Lpo 94 / Lpf Grundskole- / Gymnasieförordningen Olika styrdokument har olika dignitet 1. Skollagen 2. Läroplanen Lpo 94 / Lpf 94 3. Grundskole- / Gymnasieförordningen Riksdagen Regeringen Utskott SOU Departement (utbildnings-) Statliga verk (Skolverket)

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2002. Del I

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2002. Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av juni månad 2002. NATIONELLT

Läs mer

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna.

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna. Vid bedömning av ditt arbete med uppgift nummer 17 kommer läraren att ta hänsyn till: Hur väl du beräknar och jämför trianglarnas areor Hur väl du motiverar dina slutsatser Hur väl du beskriver hur arean

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng Miniräknare ej tillåten Del B1 Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng (0/1). Provtid: 80 minuter för Del B1 och Del B2 tillsammans.

Läs mer

Komvux/gymnasieprogram:

Komvux/gymnasieprogram: Namn: Skola: Komvux/gymnasieprogram: Anvisningar: Tidsbunden del består av två delar, Del I och Del II. Den sammanlagda provtiden är 120 minuter varav högst 30 minuter för Del I. Till uppgifterna i Del

Läs mer

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid

Läs mer

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:...

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... DIGITALA VERKTYG ÄR INTE TILLÅTNA Namn:... Klass/Grupp:... Del I 1. Bestäm värdet av 25 3x om x = 2 Svar: (1/0/0) 2. Vilket tal ska stå i rutan för att likheten ska stämma? 2 3 + + 1 =1 Svar: (1/0/0) 9

Läs mer

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med den 10 juni 2005. Anvisningar NATIONELLT

Läs mer

I den här uppgiften ska du undersöka förhållandet mellan parabelarean och rektangelarean.

I den här uppgiften ska du undersöka förhållandet mellan parabelarean och rektangelarean. 17. Figuren visar en parabel och en rektangel i ett koordinatsystem. Det skuggade området är begränsat av parabeln och x-axeln. Arean av det skuggade området kallas i fortsättningen parabelarean. Vid bedömning

Läs mer

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng Ämnesprov i matematik Skolår 9 Vårterminen 2004 Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 11 juni 2004. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 Anvisningar Provtid Hjälpmedel Provmaterialet Provet Poäng och betygsgränser NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 240 minuter för Del I och Del II tillsammans. Vi rekommenderar att du använder

Läs mer

Bedömningsanvisningar Del I vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas.

Bedömningsanvisningar Del I vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas. Bedömningsanvisningar Del I vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas. Innehåll Inledning... 4 Bedömningsanvisningar... 4 Allmänna bedömningsanvisningar...

Läs mer

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 2002. Anvisningar Provtid

Läs mer

Del I DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... 1. Vilket tal pekar pilen på? Svar: (1/0/0)

Del I DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... 1. Vilket tal pekar pilen på? Svar: (1/0/0) DIGITALA VERKTYG ÄR INTE TILLÅTNA Namn:... Klass/Grupp:... Del I 1. Vilket tal pekar pilen på? 30 31 32 33 34 Svar: (1/0/0) 2. Du åker buss kvart i sju från Motala busstation. Hur dags beräknas du vara

Läs mer

Del I. Miniräknare ej tillåten. Namn:... Klass/Grupp:... 1. Vilket tal är 0,1 större än 3,96? Svar: (1/0) 2. Vilket tal i decimalform ska stå i rutan?

Del I. Miniräknare ej tillåten. Namn:... Klass/Grupp:... 1. Vilket tal är 0,1 större än 3,96? Svar: (1/0) 2. Vilket tal i decimalform ska stå i rutan? Miniräknare ej tillåten Namn:... Klass/Grupp:... Del I 1. Vilket tal är 0,1 större än 3,96? Svar: (1/0) 2. Vilket tal i decimalform ska stå i rutan? a 0 1 2 Svar: a = (1/0) 3. Vilka koordinater har punkten

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 Anvisningar Provtid Hjälpmedel Provmaterialet Provet Poäng och betygsgränser NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 240 minuter för Del I och Del II tillsammans. Vi rekommenderar att du använder

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2005

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2005 Anvisningar Provtid Hjälpmedel Provmaterialet NpMaB vt 2005 Version 1 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1998. Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1998. Tidsbunden del Nationellt prov i Matematik kurs A vt 1998 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och

Läs mer

Matematik. Ämnesprov, läsår 2012/2013. Bedömningsanvisningar. Årskurs. Delprov D

Matematik. Ämnesprov, läsår 2012/2013. Bedömningsanvisningar. Årskurs. Delprov D Ämnesprov, läsår 2012/2013 Matematik Bedömningsanvisningar Delprov D Årskurs 9 Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds t.o.m.

