Kvantitativa (analys) metoder

Storlek: px
Starta visningen från sidan:

Download "Kvantitativa (analys) metoder"

Transkript

1 Kvantitativa (analys) metoder Roland Sjöström Statistik, SPSS, analysmetoder Vad är standardavvikelse och varians Vad händer om ni får dubbelt så många svar? Medelfel? Vad innebär 95% sannolikhet Varför är det riskfyllt/olämpligt att leta resultat i redan insamlade data? Hur många kombinationsmöjligheter finns i en enkät Korstabeller, medelvärdesskillnader etc (ni är duktiga på matte) Hur många av dessa kombinationer ska trilla ut som signifikanta trots att de inte är det? Vilken roll får slumpen spela? Roland Sjöström 2 Mål med fö & labbar Ge övergripande kunskaper för att kunna lägga upp en kvantitativ analys Betoning på multivariat analys Förstå och kunna tolka utskrifter från SPSS Förbättra magkänslan Kunna tillämpa några kvantitativa analysmetoder på egna insamlade data Känna till grunderna i multivariat analys Korstabeller Medelvärdesanalyser, ANOVA, t-test, (F-test) sanalys/korrelation Labmtrl Roland Sjöström 3 Inlämningsuppgift i kvantitativa (statistiska) analysmetoder Mål med uppgiften: att ni ska diskutera och reflektera över hur multivariata analysmetoder kan användas i kvantitativa undersökningar. I grupper om ca fyra personer ska ni: Konstruera en kvantitativ kursvärdering med minst 10 och max 15 frågor samt förklara hur svaren ska analyseras. Ett bivillkor är att förslag till analys endast ska innehålla multivariata analysmetoder såsom korstabeller, skillnader i medelvärden mellan olika grupper, regressionsanalyser etc. Minst en av frågorna ska kunna fungera som beroende variabel i en multipel regressionsanalys. Betygsnivåer: G, VG För G krävs en någorlunda ingående användning av minst två analysmetoder eller en mer översiktlig användning av tre analysmetoder. Avgörande för G är hur väl ni har motiverat val av frågor och förslag till analys. För VG krävs att såväl korstabeller som skillnader i medelvärden mellan olika grupper och regressionsanalys finns med i analysförslaget använda på ett begåvat sätt och med tydlig beskrivning av hur analysen ska utföras och tolka Roland Sjöström 4 Mål med en undersökning Metod Ge bra rekommendationer Dra bra slutsatser Göra bra analyser & tolkningar Samla rätt data med hög kvalitet Vilken roll får slumpen spela? Ska man kunna lita på slutsatserna? Stor/liten Ju större betydelse (risk) undersökningen har desto mindre roll får/bör slumpen spela Metod är ett systematiskt sätt att undersöka verkligheten på. en guide som talar om hur man ska göra eller har gjort Det innebär inte att alla metoder klarar en kritisk granskning lika bra. Hur? Varför? Vanligt fel hur och varför blev det just dessa frågor i enkäten? Roland Sjöström Roland Sjöström 6 1

2 Tolkning av data Mål i förarbetet Ha rätt perspektiv Förstå sitt undersökningsområde Praktiskt och teoretiskt Fördjupa sig inom rätt frågeområden Inte för få Bra balans Ställa rätt frågor Självklart? Kvalitativ intervju ett intervjutillfälle? (Ställa frågor rätt) Roland Sjöström Roland Sjöström 8 Kvalitativa data All statistik handlar om. Data som inte på en meningsfullt sätt går att översätta i sifferform Skilja mellan orka/tycka och precision i analysen Roland Sjöström Roland Sjöström 10 Målpopulation Representativitet De företag/organisationer/individer som ska beskrivas och analyseras. Ramfel nettopopulation per målpopulation bruttopopulation analysgrupp Undersöka björnar undertäckning övertäckning Roland Sjöström Roland Sjöström 12 2

3 Inferensproblem Inferensproblem, forts Inferens är att dra slutsatser om en målpopulation på grundval av resultaten från de enheter i målpopulationen som faktiskt har undersökts - gäller alla undersökningar där inte samtliga enheter har undersökts - representativa (bedömning görs på förhand) Urvalets storlek - Två grupper ska undersökas, ftg resp 500 ftg, vi har resurser att genomföra 100 intervjuer - Hur ska vi fördela dem? inomformulärsbortfall => svars % varierar mellan frågor (mindre än ca 70% bearbetningsbara svar => skepsis) minska bortfall - bra formulär, säkra deltagande (t.ex. ringa), belöning?, påminnelse analys av bortfall Roland Sjöström Roland Sjöström 14 Analys strategi (operativ) syfte Mätteknik Hur ska insamlade data analyseras? Intervjuer Enkätdata Vad ställer detta för krav på dataunderlaget? Vem ska t.ex. avgöra vilka faktorer som är viktiga? Respondenten? Vad händer om man frågar respondenten om vilka faktorer som är viktigast t.ex. påverkar attityden till något? Vad betyder begreppet viktigt? Betyder viktigt samma för samtliga respondenter? Om inte vad mäts då? Hur hantera skillnader mellan olika respondenter? Jmfr lön Undersökaren? Hur gör man då? Inleds med en reflektion över hur data ska analyseras Handlar om konsten att inte förstöra en del av informationsinnehållet i ett svar genom att mäta på fel sätt operationalisering av begrepp användning av variabler (kan bara anta ett värde) mätskalor konstruktion av enskilda frågor konstruktion av hela formulär Roland Sjöström Roland Sjöström 16 Variabel Skalor Flervalsfrågor Viktigaste konkurrenterna - utgår från preciserade uppgiften (de konkreta undersökningsfrågorna), ansats, metod för datainsamling - Nominalskala bör vara uttömmande och uteslutande 0 man 0 kvinna - Ordinalskala (rangordningar - hur göra) 0 inst helt 0 inst delvis 0 varken eller Roland Sjöström Roland Sjöström 18 3

