Min man kommer ursprungligen från

Storlek: px
Starta visningen från sidan:

Download "Min man kommer ursprungligen från"

Transkript

1 t í m e a d a n i Varför räknar du just så? Denna artikel bygger på ett examensarbete för lärarutbildningen. I arbetet undersöktes skillnader mellan lärares, svenska föräldrars och invandrarföräldrars metoder för de fyra räknesätten och undersökningen följdes upp med intervjuer. Min man kommer ursprungligen från Ungern. När han hade försökt hjälpa dottern att räkna på ett sätt som kallas för Ungersk algoritm tyckte läraren att två olika räknemetoder skulle förvirra dottern i hennes tänkande, därför skulle han låta bli att hjälpa henne. Han skulle inte hjälpa till med matteläxor eftersom han inte räknade som läraren lärde ut. Här nedan är ett exempel på den svenska standardalgoritmen, hämtad från Paulsson (1989) och den metod som jag har lärt mig i skolan i Ungern. Standardalgoritm Ungersk algoritm Läroplanen poängterar att skolan ska samarbeta med hemmen samt anpassa undervisningen till varje elevs förutsättningar, bakgrund och tidigare erfarenheter. Om föräldrar och lärare räknar med olika metoder kan det bli svårt för föräldrarna att hjälpa sina barn med läxorna. Därför är det viktigt att lärare och föräldrar förstår varandras metoder och tillsammans gör så att undervisningen och läxhjälpen fungerar. Mitt examensarbete beskriver hur föräldrar, lärare och elever räknar de fyra räknesätten. Jag har gjort min undersökning med olika etniska grupper, och upptäckt flera olika räknemetoder. Undersökningen gjordes i sex skolor i tre kommuner och bestod av enkät, uppgifter samt intervjuer. Enkäten besvarades av elever, 14 föräldrar och tio lärare och utöver detta intervjuades fem lärare. Resultatet visar att det fortfarande finns lärare som tycker att det är föräldrarna och eleverna som ska lära sig att räkna på det sättet som skolan lär ut. Räknemetoder Den mest använda metoden för addition hos invandrarföräldrar var algoritm räkning med olika dialekter. Kilborn (1995) tar också upp dialekter i räknemetoder i sin undersökning. Hos lärarna kunde jag finna både algoritm och skriftlig huvudräkning men med olika varianter på skriftlig huvudräkning, medan jag hos svenska föräldrar fann en enkel skriftlig huvudräkning eller algoritmräkning. Här följer några av föräldrarnas och lärarnas lösningar för addition, multi plikation och division: 1

2 Addition: Ex.1a Skriftlig huvudräkning = 8 Ex.1b Skriftlig huvudräkning = = = = Ex. 1 Skriftlig huvudräkning = Ex. 1 Skriftlig huvudräkning 2000 sparar jag = = = = = = Ex. Algoritmräkning Multiplikation: = x

3 Division: / Ex. 1 Överslagsräkning 6000 / = 2000 Svar: Strax under 2000 Ex. 2 Kort division = Ex. Trappa Ex.1 Skriftlig huvudräkning I) 6000 / = 2000 II) III) 129 / = 4 (räknar i huvudet) IV) = Ex. 2 Trappa Svar: Ex. Liggande stolen Ex. 1 Kort division 5871 / = = = Ex. 2 Celsius I algoritm 5871 : = = = == Ex. Italiensk algoritm 5871 == I subtraktion kunde jag finna olika metoder med olika dialekter. Dessa var bland annat bakifrån med addition, skriftlig huvudräkning, algoritmräkning samt uträkning i huvudet. Bland lärarnas lösningar har jag funnit fyra olika dialekter i att räkna bakifrån med addition samt två olika sätt att lösa uppgiften med skriftlig huvudräkning. De svenska föräldrarna löste subtraktionsuppgiften på två olika sätt, algoritmräkning och att räkna i huvudet. Invandrarföräldrarna använde skriftlig huvudräkning eller algoritmer med andra placeringar av plus- och minustecknen. Ni kan här se att lärarnas och de svenska föräldrarnas metoder är ganska lika för addition. Skillnaden syns när vi jämför lärarnas och invandrarföräldrars sätt att räkna. De största skillnaderna bland uträkningarna av fyra räknesätten fann jag för multi plikation och division. Som ni ser så skiljer sig metoderna åt en hel del. En av de svenska för-