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (2009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 2017-06-30. Vid sekretessbedömning

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 017-06-0. Vid sekretessbedömning ska

Läs mer

C Höstterminen 2009. Matematik. Elevhäfte KURSPROV. Elevens namn

C Höstterminen 2009. Matematik. Elevhäfte KURSPROV. Elevens namn KURSPROV Matematik C Höstterminen 2009 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t o m 2015-12-31.

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2005

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2005 Anvisningar Provtid Hjälpmedel Provmaterialet NpMaB vt 2005 Version 1 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material

Läs mer

Anvisningar. 240 minuter utan rast. Miniräknare och Formler till nationellt prov i matematik

Anvisningar. 240 minuter utan rast. Miniräknare och Formler till nationellt prov i matematik Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 00. Anvisningar Provtid

Läs mer

Matematik. Ämnesprov, läsår 2012/2013. Bedömningsanvisningar. Årskurs. Delprov B och Delprov C

Matematik. Ämnesprov, läsår 2012/2013. Bedömningsanvisningar. Årskurs. Delprov B och Delprov C Ämnesprov, läsår 2012/2013 Matematik Bedömningsanvisningar Delprov B och Delprov C Årskurs 9 Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds

Läs mer

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... A B C D

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... A B C D DIGITALA VERKTYG ÄR INTE TILLÅTNA Namn:... Klass/Grupp:... Del I 1. Figuren är en regelbunden sexhörning. De båda linjerna delar sexhörningen mitt itu. Hur stor del av sexhörningen är skuggad? Svara i

Läs mer

Nationellt kursprov i MATEMATIK KURS A Våren 2005. Del II

Nationellt kursprov i MATEMATIK KURS A Våren 2005. Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med 10 juni 2005. Anvisningar Provtid Hjälpmedel

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2011

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2011 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (2009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 2017-06-30. Vid sekretessbedömning

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2011. Anvisningar Provtid

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS E VÅREN Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS E VÅREN Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1998. Anvisningar

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN Del I

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av juni månad 2002. NATIONELLT

Läs mer

Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2008.

Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2008. Miniräknare ej tillåten Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2008. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0)

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2007.

Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2007. Miniräknare ej tillåten Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2007. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0)

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med den 10 juni 2005. Anvisningar NATIONELLT

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med den 10 juni 2005. Anvisningar NATIONELLT

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2011

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2011 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (2009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 2017-06-30 Vid sekretessbedömning

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 6 freeleaks NpMaD ht2007 för Ma4 1(10) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 2007 2 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 6 Förord Kom ihåg Matematik

Läs mer

NATIONELLT PROV I MATEMATIK KURS A VÅREN 1997. Tidsbunden del

NATIONELLT PROV I MATEMATIK KURS A VÅREN 1997. Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT

Läs mer

Delkursplanering MA Matematik A - 100p

Delkursplanering MA Matematik A - 100p Delkursplanering MA1201 - Matematik A - 100p som du skall ha uppnått efter avslutad kurs Du skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Matematik C (MA1203)

Matematik C (MA1203) Matematik C (MA103) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma C (MA103) Matematik 03-08- Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven

Läs mer

Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor

Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor Våren 010 PRÖVNINGSANVISNINGAR Prövning i Matematik B Kurskod MA 10 Gymnasiepoäng 50 Läromedel Prov Muntligt prov Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag Skriftligt

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1a Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5 freeleaks NpMaB vt00 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 00 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter utan miniräknare 5 Förord Uppgifter till den äldre

Läs mer

8. I tabellen nedan anges räddade och omkomna i olyckan. Diagrammen på nästa sida bygger på denna tabell.

8. I tabellen nedan anges räddade och omkomna i olyckan. Diagrammen på nästa sida bygger på denna tabell. Vid aspektbedömningen av ditt arbete på uppgift 8 kommer läraren att ta hänsyn till vilka matematiska kunskaper du har visat och hur väl du har genomfört uppgiften hur väl du har förklarat ditt arbete

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6 freeleaks NpMaB vt2001 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2001 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 9 uppgifter med miniräknare 6 Förord Skolverket har endast

Läs mer

Innehåll. Kopieringsunderlag Breddningsdel Formelblad

Innehåll. Kopieringsunderlag Breddningsdel Formelblad Innehåll Information till lärare inför breddningsdelen i det nationella kursprovet i Matematik kurs A våren 1999...1 Inledning...1 Tidsplan våren 1999...1 Nyheter i kursprovet för Matematik kurs A vårterminen

Läs mer

Innehållet i detta häfte är sekretessbelagt t o m den 9 juni 2006.