4 Skalor, forts Konstruktion av enskilda frågor - Intervallskala inst. inte alls inst. helt - Kvotskala, intervallskala med absolut nollpunkt (omsättning? tid?) Mäta Intention eller faktisk handling Ekomat Många kan tänka sig 3% av inköp Slentrian, bråttom Miljöbil? Större inköp, viktigare - öppna frågor - "ingen åsikt/uppfattning" - möjlighet att lägga till Roland Sjöström Roland Sjöström 20 Konstruktion av enskilda frågor, forts Laddade ord & ledande frågor Hur ska en fråga formuleras? Påstående? Ändpunkter i skala? Väntevärde? (Idol) Frågor avgr i tid och rum i övrigt neutrala Inte tillåta förbjuda Roland Sjöström Roland Sjöström 22 Ingen uppfattning Respondentens tre nivåer 30-50% ej svar Leveranstid, pris Strategier Helhetsbedömningar Helhetsbedömning Senaste projektet hur mkt bidrog olika gruppmedlemmar till slutresultatet? Varför bidrog de med just så mkt? Svårbedömt Hur mkt bidrog du själv? Vad var det som gjorde att du bidrog med just så mkt? Roland Sjöström Roland Sjöström 24 4

5 Konstruktion av formulär - Instruktioner (vid enkät) - Ordningsföljd logisk för respondenten - Ej inleda med känsliga frågor för respondenten - Tidsordning - Fakta & kännedom, allmän åsikt, specifik åsik, skäl för åsik, intensitet i åsikt - Filterfrågor - Kontrollfrågor - Provintervjuer Bakgrundsfrågor Program/arbetsplats Närmaste chef Etc Kontrollvariabler Kön Ålder Anställningstid Etc Frågor i block Enkätstruktur Blocken motsvarar ofta preciserade frågor Inleds oftast med ett antal detaljfrågor (påståenden) Blocket avslutas med en helhetsfråga Avslutningsblock med en eller flera helhetsfrågor som motsvarar syftet Roland Sjöström Roland Sjöström 26 Frågors ordningsföljd Laddade ord & ledande frågor Komplexitet Början och slut av uppräkning melodifestivalen 5-6 alternativ Överspillningseffekten Frågor avgr i tid och rum i övrigt neutrala Inte tillåta - förbjuda Roland Sjöström Roland Sjöström 28 Prövning av formulär Validitet och reliabilitet - intressant för respondenten - begripligt språk för respondenten - fri från ledande inslag - ej väcka försvarsinstinkter - fri från oavsiktliga emotionelt, socialt, politiskt etc laddade ord - tidsåtgång Respondenten som "expert" (öppningsfråga) Tänk psykiatri och tester Det instrument (frågeformulär) som ni tar fram och den datainsamling som ni ska göra ska passa syftet. Validitet och reliabilitet är inte entydiga begrepp Författare lägger delvis olika innebörd och tyngdpunkt beroende på tillämpningsområde Roland Sjöström Roland Sjöström 30 5

6 Validitet (giltighet) Om mätmetoden verkligen mäter den egenskap (det uppdrag/syfte) man avser att mäta (mäter det som är relevant) Test Om de slutsatser som genererats från undersökningen överensstämmer med verkligheten och därmed om rekommendationer är värda något. att använda rätt sak (teori/modell) vid rätt tillfälle jämför t.ex. med busskort. De är giltiga i vissa situationer men inte i andra. Man kan använda busskortet på en buss men inte i en taxi. (Rätt modeller t.ex. egen analysmodell) Be någon insatt person verifiera resultaten Olika typer av validitet Begreppsvaliditet (teoretisk validitet) fungerade modellerna (analysmodellen bra) innehållsvaliditet (content validity) Heltäckande? Ofta stort antal tänkbara frågor- i testet plats för ett fåtal. Med innehållsvaliditet avses hur bra urvalet av frågor är. Det är oftast inte möjligt att få ett kvantitativt mått på innehållsvaliditet, den bedöms i stället av experter på ett mer eller mindre subjektivt sätt. Empirisk validitet (samtidig och prediktiv validitet) Vid samtidig validitet görs en mätning vid t.ex. intervjutillfället. Vid prediktiv validitet görs mätningen långt senare. Ett exempel på prediktiv validitet är hur väl högskoleprovet förutsäger senare framgång vid högskolestudier Roland Sjöström Roland Sjöström 32 Reliabilitet (tillförlitlighet mäta på ett tillförlitligt sätt) Relationen validitet och reliabilitet Får vi samma resultat om undersökningen genomförs på nytt, eller har den påverkats av slumpmässiga eller tillfälliga faktorer Kan jag lita på hantverkaren som bygger om mitt dusch? Vad kan hända om hantverkaren inte är pålitlig? Vilka slutsatser kan dras om de baseras på mätningar som man inte kan lita på? parallella tester, split-half, test-retest (upprepade mätningar på samma personer!?) Antag att vi vill mäta företags lönsamhet. mäta lönsamheten (pris minus rörliga kostnader) per produkt är inte tillräckligt. Det hjälper inte att hävda att mätningarna var mycket noggranna. Hög reliabilitet är alltså ingen garanti för att få hög validitet. Mäta företagens totala intäkter samt produktions- och fasta kostnader. Då mäter vi något som är mer relevant. Antag vidare att vi gör vår mätning genom att be någon i organisationen som inte arbetar med ekonomisk redovisning att uppskatta företagets intäkter och kostnader. Vår mätning görs då med låg tillförlitlighet (låg reliabilitet). Även om vi mätte rätt sak så blev mätningen så dålig att vi inte fick ett bra mått. Låg reliabilitet medför alltså alltid låg validitet. Följande två regler är bra att komma ihåg: Hög reliabilitet garanterar inte hög validitet. Hög validitet förutsätter hög reliabilitet (däremot kan begreppsvaliditeten vara bra, men det räcker inte) Roland Sjöström Roland Sjöström 34 Statistik, SPSS, analysmetoder Val av analysmetoder nominal skalnivå ordinal en (beroende variabel) intervall kvot Skalnivå nominal prediktor (x) Chi-två Cont. coeff ordinal stopp nominal intervall Diskriminant analys Skalnivå prediktor (x) stopp stopp Spearman s Rank korr. intervall Skalnivå nominal prediktor (x) med dummy var. (0/1) ordinal stopp intervall s analys Roland Sjöström Roland Sjöström 36 6