4 äldrarna använder sig av en ovanlig metod för att lösa multiplikationsuppgiften. Denna metod är en form av skriftlig huvudräkning. Om vi däremot tittar på lärarens och invandrarförälderns lösning, kan vi se att de liknar varandra men olika bokföring används. Med olika bokföring menar jag här att tankegången är densamma men att den skrivs på olika sätt. För att lösa divisionsuppgiften användes också olika metoder där tankegången är densamma men bokföringen olika. Vi kan till exempel se att lärare och svenska föräldrar använder sig av trappan, men medan den svenska föräldern i exemplet skriver ut minustecknet gör inte läraren detta. Det är anmärkningsvärt att ingen lärare använde sig av liggande stolen. Vi kan också se två olika varianter av kort division som skiljer sig helt och hållet till utseendet. En av de svenska föräldrarna presenterar ett ovanligt sätt att räkna division. Där används både överslagsräkning, huvudräkning och algoritmräkning. Enkät- och intervjusvar När jag frågade en elev om han lärt sig att räkna på ett annat sätt än det som skolan lär ut fick jag detta svar: Ja. Det var de (föräldrarna: min kommentar) som visade mig om det är ett högt tal så att jag ska ta den minsta först. Vad kan fördelen vara med att få läxhjälp hemma fastän föräldrarna räknar på sitt sätt? Några av eleverna tyckte att: det vore bra för då kan man lära sig något som är lättare. det vore bra för om det är ett svårt tal så lär jag mig att lösa på olika sätt. Föräldrarna tyckte nästan detsamma som eleverna men de uttryckte sig på annat sätt än barnen. Här är några av deras kommentarer: Många olika lösningar på samma tal kan ju finnas, så mitt barn kanske kan förstå min lösning lättare än lärarens. Riktigt bra är det väl inte. Det hade varit bra om skolan gjort klart för föräldrarna vilka regler som gäller för uppställning/ uträkning av matteläxan. Vi kan bara förmedla vad vi en gång lärde oss i skolan. Det blir positivt för hon kan få två olika sätt att räkna och välja det som passar henne. Det är upp till henne hur hon vill göra bara hon förstår. Bland lärarna var det bara någon som tyckte att det skulle vara en fördel och hade positiva kommentarer: Fördelen är ju om det ger rätt svar för eleven se på fler sätt att räkna samma uppgifter och att de får hjälp. Nackdelen att det kan förvirra och att det kan vara att vi bygger upp kunskapen utefter en viss mall. En annan lärare tyckte däremot att läxhjälp inte skulle förvirra barnet så länge de känner sig trygga med sin metod. Alternativa metoder och lösningar är alltid bra. Vad tyckte föräldrarna om kraven på läraren? Några av deras svar: Att läraren tillåter att man räknar på olika sätt. Om läraren vill att vi ska hjälpa våra barn med läxorna så får läraren också tala om hur! Inga krav ställs på lärarna för de bryr sig inte om hur vi räknar. De tänker bara på sitt sätt att räkna och de behöver inte kunna de olika ländernas sätt att räkna. Som vi ser här har inte alla föräldrar tillit till sitt barns lärare. Jag tror också att kommunikationen mellan lärare och föräldrar inte alltid fungerar så bra. Vid föräldramöten kan man ta upp hur vi lär ut och kanske fråga föräldrarna hur de har lärt sig. När lärarna besvarade frågan om sin egen roll tyckte de flesta att det är föräldrarna som ska lära sig det sättet som läraren lär ut och att läraren inte behöver ha vetskap om föräldrarnas sätt att räkna. Själv tycker jag som jag skrev tidigare att bådas perspektiv är viktiga för att åstadkomma en bra samverkan mellan läraren och föräldrarna och för att skapa en bra utveckling för våra elever. Några av lärarnas svar: Att jag gör föräldrarna medvetna om hur vi räknar och att de försöker förstå metoderna. Att jag är medveten att det förekommer olika sätt att lösa problem. 16

5 Reflektioner Det är positivt att ha läxhjälp hemma fastän föräldrarna inte räknar som skolan lär ut. Jag anser att det inte är räknemetoden som är avgörande för om en uppgift är rätt eller fel utan resultaten. Kunskaper om många olika lösningsmetoder kan leda till bättre möjligheter att förstå och stödja elevernas färdigheter. Det finns elever som tycker att det är besvärligt att det används olika sätt för att lösa en divisions- eller multiplikationsuppgift i skolan och hemma. Det skulle kunna vara lättare för dem att i skolan få använda de metoder som de redan har lärt sig eller det sättet som deras föräldrar har lärt sig. Då får också föräldrarna vara delaktiga i barnens lärande. Detta är viktigt om vi vill följa läroplanens bestämmelser om föräldrarnas delaktighet i barnens kunskapsutveckling. Jag har funnit både negativa och positiva kommentarer men jag har här främst sett till de positiva. Jag anser att det skulle vara bra att få reda på om föräldrarna har lärt sina barn räkna på ett annat sätt än det jag lär ut. Jag tycker att vi måste ha kontakt med elevens tidigare lärare om olika räknemetoder men vi behöver också fråga föräldrarna om de har lärt sina barn räkna på det sättet som de lärde sig när de gick i skolan. Vid ett föräldramöte eller vid utvecklingssamtal kan man ta upp hur vi lär ut och också diskutera med föräldrarna hur de har lärt sig. Bådas perspektiv är viktiga för att åstadkomma en bra samverkan mellan läraren och föräldrarna och för att skapa en bra utveckling för eleverna. Varför ska barnet tvingas att räkna som läraren lär ut om de tycker att det är mycket enklare att räkna på föräldrarnas sätt? Det här var en kort sammanfattning av mitt arbete som jag hoppas kan leda till ett intresse för de olika matematiska metoder som föräldrar kan erbjuda. Räknemetoderna hos föräldrar och lärare skiljer sig en hel del åt vilket gör att föräldrarna får svårigheter när de ska hjälpa sina barn med matteläxor. Det spelar inte så stor roll om föräldrarna är svenskar eller om de kommer från ett annat land, deras metoder kan skilja sig från de metoder som skolan tar upp. En gemensam uppgift för föräldrarna och skolan är att hålla en öppen dialog kring räknemetoderna. Med den öppna dialogen kan vi uppnå att föräldrarna ska kunna vara delaktiga i elevernas kunskapsutveckling. Litteratur Dani, T. (2006). Examensarbete i lärarutbildningen. Varför räknar du just så? En studie kring elevers läxhjälp när föräldrarna inte räknar som de. Växjö Universitet. Kilborn, W. (1995). Didaktisk ämnesteori i matematik. Del 1 Grundläggande aritmetik. Malmö: Liber Ekonomi Paulsson, KA. (1989). Hur räknar du människa? En rapport om aritmetikalgoritmer i bruk världen över. (Häften för didaktiska studier nr 9). Stockholms lärarhögskola, Didaktikcentrum för lärarutbildningen, Stockholm.