Innehållet i detta häfte är sekretessbelagt t o m den 9 juni 2006. Miniräknare ej tillåten Innehållet i detta häfte är sekretessbelagt t o m den 9 juni 2006. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del II

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2010. Anvisningar Provtid

Läs mer

NpMaD ht 2000. Anvisningar. Grafritande räknare och Formler till nationellt prov i matematik kurs C, D och E.

NpMaD ht 2000. Anvisningar. Grafritande räknare och Formler till nationellt prov i matematik kurs C, D och E. NpMaD ht 000 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 010. Anvisningar

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1b Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

Bedömningsexempel Matematik årskurs 9

Bedömningsexempel Matematik årskurs 9 Bedömningsexempel Matematik årskurs 9 Innehåll Inledning... 3 Bedömning... 3 Exempeluppgift för delprov A... 5 Exempeluppgifter för delprov B... 9 Exempeluppgift för delprov C... 12 Exempeluppgifter för

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del I

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 010. NATIONELLT KURSPROV I

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1c Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR Prövning i Matematik 4 PRÖVNINGSANVISNINGAR Kurskod MATMAT04 Gymnasiepoäng 100 Läromedel Valfri aktuell lärobok för kurs Matematik 4 Skriftligt prov (4h) Muntligt prov Bifogas Provet består av två delar.

Läs mer

Centralt innehåll. I årskurs 1.3

Centralt innehåll. I årskurs 1.3 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik

Läs mer

Bedömning av kunskap för lärande och undervisning i matematik. PRIM-gruppen Gunilla Olofsson

Bedömning av kunskap för lärande och undervisning i matematik. PRIM-gruppen Gunilla Olofsson Bedömning av kunskap för lärande och undervisning i matematik PRIM-gruppen Gunilla Olofsson PRIM-gruppen Forskningsgruppen för bedömning av kunskap och kompetens Gruppen utvecklar olika instrument för

Läs mer

Tips 1. Skolverkets svar 14

Tips 1. Skolverkets svar 14 JENSEN vux utbildning Np Mac vt01 1(0) Kursprov Mac Innehåll Förord 1 Tips 1 Kursprov Mac vt01 Del B: Digitala verktyg är inte tillåtna. Endast svar krävs. #1 10...... 3 Del C: Digitala verktyg är inte

Läs mer

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska

Läs mer

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.

Läs mer

NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del

NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT

Läs mer

HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT

HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT Matematik HEM KURSER SKRIV UT MA200 - Matematik A 110 poäng inrättad 1994-07 SKOLFS: 1994:9 et för kursen är att ge de matematiska kunskaper som krävs för att ta ställning i vardagliga situationer i privatliv

Läs mer

Ämne Matematik (före 2011) Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i

Ämne Matematik (före 2011) Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i Ämne Matematik (före 2011) Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i grundskolan och innebär breddning och fördjupning av ämnet. Utbildningen

Läs mer

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs

Läs mer

MATEMATIK 5.5 MATEMATIK

MATEMATIK 5.5 MATEMATIK 5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2011

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2011 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (2009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 2017-06-30 Vid sekretessbedömning

Läs mer

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Institutionen för beteendevetenskapliga mätningar PBMaE 5-5 Umeå universitet Provtid PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Del I: Uppgift -9 Del II: Uppgift -7 Anvisningar Totalt 4 minuter

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 1997. Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 1997. Tidsbunden del Np MaA vt 1997 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av april 1998.

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 5

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 5 freeleaks NpMaB ht2002 1(7) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 2002 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 5 Förord Skolverket har endast

Läs mer

Kurskod: GRNMAT2 Verksamhetspoäng: 600

Kurskod: GRNMAT2 Verksamhetspoäng: 600 Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper

Läs mer

Bedömningsexempel från ämnesprovet i matematik årskurs 6, 2013

Bedömningsexempel från ämnesprovet i matematik årskurs 6, 2013 Bedömningsexempel från ämnesprovet i matematik årskurs 6, 2013 Innehåll Ämnesprovet i matematik i årskurs 6 läsåret 2012/2013, exempel på provuppgifter... 3 Inledning... 3 Skriftliga delprov... 5 Miniräknare

Läs mer

Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik

Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik prövning grundläggande matematik Malmö stad Komvux Malmö Södervärn PRÖVNING Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer.

Läs mer