7 ingen (beroende variabel) Val av analysmetoder Analys av skillnader nominal Faktoranalys med dummy var. Klusteranalys skalnivå ordinal överkurs intervall kvot Faktoranalys Klusteranalys Chi-två test Män/kvinnor resturang 1/2 Utan väntevärde är tabellen svårtolkad 2 = (O-E)2 E = (O)2 - N E Ur tabell testvärde (95% nivån) ca 4 för fyrfältare ca 9 för niofältare nästan 16 för 16 fältare (eg. 15) Roland Sjöström Roland Sjöström 38 Chi-två för fyrfältare Korstabell Mindre tillförlitligt Korrigeras med Yates kontinuitets korrektion Ingen av cellerna får ha lägre förväntat värde än 5 Om så är fallet använder SPSS Fisher s exakta test för 2x2 tabeller Hur tolkas en korstabell? Vanlig miss Fisher s exakta sannolikhetstest P=(a+b)!(c+d)!(a+c)!(b+d)!/N!a!b!c!d! a b c d Roland Sjöström Roland Sjöström 40 Frihetsgrad?? Roland Sjöström Roland Sjöström 42 7

8 Medelfel och konf intervall Medelfel och konf intervall, forts. Exemplet testförsäljning Avsikten med denna test kan vara flera men här koncentrerar vi oss på volymen. Anta att det krävs en viss minsta volym för att produkten ska anses bli lönsam och för att företaget därför ska gå vidare till en fullskaleförsäljning. Testförsäljningar är dessutom ofta kostsamma och företagen försöker begränsa dem till ett fåtal marknader. Antag att företag X bedriver testförsäljning på tre marknader. Kravet för att produkten ska gå vidare till fullskaleförsäljning är att den i genomsnitt säljs i minst 100 exemplar per marknad. Marknad 1 Marknad 2 Marknad 3 Antal sålda produkter Medelvärdet i denna testförsäljning är klart över 100, närmare bestämt 112. Målet borde vara uppfyllt och det borde bara vara att gå vidare. Men, på grund av den stora spridningen visar det sig att testförsäljningen inte har uppfyllt målet med 95 procents sannolikhet Roland Sjöström Roland Sjöström 44 Standardavvikelse T-test Standardavvikelsen: Σ(X-x) i 2 s= (n-1) är ca 23 (19 om vi räknar med n istället för n-1 eftersom det är så få fall). Det medför att medelfelet s/ n är 8 (6) För att testa signifikansnivån görs en t-test. t=(x-µ)/medelfelet=( )/6=2 Det kritiska värdet för denna test erhålls ur en tabell för t- fördelning där antalet frihetsgrader är n-1, dvs 2 och alfa=0,05. Det kritiska värdet är 4,3 och eftersom det beräknade värdet inte överstiger det kritiska värdet måste hypotesen att målet var uppfyllt förkastas. (Det kritiska värdet är ca 4 för få frihetsgrader och ca 2 för +100 frihetsgrader.) Först vid 80 procent (istället för 95) är testförsäljningen "signifikant", dvs man kan med 80 procents säkerhet påstå att försäljningen kommer att uppgå till minst 100 enheter i snitt per marknad Roland Sjöström Roland Sjöström 46 Analys av enskilda medelvärden trubbigt instrument Jämföra två medelvärden Människor är olika trygga eller otrygga positiva eller skeptiska benägenhet att uttrycka vad de egentligen anser etc en del instämmer i det mesta medan andra tar avstånd en tredje grupp svara alltid någonstans mitt emellan Medelvärden tenderar alltså att bli ett mycket trubbigt instrument annat än för återkommande undersökningar där avsikten är att mäta avvikelser från tidigare undersökningar Tre olika grundläggande förutsättningar Känd varians i mätningarna (sample); ovanligt i m.u. Varians okänd men antas vara lika Varians okänd men antas vara olika För att testa skillnader mellan två medelvärden använder man sig vanligtvis av en t-test. Den andra och tredje situationen innebär att man måste räkna ut medelvärde och medelfel för de två grupperna. Detta görs på motsvarande sätt som för ett medelvärde. Skillnaden i t-testet är att man jämför skillnader i medelvärde och dividerar med det totala medelfelet Roland Sjöström Roland Sjöström 48 8