Pedagogisk planering aritmetik (räkning)

Pedagogisk planering aritmetik (räkning) Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande

Läs mer

DIVISION ISBN Till läraren

DIVISION ISBN Till läraren Till läraren DIVISION ISBN 978-91-776-697-8 För att kunna lösa vardagliga matematiska problem måste eleverna bland annat ha väl i növade färdigheter i olika räknesätt. Repetitioner och individuella diagnoser

Läs mer

Bengt Johansson tar i Nämnaren nr 1

Bengt Johansson tar i Nämnaren nr 1 Debatt Debatt Debatt Debatt Debatt Debatt Debatt Elever har rätt att få lära sig matematik Bengt Johansson tar i Nämnaren nr 1 2006 upp frågan om standardalgoritmernas roll i matematikundervisningen. Jag

Läs mer

Räkneflyt. Addition och Subtraktion. Färdighetsträning i matte. Talområde 11-20

Räkneflyt. Addition och Subtraktion. Färdighetsträning i matte. Talområde 11-20 Räkneflyt Addition och Subtraktion område 11-20 Färdighetsträning i matte Gunnel Wendick Inga-Lis Klackenmo Innehållsförteckning Introduktion 2-3 Räkneflyt är kopplat till Lgr11 och Diamant 7 Förståelse

Läs mer

DIAMANT. NaTionella DIAgnoser i Matematik. Ett diagnosmaterial i matematik för skolåren årskurs F- 9. Anpassat till Lgr 11. Löwing januari 2013

DIAMANT. NaTionella DIAgnoser i Matematik. Ett diagnosmaterial i matematik för skolåren årskurs F- 9. Anpassat till Lgr 11. Löwing januari 2013 DIAMANT NaTionella DIAgnoser i Matematik Ett diagnosmaterial i matematik för skolåren årskurs F- 9 Anpassat till Lgr 11 Diamantmaterialets uppbyggnad 6 Områden 22 Delområden 127 Diagnoser Till varje Område

Läs mer

Räknar du med hur barn tänker?

Räknar du med hur barn tänker? Räknar du med hur barn tänker? ULF SÖDERSTRÖM Vid en föreläsning kom tillvalskursen i matematik på M-linjen vid Högskolan i Växjö läsåret 80/81 i kontakt med problemställningen Hur tänker barn när de räknar?

Läs mer

Lokal planering i matematik

Lokal planering i matematik 2007-05-16 Lokal planering i matematik gemensam för Ölmbrotorps skola, Ervalla skola, Hovstaskolan, Lillåns södra skola, Lillåns norra skola och Lillåns skola 7-9 2007-05-16 1 Bakgrund Detta är ett dokument

Läs mer

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll. ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

MULTIPLIKATION ISBN

MULTIPLIKATION ISBN Till läraren MULTIPLIKATION ISBN 978-91-7762-696-1 För att kunna lösa vardagliga matematiska problem måste eleverna bland annat ha väl inövade färdigheter i olika räknesätt. Repetitioner och individuella

Läs mer

Räkneflyt 3. Multiplikation och Division. Färdighetsträning i matte. Tabeller 1-10

Räkneflyt 3. Multiplikation och Division. Färdighetsträning i matte. Tabeller 1-10 Räkneflyt 3 Multiplikation och Division Tabeller 1-10 Färdighetsträning i matte Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens träningsmaterial Wendick-modellen består av en serie strukturerade kartläggnings-

Läs mer

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri Studieplan och bedömningsgrunder i Matematik för åk F-1 Stor-liten, framför - bakom, större än osv. kunna visa att du förstår ordens förhållande till varandra, tex. med hjälp av olika saker eller genom

Läs mer

A. Kunna arbeta med de varierade arbetssätt som förekommer. B. Eleven ska kunna redovisa lösningar så att de kan följas av läraren.

A. Kunna arbeta med de varierade arbetssätt som förekommer. B. Eleven ska kunna redovisa lösningar så att de kan följas av läraren. Vifolkaskolan Utdrag ur Bedömning och betygssättning : Det som sker på lektionerna och vid lektionsförberedelser hemma, liksom närvaro och god ordning är naturligtvis i de flesta fall förutsättningar och

Läs mer

PP i matematik år 2. Taluppfattning och tals användning.

PP i matematik år 2. Taluppfattning och tals användning. PP i matematik år 2. Taluppfattning och tals användning. Ord och begrepp siffra, tal tallinje, talrad, talsorter- ental, 10-tal, 100-tal, 1000-tal, addition, addera, term, summa, subtraktion, subtrahera,

Läs mer

Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. - + Talsort ental, tiotal, hundratal osv siffran 7 är tiotal

Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. - + Talsort ental, tiotal, hundratal osv siffran 7 är tiotal TEORI Pixel 4A kapitel 1 Heltal Siffror 0 1 2 3 4 5 6 7 8 9 Tal skrivs med en eller flera siffror Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. Tallinje mindre färre sjunker -

Läs mer

Matematik. Syfte. reflektera över rimlighet i situationer med matematisk anknytning, och använda ämnesspecifika ord, begrepp och symboler.

Matematik. Syfte. reflektera över rimlighet i situationer med matematisk anknytning, och använda ämnesspecifika ord, begrepp och symboler. Matematik Kurskod: SGRMAT7 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska en som sådan.

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3 BEDÖMNINGSSTÖD till TUMMEN UPP! matte i årskurs 3 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper i årskurs 3. Av tradition har man i den svenska skolan

Läs mer

Magnes matematikdiagnoser i Säffle 1977, 1986 och 2002

Magnes matematikdiagnoser i Säffle 1977, 1986 och 2002 Magnes matematikdiagnoser i Säffle 1977, 1986 och 2002 Bakgrund Matematikkunskaperna hos grundskoleeleverna i Säffle har studerats vid tre olika tillfällen 1977, 1986 och 2002. Matematikdiagnoserna kallade

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 3

Enhet / skola: Lindens skola i Lanna Åk: 3 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,

Läs mer

Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta

Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter

Läs mer

Taluppfattning och allsidiga räknefärdigheter

Taluppfattning och allsidiga räknefärdigheter Taluppfattning och allsidiga räknefärdigheter Handbok med förslag och råd till lärare för att kartlägga, analysera och åtgärda elevers svårigheter och begreppsliga missuppfattningar inom området tal och

Läs mer

Algoritmer i Treviso-aritmetiken.

Algoritmer i Treviso-aritmetiken. Algoritmer i Treviso-aritmetiken. Staffan Rodhe 7 november 2006 1 Larte de labbacho I Västerlandet trycktes de första böckerna i mitten på 1400-talet. Matematiska texter kunde nog anses vara besvärligare

Läs mer

Ämnesprovet i matematik årskurs 3, 2016

Ämnesprovet i matematik årskurs 3, 2016 Ämnesprovet i matematik årskurs 3, 2016 PRIM- gruppen, Stockholms universitet Erica Aldenius, Heléne Sandström Inledning Syftet med de nationella proven är att stödja en likvärdig och rättvis bedömning

Läs mer

Matematik Formula, kap 2 Längd och räknesätt

Matematik Formula, kap 2 Längd och räknesätt Matematik Formula, kap 2 Längd och räknesätt Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du

Läs mer

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation Bo skola Matematikmål år - Namn: Strävansmål: Vi strävar efter att varje elev ska Utveckla goda baskunskaper i de fyra räknesätten Utvecklar en god förståelse för matematik och matematiska begrepp att

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 3

Enhet / skola: Lindens skola i Lanna Åk: 3 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,

Läs mer

Föra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar.

Föra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar. Sparsörskolan Lokal pedagogisk planering Klass: 6A Ansvarig lärare: Fanny Olausson och Linda Wahlberg Ämne/område: Ja mfo relse, uppskattning och ma tning av vikt och volym samt avrundning och o verslagsra

Läs mer

Studieguide till Matematik för lärande och undervisning för F-3 och 4-6 del 1 ht 2015

Studieguide till Matematik för lärande och undervisning för F-3 och 4-6 del 1 ht 2015 Umeå Universitet NMD Naturvetenskapernas och Matematikens Didaktik Studieguide till Matematik för lärande och undervisning för F-3 och 4-6 del 1 ht 2015 1 Kursnamn: Matematik för lärande och undervisning

Läs mer

Matematik Jag är... Jag går i årskurs... Det är roligt med matematik. Namn Antal % A. flicka B. pojke Total

Matematik Jag är... Jag går i årskurs... Det är roligt med matematik. Namn Antal % A. flicka B. pojke Total Matematik 2011 Jag är... A. flicka 127 50 B. pojke 127 50 Jag går i årskurs... A. 3 29 11,4 B. 4 13 5,1 C. 5 30 11,8 D. 6 18 7,1 E. 7 51 20,1 F. 8 38 15 G. 9 75 29,5 Det är roligt med matematik. 50 19,7

Läs mer

Räkneflyt 2. Addition och Subtraktion. Färdighetsträning i matte. Talområde 11-20

Räkneflyt 2. Addition och Subtraktion. Färdighetsträning i matte. Talområde 11-20 Räkneflyt 2 Addition och Subtraktion område 11-20 Färdighetsträning i matte Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens träningsmaterial Wendick-modellen består av en serie strukturerade kartläggnings-

Läs mer

Matematik. Arbetslag: Gamma Klass: 8 S Veckor: 34-39 HT 2015

Matematik. Arbetslag: Gamma Klass: 8 S Veckor: 34-39 HT 2015 Matematik Arbetslag: Gamma Klass: 8 S Veckor: 34-39 HT 2015 Tal Vad kan subtraktionen 4 7 innebära? Kan något vara mindre än noll? De här frågorna sysselsatte matematiker i många århundranden. Så länge

Läs mer

Likhetstecknets innebörd

Likhetstecknets innebörd Likhetstecknets innebörd Följande av Görel Sterner översatta och bearbetade text bygger på boken: arithmetic & algebra in elementary school. Portsmouth: Heinemann Elever i åk 1 6 fick följande uppgift:

Läs mer

Intervjuguide. Del 1. Att göra inför intervjun: Kort om intervjuguiden: a. Uppfattningar och intentioner. [8 min / 8 min]

Intervjuguide. Del 1. Att göra inför intervjun: Kort om intervjuguiden: a. Uppfattningar och intentioner. [8 min / 8 min] Intervjuguide Att göra inför intervjun: Tänk igenom den besökta lektionen så att du kan beskriva den kort och neutralt. Titta på den använda läroboken så att du kan diskutera den med läraren. Ha ett anteckningspapper

Läs mer

Det finns flera aspekter av subtraktion som lärare bör ha kunskap om, en

Det finns flera aspekter av subtraktion som lärare bör ha kunskap om, en Kerstin Larsson Subtraktion Vad är egentligen subtraktion? Vad behöver en lärare veta om subtraktion och subtraktionsundervisning? Om elevers förståelse av subtraktion och om elevers vanliga missuppfattningar?