9 Jämföra två medelvärden, forts Variansanalys (Anova) Σ (X 1 -x 1 ) 2 + Σ (X 2 -x 2 ) 2 s 12 = (n 1 +n 2-2) Medelfel olika beroende på om samma varians eller ej (Om variansen är lika i de båda grupperna blir medelfelet lika med s/ n 1 +n 2. Är variansen olika blir medelfelet lika med (s 12 /n 1 )+(s 22 /n 2 ), dvs roten ur summan. ) t-värdet räknas ut på motsvarande sätt: t=(x 1 -x 2 ) /s 12 Det kritiska värdet är, som tidigare nämnts, ca 2 för stora sampel (+100 observationer/frihetsgrader). Om t-värdet överstiger det kritiska värdet är medelvärdena olika Roland Sjöström 49 I sin enklaste variant ett F-test som är en direkt vidareutveckling av t-testet Två centrala begrepp Mellangruppsvarians (skillnader mellan grupperna) a variansen för alla som ingår i undersökningen i relation till det totala genomsnittet Inomgruppsvarians (skillnader inom grupperna) a variansen inom de olika grupperna i relation till deras respektive genomsnitt mellangruppsvarians F-test= inomgruppsvarians Roland Sjöström 50 Variansanalys, forts Om t.ex. kvinnor och män verkligen har samma åsikt så är inomgruppsvariansen densamma. Ju mer mellangruppsvariansen överstiger inomgruppsvariansen desto större är chansen att de har olika uppfattning => att nollhypotesen kan förkastas Tre grupper, t.ex. olika utbildningsprogram ger samma tolkning En grupp kan medföra att nollhypotesen förkastas => viktigt att gå vidare i analysen (t.ex. Bonferroni-test) OBS: Variansen lika Roland Sjöström Roland Sjöström 52 Analys av likheter Korrelations- och enkel regressionsanalys Används ofta som substitut Stora likheter En avgörande skillnad Korrelation - gemensam varians - prediktering av värde bästa skattning utan regression?? linjära samband sanalys Anses ha använts första gången av Francis Galton ( ) samband mellan föräldrars och barns längd tendens mot mitten kallades regression inom geovetenskap regression då strandlinjen förskjuts utåt; drar sig tillbaka inom biologi och beteendevetenskap betyder regression tillbakagång till mera primitiva funktions- eller utvecklingsnivåer hos en individ eller ett organ. I statistiska sammanhang betyder regression att en storhet beror av en eller flera storheter. Kopplingen till "tillbakagång" är att alla värden relateras till medelvärdet, dvs man mäter avvikelser från det förväntade värdet som är medelvärdet Roland Sjöström Roland Sjöström 54 9

10 Linjär regression Multipel regression Flera variabler R 2 Multikollinearitet Någon eller några variabler är överflödiga Y ^ Y e Y=¾+ßX x 1 =a+b 2 x 2 +b 3 x 3 analysera R 2 Lösning Ta bort beroende variabler Ta bort de beroende komponenterna i variablerna - regression på faktorer X Stegvis regression Stabilitetstest Ta bort första variabeln, gör om analys, övriga in i samma ordning Roland Sjöström Roland Sjöström Roland Sjöström Roland Sjöström 58 Variabel saknas Missing values Roland Sjöström Roland Sjöström 60 10

11 ANOVA g Model Sum of Squares df Mean Square F Sig. 112, ,255 65,017,000 a 257, , , ,490 69,514,000 b 190, , , ,174 62,773,000 c 161, , , ,057 51,489,000 d 153, , , ,028 45,224,000 e 144, , , ,236 39,302,000 f 140, ,973 a. Predictors: (Constant), Rimliga priser b. Predictors: (Constant), Rimliga priser, Tillräckligt varierat utbud c. Predictors: (Constant), Rimliga priser, Tillräckligt varierat utbud, Trevlig inredning d. Predictors: (Constant), Rimliga priser, Tillräckligt varierat utbud, Trevlig inredning, Diskinlämningen fungerar bra e. Predictors: (Constant), Rimliga priser, Tillräckligt varierat utbud, Trevlig inredning, Diskinlämningen fungerar bra, Bra öppettider f. Predictors: (Constant), Rimliga priser, Tillräckligt varierat utbud, Trevlig inredning, Diskinlämningen fungerar bra, Bra öppettider, Trevlig personal g. Dependent Variable: Som helhet nöjd Roland Sjöström Roland Sjöström 62 Slut Roland Sjöström 63 11

Kvantitativa (analys) metoder. Roland Sjöström

Kvantitativa (analys) metoder. Roland Sjöström Kvantitativa (analys) metoder Roland Sjöström Metod En metod är ett redskap och ett sätt att lösa problem för att komma fram till ny kunskap. Allt som bidrar till detta kan kallas metod. Det innebär inte

Läs mer

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser Univariata analyser Univariata analyser

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

KVANTITATIV FORSKNING

KVANTITATIV FORSKNING KVANTITATIV FORSKNING Teorier innehåller begrepp som byggstenar. Ofta är kvantitativa forskare intresserade av att mäta företeelser i verkligheten och att koppla denna kvantitativa information till begrepp

Läs mer

Uppgift 1. Deskripitiv statistik. Lön

Uppgift 1. Deskripitiv statistik. Lön Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Vad är statistik?