Läs mer

a) 1 b) 4 a) b) c) c) 6 a) = 4 b) = 6 c) = 6 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? 4. Beräkna. 3. Hur många?

a) 1 b) 4 a) b) c) c) 6 a) = 4 b) = 6 c) = 6 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? 4. Beräkna. 3. Hur många? 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? Exempel a) 1 2 b) 4 5 a) b) c) c) 6 7 3. Hur många? 4. Beräkna. Exempel 1 + 2 = 3 a) 3 + 1 = 4 a) 4 b) 5 b) 4 + 2 = 6 c) 3 + 3 = 6 c) 3 d) 2 GILLA

Läs mer

Hur skall vi få Torvar att lära sig matematik?

Hur skall vi få Torvar att lära sig matematik? Hur skall vi få Torvar att lära sig matematik? WIGGO KILBORN och JAN UNENGE Detta var rubriken för en debatt mellan Wiggo Kilborn och Jan Unenge vid Matematikbiennalen. Utgångspunkten var en artikel av

Läs mer

Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri.

Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri. MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

Det är tanken som räknas - om elevers tankar och strategier i huvudräkning -

Det är tanken som räknas - om elevers tankar och strategier i huvudräkning - Linköpings universitet Lärarprogrammet Elin Laweberg Det är tanken som räknas - om elevers tankar och strategier i huvudräkning - Examensarbete 10 poäng LIU-LÄR-L-EX--07/41--SE Handledare: Joakim Samuelsson

Läs mer

3-3 Skriftliga räknemetoder

3-3 Skriftliga räknemetoder Namn: 3-3 Skriftliga räknemetoder Inledning Skriftliga räknemetoder vad är det? undrar du kanske. Och varför behöver jag kunna det? Att det står i läroplanen är ju ett klent svar. Det finns miniräknare,

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 1

Enhet / skola: Lindens skola i Lanna Åk: 1 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 1 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,

Läs mer

Likhetstecknets innebörd

Likhetstecknets innebörd Modul: Algebra Del 5: Algebra som språk Likhetstecknets innebörd Följande av Görel Sterner (2012) översatta och bearbetade text bygger på boken: Carpenter, T. P., Franke, M. L. & Levi, L. (2003). Thinking

Läs mer

Lokal kursplan i matematik för Stehags rektorsområde

Lokal kursplan i matematik för Stehags rektorsområde Lokal kursplan i matematik för Stehags rektorsområde MÅL Att eleverna ska få möjligheter att tillgodogöra sig de matematiska kunskaper som krävs för att uppnå kursplanens mål. Att eleverna ges en varierande

Läs mer

Samband mellan räknesätt. Lena Andersson Natur, miljö och samhälle Lärarutbildningen Malmö högskola

Samband mellan räknesätt. Lena Andersson Natur, miljö och samhälle Lärarutbildningen Malmö högskola Samband mellan räknesätt Lena Andersson Natur, miljö och samhälle Lärarutbildningen Malmö högskola Matematikundervisningens uppgift, Lgr 11 För att frångå att eleven uppfattar varje matematiskt moment

Läs mer

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik

Läs mer

Att leka sig in i skolans värld

Att leka sig in i skolans värld Att leka sig in i skolans värld När förskoleklassen presenterades för oss sas det Det här är förskola med skolinslag och det är precis så det är. Mellan fem till sju år händer det så mycket och på det

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

Algebraskogen. Tema: Taluppfattning och tals användning, algebra och problemlösning

Algebraskogen. Tema: Taluppfattning och tals användning, algebra och problemlösning Hagabackens rektorsområde Ramshyttans rektorsområde Algebraskogen. Tema: Taluppfattning och tals användning, algebra och problemlösning Planering för perioden: v. 34-51 Ämne: Matematik År: 1 Lärare: Jessica

Läs mer

Systematiskt kvalitetsarbete år 2015

Systematiskt kvalitetsarbete år 2015 januari 2016 Visättraskolan Systematiskt kvalitetsarbete år 2015 Systematiskt kvalitetsarbete När man ser till en för läsåret 2014/2015 kan man se att en överlag ligger högre än vad de gjorde föregående

Läs mer

KURSBESKRIVNING - MATEMATIK

KURSBESKRIVNING - MATEMATIK KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Jeff Linder, Daniel Spångberg, Emil Ohlander Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var

Läs mer

Skrivande i matematikdidaktik. En övning i läroboksanalys

Skrivande i matematikdidaktik. En övning i läroboksanalys Skrivande i matematikdidaktik En övning i läroboksanalys 1 Övergripande syften - Ett syfte med denna föreläsning och den efterföljande övningen i läroboksanalys är att utveckla din förmåga i att reflektera

Läs mer

Räkneflyt 1. Addition och Subtraktion. Färdighetsträning i matte. Talområde 1-10

Räkneflyt 1. Addition och Subtraktion. Färdighetsträning i matte. Talområde 1-10 Räkneflyt 1 Addition och Subtraktion Talområde 1-10 Färdighetsträning i matte Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens träningsmaterial Wendick-modellen består av en serie strukturerade kartläggnings-

Läs mer

När vi tänker på någon situation eller händelse där multiplikation

När vi tänker på någon situation eller händelse där multiplikation Maria Flodström & Lina Johnsson Framställningen av multiplikation påverkar taluppfattningen Multiplikation i läromedel för årskurs 1 3 Här ger 2011 års Göran Emanuelssonstipendiater sin analys av hur multiplikation

Läs mer

KURSBESKRIVNING - MATEMATIK

KURSBESKRIVNING - MATEMATIK KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Daniel Spångberg Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var de olika siffrorna i ett tal

Läs mer

De nationella ämnesproven har som syfte att stödja en likvärdig och rättvis

De nationella ämnesproven har som syfte att stödja en likvärdig och rättvis Inger Ridderlind & Marie Thisted Ämnesprovet för årskurs 6 Under våren 2015 genomfördes för fjärde gången det nationella ämnesprovet i matematik för årskurs 6. Denna artikel utgår i huvudsak från ämnesprovet

Läs mer

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg Tema: Pythagoras sats Linnéa Utterström & Malin Öberg Innehåll: Introduktion till Pythagoras sats! 3 Pythagoras sats! 4 Variabler! 5 Potenser! 5 Att komma tillbaka till ursprunget! 7 Vi bevisar Pythagoras

Läs mer

där och väntar på att bli upptäckt. Mönster, statistik, överlevnad, evolution, mopeder innehåller alla

där och väntar på att bli upptäckt. Mönster, statistik, överlevnad, evolution, mopeder innehåller alla Matematikplanering åk 7 Läsår 16/17 Hösttermin Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar på att bli upptäckt. Mönster, statistik, överlevnad,

Läs mer

Skapa ett MatteEldorado i ÅK 1 3

Skapa ett MatteEldorado i ÅK 1 3 MatTE Skapa ett MatteEldorado i ÅK 1 3 Hej, Ingrid Margareta Vi vill nu berätta för dig om Eldorado läromedlet för FK-6 som vi hoppas ska bli ett tryggt och inspirerande verktyg för dig som pedagog, och

Läs mer

Enkätfrågor 30 mars 2012. Till elever, lärare och medarbetare på Linnéskolan och Fritidshemmet Linnéan.

Enkätfrågor 30 mars 2012. Till elever, lärare och medarbetare på Linnéskolan och Fritidshemmet Linnéan. Linnéskolan, Alingsås Enkätfrågor 30 mars 2012 Till elever, lärare och medarbetare på Linnéskolan och Fritidshemmet Linnéan. Välkommen att vara med och utforma de enkäter vi kommer att använda i vår. Lämna

Läs mer

Exempel på uppgifter från års ämnesprov i matematik för årskurs 3

Exempel på uppgifter från års ämnesprov i matematik för årskurs 3 Exempel på uppgifter från 2010 2013 års ämnesprov i matematik för årskurs 3 2 Innehåll Inledning... 5 Skriftliga räknemetoder... 6 Huvudräkning, multiplikation och division... 8 Huvudräkning, addition

Läs mer

Olika sätt att lösa ekvationer

Olika sätt att lösa ekvationer Modul: Algebra Del 5: Algebra som språk Olika sätt att lösa ekvationer Cecilia Kilhamn, Göteborgs Universitet och Lucian Olteanu, Linnéuniversitetet Att lösa ekvationer är en central del av algebran, det

Läs mer

Aritmetik. A. Området består av följande fyra delområden: Sambandet mellan delområdena ser ut så här:

Aritmetik. A. Området består av följande fyra delområden: Sambandet mellan delområdena ser ut så här: . Diagnoserna i området avser att kartlägga om eleverna har grundläggande färdigheter i aritmetik och därmed nödvändiga förkunskaper för att kunna arbeta med andra områden inom matematiken. Området består

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Datum för utvecklingssamtalet

Datum för utvecklingssamtalet Dokumentation för Datum för utvecklingssamtalet Normer och värden Förskolan skall sträva efter att varje barn utvecklar förmåga att ta hänsyn till och leva sig in i andra människors situation samt vilja

Läs mer

Mattekollen. Mattekollen 1. Mattekollen 3. Mattekollen 2. 6 Mål för kapitlet. 156 mattekollen. För att avsluta kapitlet

Mattekollen. Mattekollen 1. Mattekollen 3. Mattekollen 2. 6 Mål för kapitlet. 156 mattekollen. För att avsluta kapitlet Mattekollen Eleven har redan under sin tidigare skolgång utvecklat vissa kunskaper kring olika matematiska förmågor genom det centrala innehållet. I Mattekollen 1 sätter eleven ord på det han/hon redan

Läs mer

Matematik F-3. Nytt annorlunda läromedel för lågstadiet. Anneli Weiland

Matematik F-3. Nytt annorlunda läromedel för lågstadiet. Anneli Weiland Matematik F-3 Nytt annorlunda läromedel för lågstadiet 1 Varför ny matematik? Jag har saknat en tydlig bok som fokuserar på matematik Bort med glättiga bilder, matematik är vackert utan bilder Två grundläggande

Läs mer

Madeleine Zerne, rektor på Hagbyskolan

Madeleine Zerne, rektor på Hagbyskolan Madeleine Zerne, rektor på Hagbyskolan F-6 skola med 340 elever Rektorer på matematikkonferens Tre rektorer från Linköpings kommun, Gunilla Norden, Anna Samuelsson och Madeleine Zerne Rektorskonferens

Läs mer

Matematikutvecklingsschema

Matematikutvecklingsschema Bakgrundsmaterial till Matematikutvecklingsschema Simrishamns kommun För grundskolan och kursen matematik A på gymnasieskolan. (2006 09 27) - 1 - Matematikutvecklingsschema F 9 samt Ma A i gymnasieskolan

Läs mer

Elevenkät. Årskurs 4. Skolverket 106 20 Stockholm

Elevenkät. Årskurs 4. Skolverket 106 20 Stockholm j h Elevenkät Årskurs 4 Skolverket 106 20 Stockholm International Association for the Evaluation of Educational Achievement Copyright IEA, 2007 k l Instruktioner I det här häftet finns frågor om dig själv.