Läs mer

ANOVA Mellangruppsdesign

ANOVA Mellangruppsdesign ANOVA Mellangruppsdesign Envägs variansanlays, mellangruppsdesign Variabler En oberoende variabel ( envägs ): Nominalskala eller ordinalskala. Delar in det man undersöker (personerna?) i grupper/kategorier,

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två

Läs mer

kodnr: 2) OO (5p) Klassindelningar

kodnr: 2) OO (5p) Klassindelningar kodnr: 1) KH (10p) a) Förklara innebörden av kausalitetsbegreppet i ett kvantitativt-metodologiskt sammanhang (2p) b) Förklara innebörden av begreppet nonsenssamband (2p) c) Argumentera för och motivera

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Lösningar till SPSS-övning: Analytisk statistik

Lösningar till SPSS-övning: Analytisk statistik UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt

Läs mer

Agenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten

Agenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten Agenda Statistik Termin 11, Läkarprogrammet, VT14 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande

Läs mer

Manual för granskning av artiklar som bedömer en mätmetods egenskaper

Manual för granskning av artiklar som bedömer en mätmetods egenskaper Manual för granskning av artiklar som bedömer en mätmetods egenskaper Denna manual är tänkt att användas tillsammans med Mall för granskning av vetenskapliga artiklar om mätmetoder. Syftet med manualen

Läs mer

Tentamen vetenskaplig teori och metod, Namn/Kod Vetenskaplig teori och metod Provmoment: Tentamen 1

Tentamen vetenskaplig teori och metod, Namn/Kod Vetenskaplig teori och metod Provmoment: Tentamen 1 Namn/Kod Vetenskaplig teori och metod Provmoment: Tentamen 1 Ladokkod: 61ST01 Tentamen ges för: SSK GSJUK13v Tentamenskod: Tentamensdatum: 2015 10 02 Tid: 09:00 12:00 Hjälpmedel: Inga hjälpmedel Totalt

Läs mer

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 1 Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 Dessa instuderingsfrågor är främst tänkta att stämma överens med innehållet i föreläsningarna,

Läs mer

Uppgift 1. Produktmomentkorrelationskoefficienten

Uppgift 1. Produktmomentkorrelationskoefficienten Uppgift 1 Produktmomentkorrelationskoefficienten Både Vikt och Längd är variabler på kvotskalan och således kvantitativa variabler. Det innebär att vi inte har så stor nytta av korstabeller om vi vill

Läs mer

Hypotestestning och repetition

Hypotestestning och repetition Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110319)

EXAMINATION KVANTITATIV METOD vt-11 (110319) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110319) Examinationen består av 10 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

för att komma fram till resultat och slutsatser

för att komma fram till resultat och slutsatser för att komma fram till resultat och slutsatser Bearbetning & kvalitetssäkring 6:1 E. Bearbetning av materialet Analys och tolkning inleds med sortering och kodning av materialet 1) Kvalitativ hermeneutisk

Läs mer

Kvantitativ forskning C2. Viktiga begrepp och univariat analys

Kvantitativ forskning C2. Viktiga begrepp och univariat analys + Kvantitativ forskning C2 Viktiga begrepp och univariat analys + Delkursen mål n Ni har grundläggande kunskaper över statistiska analyser (univariat, bivariat) n Ni kan använda olika programvaror för

Läs mer

Statistiska analyser C2 Bivariat analys. Wieland Wermke

Statistiska analyser C2 Bivariat analys. Wieland Wermke + Statistiska analyser C2 Bivariat analys Wieland Wermke + Bivariat analys n Mål: Vi vill veta något om ett samband mellan två fenomen n à inom kvantitativa strategier kan man undersöka detta genom att

Läs mer

Föreläsning 1: Introduktion. Vad är statistik?

Föreläsning 1: Introduktion. Vad är statistik? Föreläsning 1: Introduktion Vad är statistik? 1 Statistiska undersökningar Ett gemensamt syfte för alla undersökningar är att få ökad kunskap om ett visst problemområde Det kanske viktigaste sättet att

Läs mer

Mall och manual för granskning av interventionsstudier

Mall och manual för granskning av interventionsstudier Mall och manual för granskning av interventionsstudier Denna granskningsmall är modifierad efter original från SBU (5), 2002-12-12. En vetenskaplig artikel är oftast indelad i följande avsnitt: introduktion,

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110204)

EXAMINATION KVANTITATIV METOD vt-11 (110204) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen 1. One-Sample T-Test 1.1 När? Denna analys kan utföras om man vill ta reda på om en populations medelvärde på en viss variabel kan antas

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik Statistik Statistik betyder ungefär sifferkunskap om staten Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information. Verkligheten

Läs mer

Metod1. Intervjuer och observationer. Ex post facto, laboratorie -, fältexperiment samt fältstudier. forskningsetik

Metod1. Intervjuer och observationer. Ex post facto, laboratorie -, fältexperiment samt fältstudier. forskningsetik Metod1 Intervjuer och observationer Ex post facto, laboratorie -, fältexperiment samt fältstudier forskningsetik 1 variabelbegreppet oberoende variabel beroende variabel kontroll variabel validitet Centrala

Läs mer

Kvantitativ strategi viktiga begrepp II. Wieland Wermke

Kvantitativ strategi viktiga begrepp II. Wieland Wermke + Kvantitativ strategi viktiga begrepp II Wieland Wermke + Viktiga begrepp n Variabel: ett namngivet objekt som används för att representera ett okänt värde (platshållare), till exempel ett reellt tal.