Läs mer

PASS 2. POTENSRÄKNING. 2.1 Definition av en potens

PASS 2. POTENSRÄKNING. 2.1 Definition av en potens PASS. POTENSRÄKNING.1 Definition av en potens Typiskt för matematik är ett kort, lätt och vackert framställningssätt. Den upprepade additionen går att skriva kortare i formen där anger antalet upprepade

Läs mer

Inledning. ömsesidig respekt Inledning

Inledning. ömsesidig respekt Inledning Inledning läkaren och min man springer ut ur förlossningsrummet med vår son. Jag ligger kvar omtumlad efter vad jag upplevde som en tuff förlossning. Barnmorskan och ett par sköterskor tar hand om mig.

Läs mer

Färdighet med förståelse

Färdighet med förståelse Färdighet med förståelse DAGMAR NEUMAN Är det möjligt att lära "räkneomogna" nybörjare den logik som är basen för matematisk förståelse? "Mognad" anses av många vara omöjlig att påverka genom undervisning

Läs mer

Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar

Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar Matematikplanering 7B Läsår 15/16 Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar på att bli upptäckt. Mönster, statistik, överlevnad, evolution, mopeder

Läs mer

Tentamen. papper! Gör du det, så hjälper du oss att kunna rätta tentorna snabbast möjligt. Skriv din kod på alla papper!

Tentamen. papper! Gör du det, så hjälper du oss att kunna rätta tentorna snabbast möjligt. Skriv din kod på alla papper! o/peo!o Uppsala universitet Institutionen för pedagogik, didaktik och utbildningsstudler Matematik l för grundlärarprogrammet med Inriktning mot årskurs 4-6 2012-12-14 Kajsa Bråtlng Tentamen Tentan består

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med

Läs mer

Mimer Akademiens arbete med barnens matematikutveckling Ann S Pihlgren Elisabeth Wanselius

Mimer Akademiens arbete med barnens matematikutveckling Ann S Pihlgren Elisabeth Wanselius Mimer Akademiens arbete med barnens matematikutveckling Ann S Pihlgren Elisabeth Wanselius Matematikdidaktik hur förbättrar vi resultaten? I olika undersökningar de senaste 25 åren visar det sig att de

Läs mer

Lokal studieplan matematik åk 1-3

Lokal studieplan matematik åk 1-3 Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen

Läs mer

Subtraktionsberäkningar

Subtraktionsberäkningar Kerstin Larsson Subtraktionsberäkningar I förra numret av Nämnaren beskrev författaren olika situationer inom subtraktion och addition. Här fortsätter hon att behandla beräkningsstrategier för subtraktion

Läs mer

Ominlärning i matematik för enskild elev enligt Wittingmetodens inlärnings- och elevsyn

Ominlärning i matematik för enskild elev enligt Wittingmetodens inlärnings- och elevsyn Ominlärning i matematik för enskild elev enligt Wittingmetodens inlärnings- och elevsyn Specialarbete i kurs Matematik 5 p, Umeå universitet 1993/94 Projektplan Rubrik: Matematikundervisning för enskild

Läs mer

Mellanstadieelevers beräkningsstrategier vid addition och subtraktion

Mellanstadieelevers beräkningsstrategier vid addition och subtraktion Linköpings universitet Lärarprogrammet Ia Jans, Malin Malm Mellanstadieelevers beräkningsstrategier vid addition och subtraktion Examensarbete 15 hp LIU-LÄR-L-A--14/01--SE Handledare: Cecilia Sveider Institutionen

Läs mer

Lässvårigheter och räknesvårigheter pedagogiska förslag och idéer

Lässvårigheter och räknesvårigheter pedagogiska förslag och idéer Lässvårigheter och räknesvårigheter pedagogiska förslag och idéer Görel Sterner Artikel ur Svenska Dyslexiföreningens och Svenska Dyslexistiftelsens tidskrift Dyslexi aktuellt om läs- och skrivsvårigheter

Läs mer

LPP Matematik åk 4 Vt-14

LPP Matematik åk 4 Vt-14 LPP Matematik åk 4 Vt-14 Skolans värdegrund, uppdrag, mål och riktlinje Skolan ska vara öppen för skilda uppfattningar och uppmuntra att de förs fram. Den ska framhålla betydelsen av personliga ställningstaganden

Läs mer

En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden.

En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden. En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden. Man ser en jämn ström av uppseendeväckande scenarier. Man undviker nog

Läs mer

Men hur räknar du egentligen?