Läs mer

Föreläsning 1. 732G60 Statistiska metoder

Föreläsning 1. 732G60 Statistiska metoder Föreläsning 1 Statistiska metoder 1 Kursens uppbyggnad o 10 föreläsningar Teori blandas med exempel Läggs ut några dagar innan på kurshemsidan o 5 räknestugor Tillfälle för individuella frågor Viktigt

Läs mer

Statistiska analyser C2 Inferensstatistik. Wieland Wermke

Statistiska analyser C2 Inferensstatistik. Wieland Wermke + Statistiska analyser C2 Inferensstatistik Wieland Wermke + Signifikans och Normalfördelning + Problemet med generaliseringen: inferensstatistik n Om vi vill veta ngt. om en population, då kan vi ju fråga

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Typvärde. Mest frekventa värdet Används framförallt vid nominalskala Ex: typvärdet. Kemi 250. Ekon 570. Psyk 120. Mate 195.

Typvärde. Mest frekventa värdet Används framförallt vid nominalskala Ex: typvärdet. Kemi 250. Ekon 570. Psyk 120. Mate 195. Lägesmått Det kan ibland räcka med ett lägesmått för att beskriva datamaterial Lägesmåttet kan vara bra att använda då olika datamaterial skall jämföras Vilket lägesmått som skall användas: Typvärde Median

Läs mer

Agenda. Statistik Termin 10, Läkarprogrammet, VT15. Agenda (forts.) Forskningsprocessen. Data - skalnivåer. Den heliga treenigheten

Agenda. Statistik Termin 10, Läkarprogrammet, VT15. Agenda (forts.) Forskningsprocessen. Data - skalnivåer. Den heliga treenigheten Agenda Statistik Termin 10, Läkarprogrammet, VT15 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande

Läs mer

Tentamen består av 12 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt.

Tentamen består av 12 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt. KOD: Kurskod: PC1244 Kursnamn: Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Sandra Buratti Tentamensdatum: 2013-11-16 Tillåtna hjälpmedel: Miniräknare Tentamen består

Läs mer

Statistik Termin 10, Läkarprogrammet, HT16

Statistik Termin 10, Läkarprogrammet, HT16 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Statistik Termin 10, Läkarprogrammet, HT16 Martin Cernvall martin.cernvall@pubcare.uu.se Måndag 29/8 -

Läs mer

STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh

STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh Skriftlig tentamen på momentet Statistisk dataanalys I (SDA l), 3 högskolepoäng ingående i kursen Undersökningsmetodik och

Läs mer

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Analytisk statistik. Tony Pansell, optiker Universitetslektor Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Beskrivande statistik Kapitel 19. (totalt 12 sidor)

Beskrivande statistik Kapitel 19. (totalt 12 sidor) Beskrivande statistik Kapitel 19. (totalt 12 sidor) För att åskådliggöra insamlat material från en undersökning används mått, tabeller och diagram vid sammanställningen. Det är därför viktigt med en grundläggande

Läs mer

Tentamen består av 12 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt.

Tentamen består av 12 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt. KOD: Kurskod: PC1244 Kursnamn: Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Sandra Buratti Tentamensdatum: 2013-09-27 Tillåtna hjälpmedel: Miniräknare Tentamen består

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

Kvantitativ strategi Univariat analys 2. Wieland Wermke

Kvantitativ strategi Univariat analys 2. Wieland Wermke + Kvantitativ strategi Univariat analys 2 Wieland Wermke + Sammanfattande mått: centralmått n Beroende på skalnivån finns det olika mått, som betecknar variablernas fördelning n Typvärde eller modalvärde

Läs mer

FACIT (korrekta svar i röd fetstil)

FACIT (korrekta svar i röd fetstil) v. 2013-01-14 Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet 1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att

Läs mer

1) FRÅGOR OM RESPONDENTENS SOCIAL-DEMOGRAFISKA DATA: - Hur gammal är du?... år (= öppen fråga)

1) FRÅGOR OM RESPONDENTENS SOCIAL-DEMOGRAFISKA DATA: - Hur gammal är du?... år (= öppen fråga) 1. Typer av enkätfrågor - När man gör en frågeformulär, vill man gärna få den att påminna om vanlig interaktion dvs man frågar inte svåra och/eller delikata frågor i början, utan först efter att ha samtalat

Läs mer

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts

Läs mer

Datorlaboration 2 Konfidensintervall & hypotesprövning

Datorlaboration 2 Konfidensintervall & hypotesprövning Statistik, 2p PROTOKOLL Namn:...... Grupp:... Datum:... Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta den statistiska

Läs mer

Statistiska undersökningar

Statistiska undersökningar Arbetsgång vid statistiska undersökningar Problemformulering, målsättning Statistiska undersökningar Arbetsgången mm Definition av målpopulation Framställning av urvalsram Urval Utformning av mätinstrument

Läs mer

Forsknings- och undersökningsmetodik Skrivtid: 4h

Forsknings- och undersökningsmetodik Skrivtid: 4h Forsknings- och undersökningsmetodik Skrivtid: h Tentamen 8..00 Hjälpmedel: Kalkylator Formel- & tabellsamling Provtexten får bortföras. DEL, DEL eller HELA KURSEN: Besvara frågor! Varje fråga är värd

Läs mer

Examinationsuppgifter del 2

Examinationsuppgifter del 2 UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).

Läs mer

Föreläsning 11 (ej på tentan): Tillämpningar och vidareutvecklingar

Föreläsning 11 (ej på tentan): Tillämpningar och vidareutvecklingar Föreläsning 11 (ej på tentan): Tillämpningar och vidareutvecklingar Marina Axelson-Fisk 23 maj, 2016 Tillämpningsområden Regression (Kap 11-12) Variansanalys och försöksplanering (Kap 13-14) Enkätanalyser

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.

Läs mer

EXAMINATION KVANTITATIV METOD

EXAMINATION KVANTITATIV METOD ÖREBRO UNIVERSITET Hälsoakademin Idrott B, Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-09 (090209) Examinationen består av 8 frågor, några med tillhörande följdfrågor. Frågorna 4-7 är knutna till

Läs mer

Provmoment: Tentamen 2 Ladokkod: 61ST01 Tentamen ges för: SSK06 VHB. TentamensKod: Tentamensdatum: Tid:

Provmoment: Tentamen 2 Ladokkod: 61ST01 Tentamen ges för: SSK06 VHB. TentamensKod: Tentamensdatum: Tid: Vetenskaplig teori och metod Provmoment: Tentamen 2 Ladokkod: 61ST01 Tentamen ges för: SSK06 VHB 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2012-11-09 Tid: 09.00-11.00 Hjälpmedel: Inga hjälpmedel

Läs mer

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik.

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik. Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik Urvalsstorlek Mätnivå/skaltyp Fördelning av data Studiedesign Frida Eek

Läs mer

Anvisningar till rapporter i psykologi på B-nivå

Anvisningar till rapporter i psykologi på B-nivå Anvisningar till rapporter i psykologi på B-nivå En rapport i psykologi är det enklaste formatet för att rapportera en vetenskaplig undersökning inom psykologins forskningsfält. Något som kännetecknar

Läs mer

Statistik för teknologer, 5 poäng Skrivtid:

Statistik för teknologer, 5 poäng Skrivtid: UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för teknologer, MSTA33, p Statistik för kemister, MSTA19, p TENTAMEN 2004-06-03 TENTAMEN I MATEMATISK STATISTIK Statistik för teknologer,

Läs mer

Regressions- och Tidsserieanalys - F4

Regressions- och Tidsserieanalys - F4 Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1

Läs mer

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat

Läs mer

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig omtentamen på momentet Statistisk dataanalys I (SDA l, beskrivande statistik) 3 högskolepoäng, ingående i kursen Undersökningsmetodik

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 8 Statistiska metoder 1 Dagens föreläsning o Chi-två-test Analys av enkla frekvenstabeller Analys av korstabeller (tvåvägs-tabeller) Problem med detta test o Fishers exakta test 2 Analys av

Läs mer

Statistikens grunder HT, dagtid Statistiska institutionen

Statistikens grunder HT, dagtid Statistiska institutionen Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen Orsak och verkan N Kap 2 forts. Annat ord: kausalitet Något av det viktigaste för varje vetenskap. Varför? Orsakssamband ger oss möjlighet

Läs mer

Del A: Schema för ifyllande av svar nns på sista sidan

Del A: Schema för ifyllande av svar nns på sista sidan Del A: Schema för ifyllande av svar nns på sista sidan 1 1 Nedladdningstiden (i sekunder) för en bestämd l registrerades 16 gånger vid var och en av tre olika tidpunkter på dygnet. ANOVA-analys av dessa

Läs mer

Kritisk granskning av forskning

Kritisk granskning av forskning Om kursen Kritisk granskning av forskning ebba.elwin@psyk.uu.se 018-471 21 35 rum 14:366 (vån 3) Två veckors arbete, 3 hp Fördjupning i tidigare studier i forskningsmetodik Mål: kunskaper för att läsa,

Läs mer

Bilaga 3. Varselstatistik, bortfallsanalys och statistiska beräkningar

Bilaga 3. Varselstatistik, bortfallsanalys och statistiska beräkningar bilaga till granskningsrapport dnr: 31-2013-0722 rir 2014:27 Bilaga 3. Varselstatistik, bortfallsanalys och statistiska beräkningar Arbetsförmedlingens arbete vid varsel Ett bidrag till effektiva omställningsinsatser?

Läs mer

EXJOBBSINTRODUKTION 1/22/16

EXJOBBSINTRODUKTION 1/22/16 EXJOBBSINTRODUKTION FORSKNINGSMETODER Vad är vetenskap? En process i vilken vi undersöker kända och okända storheter i vår värld Forskare undersöker och drar slutsatser på basis av sina observationer.

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Den gröna påsen i Linköpings kommun

Den gröna påsen i Linköpings kommun Den gröna påsen i Linköpings kommun Metod- PM 4 Thea Eriksson Almgren Problem I Linköping idag används biogas för att driva stadsbussarna. 1 Biogas är ett miljövänligt alternativ till bensin och diesel

Läs mer

Tentamen StvB distans, delkurs 3 Metod (3p)

Tentamen StvB distans, delkurs 3 Metod (3p) Karlstads universitet Avd. för statsvetenskap Robert Wangeby Tentamen StvB distans, delkurs 3 Metod (3p) Lördagen den 10:e juni 2006, kl. 09.00-11.30 Skrivningen består av 15 frågor med svarsalternativ

Läs mer

Fallbeskrivning: Suntrip2011

Fallbeskrivning: Suntrip2011 Fallbeskrivning: Suntrip2011 Ett reseföretag har under en tid upplevt en stor variation i kundernas utvärderingar av charterresor. En reseledare läste för många år sedan en grundkurs i statistik och väljer

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING

Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING När vi gör en regressionsanalys så bygger denna på vissa antaganden: Vi antar att vi dragit ett slumpmässigt sampel från en population

Läs mer

Utvärderingsmetoder inom MDI

Utvärderingsmetoder inom MDI Utvärderingsmetoder inom MDI Kvantitativ metod och analys Eva-Lotta Sallnäs Ph.D. CSC, Kungliga Tekniska Högskolan evalotta@csc.kth.se Undersökningstyper Kvantitativa undersökningar karakteriseras av att

Läs mer

2.1 Minitab-introduktion

2.1 Minitab-introduktion 2.1 Minitab-introduktion Betrakta följande mätvärden (observationer): 9.07 11.83 9.56 7.85 10.44 12.69 9.39 10.36 11.90 10.15 9.35 10.11 11.31 8.88 10.94 10.37 11.52 8.26 11.91 11.61 10.72 9.84 11.89 7.46

Läs mer

Kvantitativa metoder och datainsamling

Kvantitativa metoder och datainsamling Kvantitativa metoder och datainsamling Kurs i forskningsmetodik med fokus på patientsäkerhet 2015-09-23, Peter Garvin FoU-enheten för närsjukvården Kvantitativ och kvalitativ metodik Diskborsten, enkronan

Läs mer

KVANTITATIV FORSKNING

KVANTITATIV FORSKNING KVANTITATIV FORSKNING Teorier innehåller begrepp som byggstenar. Ofta är kvantitativa forskare intresserade av att mäta företeelser i verkligheten och att koppla denna kvantitativa information till begrepp

Läs mer

Regressionsanalys med SPSS Kimmo Sorjonen (2010)

Regressionsanalys med SPSS Kimmo Sorjonen (2010) 1 Regressionsanalys med SPSS Kimmo Sorjonen (2010) 1. Multipel regression 1.1. Variabler I det aktuella exemplet ingår följande variabler: (1) life.sat, anger i vilket utsträckning man är nöjd med livet;

Läs mer

HEMTENTAMEN för kvantitativa delen av moment 2 på Socialt arbete D

HEMTENTAMEN för kvantitativa delen av moment 2 på Socialt arbete D 25-11-3 HEMTENTAMEN för kvantitativa delen av moment 2 på Socialt arbete D UPPGIFT 1 a) Redogör för de olika mätnivåer/skalnivåer/datanivåer genom att förklara innebörden och ge ett exempel för varje mätnivå.

Läs mer

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande

Läs mer

Linjär regressionsanalys. Wieland Wermke

Linjär regressionsanalys. Wieland Wermke + Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån

Läs mer

Provmoment: Tentamen 3 Ladokkod: 61ST01 Tentamen ges för: SSK06 VHB. TentamensKod: Tentamensdatum: 2012-12-14 Tid: 09.00-12.00

Provmoment: Tentamen 3 Ladokkod: 61ST01 Tentamen ges för: SSK06 VHB. TentamensKod: Tentamensdatum: 2012-12-14 Tid: 09.00-12.00 Vetenskaplig teori och metod Provmoment: Tentamen 3 Ladokkod: 61ST01 Tentamen ges för: SSK06 VHB 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2012-12-14 Tid: 09.00-12.00 Hjälpmedel: Inga hjälpmedel

Läs mer

Grundläggande Biostatistik. Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet

Grundläggande Biostatistik. Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet Grundläggande Biostatistik Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet Formell analys Informell data analys Design and mätning Problem Formell analys Informell data analys Hur

Läs mer

Hur går en statistisk undersökning till?

Hur går en statistisk undersökning till? Hur går en statistisk undersökning till? Gången i en statistisk undersökning framgår av bilden och är i stort sett densamma i en verklig undersökning, t ex folk- och bostadsräkningen, som i en miniundersökning.

Läs mer

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen

Läs mer

Inferensstatistik. Hypostesprövning - Signifikanstest

Inferensstatistik. Hypostesprövning - Signifikanstest 011-11-04 Inferensstatistik En uppsättning metoder för att dra slutsatser om populationers egenskaper (parametrar) med hjälp av stickprovs egenskaper (statistik) Hypostesprövning - Signifikanstest Ett

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00 Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

Konsten att fånga, sammanfatta och tolka resultat och mätningar. Marie Lindkvist Epidemiologi och global hälsa

Konsten att fånga, sammanfatta och tolka resultat och mätningar. Marie Lindkvist Epidemiologi och global hälsa Konsten att fånga, sammanfatta och tolka resultat och mätningar Marie Lindkvist Epidemiologi och global hälsa Vetenskap Vad är vetenskap? Systematisk kunskap Vad är skillnaden mellan vardaglig kunskap

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 20 mars 2015 9 14 Examinator: Anders Björkström, bjorks@math.su.se Återlämning: Fredag 27/3 kl 12.00, Hus 5,

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 20 Mars 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet 1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet För att bli godkänd på inlämningsuppgiften krävs att man utför uppgiften om

Läs mer

Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00

Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, tabellsamling (dessa skall returneras). Miniräknare. Ansvarig lärare: Jari Appelgren,

Läs mer

Maximalt antal poäng för hela skrivningen är28 poäng. För Godkänt krävs minst 17 poäng. För Väl Godkänt krävs minst 22,5 poäng.

Maximalt antal poäng för hela skrivningen är28 poäng. För Godkänt krävs minst 17 poäng. För Väl Godkänt krävs minst 22,5 poäng. Försättsblad KOD: Kurskod: PC1307/PC1546 Kursnamn: Kurs 7: Samhällsvetenskaplig forskningsmetodik/forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström Tentamensdatum:

Läs mer

1. En kontinuerlig slumpvariabel X har följande täthetsfunktion (för någon konstant k). f.ö.

1. En kontinuerlig slumpvariabel X har följande täthetsfunktion (för någon konstant k). f.ö. UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för tekniska fysiker, MSTA6, 4p Peter Anton Per Arnqvist LÖSNINGSFÖRSLAG TILL TENTAMEN 7-- LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts. Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:

Läs mer