Men hur räknar du egentligen? Lärarutbildningen Examensarbete Våren 2005 Men hur räknar du egentligen? - en studie om föräldrars och barns samarbete med läxan i matematik med fokus på algoritmer Handledare: Sune Jonasson Författare:

Läs mer

Lgr 11 matriser i Favorit matematik 4 6

Lgr 11 matriser i Favorit matematik 4 6 Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor

Läs mer

Här är två korta exempel på situationer då vi tillämpar den distributiva lagen:

Här är två korta exempel på situationer då vi tillämpar den distributiva lagen: Modul: Algebra Del 8: Avslutande reflektion och utvärdering Distributiva lagen Cecilia Kilhamn, Göteborgs Universitet Distributiva lagen a (b + c) = a b + a c Den distributiva lagen kallas den räknelag

Läs mer

18 Eldorado 4 A Lärarbok Undervisning att skapa förutsättningar för elevers lärande

18 Eldorado 4 A Lärarbok Undervisning att skapa förutsättningar för elevers lärande Undervisning att skapa förutsättningar för elevers lärande Eleverna behöver få möta aktiviteter där de får möjlighet att konkret uppleva ett nytt begrepp eller en ny metod, reflektera gemensamt och med

Läs mer

Taluppfattning och allsidiga räknefärdigheter

Taluppfattning och allsidiga räknefärdigheter Taluppfattning och allsidiga räknefärdigheter Handbok för stöd och stimulans Alistair McIntosh NCM NSMO Alistair McIntosh Professor emeritus, University of Tasmania Australien Nya vägar i räkneundervisningen

Läs mer

Matematik klass 3. Höstterminen. Anneli Weiland Matematik åk 3 HT 1

Matematik klass 3. Höstterminen. Anneli Weiland Matematik åk 3 HT 1 Matematik klass 3 Höstterminen Anneli Weiland Matematik åk 3 HT 1 Minns du från klass 2? Tiokamraterna 10=5+ 10=1+ 10=2+ 10=5+ 10=4+ 10=0+ 10=9+ 10=4+ 10=7+ 10=3+ 10=6+ 10=10+ 10=2+ 10=1+ 10=3+ 10=7+ 10=6+

Läs mer

Skriftlig huvudräkning

Skriftlig huvudräkning 2002:102 PED EXAMENSARBETE Skriftlig huvudräkning En metod att utveckla elevers tankestrategier i huvudräkning SONJA ELIASSON PETER NORBERG PEDAGOGUTBILDNINGARNA GRUNDSKOLLÄRARPROGRAMMET ÅK 1-7 HT 2002

Läs mer

Hammarbacksskolan RO Resultatuppföljning

Hammarbacksskolan RO Resultatuppföljning Läsåret 2013/2014 Hammarbacksskolan RO Resultatuppföljning Innehållsförteckning Vårt rektorsområde...3 Verksamhetsidé...3 Vision...3 Prioriterade mål läsåret 2013-2014 med kommentarer 4 Hammarbacksskolans

Läs mer

Observationsschema Problemlösningsförmåga

Observationsschema Problemlösningsförmåga Observationsschema Problemlösningsförmåga Klass: Elevens namn Kan formulera räknehändelser i addition/ subtraktion/multiplikation/division. Läser och visar förståelse för matematiska problem. Kan överföra

Läs mer

BARN OCH UTBILDNING Verktyg för systematiskt arbete i matematik

BARN OCH UTBILDNING Verktyg för systematiskt arbete i matematik BARN OCH UTBILDNING Verktyg för systematiskt arbete i matematik 1 (8) Innehållsförteckning Inledning... 2 Skolverkets Bedömningsstöd i matematik... 2 Inloggningsväg till Bedömningsportalen... 2 Nationella

Läs mer

ARBETSPLAN. för föräldrasamverkan. Kap. 1. Skolans värdegrund och uppdrag

ARBETSPLAN. för föräldrasamverkan. Kap. 1. Skolans värdegrund och uppdrag ARBETSPLAN för föräldrasamverkan Utdrag ur läroplan 2011 : Kap. 1. Skolans värdegrund och uppdrag Skolan ska främja alla elevers utveckling och lärande samt en livslång lust att lära. Sveaskolan Höstterminen

Läs mer

TESTVERSION. Uppbyggnaden av utvecklingschemat Diamantdiagnoserna omfattar sex områden, de sex facetterna i diamanten. Dessa är

TESTVERSION. Uppbyggnaden av utvecklingschemat Diamantdiagnoserna omfattar sex områden, de sex facetterna i diamanten. Dessa är Utvecklingchema Enligt Grundskoleförordningen skall lärare minst en gång per termin informera eleven och elevens vårdnadshavare om elevens skolgång. Vid dessa utvecklingssamtal skall läraren skriftligt

Läs mer

Arbetsplan för Ödenäs skola F-6

Arbetsplan för Ödenäs skola F-6 151013 Arbetsplan för Ödenäs skola F-6 Läsåret 2015/2016, Barn- och ungdomsförvaltningen, Utvecklingsenheten Telefon: 0322-61 60 00 Fax: 0322-61 63 40 E-post: barn.ungdom@alingsas.se Barn- och ungdomsförvaltningens

Läs mer

Intervjuguide. Att göra inför intervjun: Instruktioner för genomförandet av intervjun: Kontrollera att inspelningsutrustningen fungerar som den ska.

Intervjuguide. Att göra inför intervjun: Instruktioner för genomförandet av intervjun: Kontrollera att inspelningsutrustningen fungerar som den ska. Intervjuguide Att göra inför intervjun: Kontrollera att inspelningsutrustningen fungerar som den ska. Tänk igenom den besökta lektionen så att du kan beskriva den kort och neutralt. Titta på den använda

Läs mer

jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen

jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen Utveckling A Taluppfattning 0-100 Jag kan ramsräkna 0-100. Jag kan jämföra/storleksordna talen 0-100. Jag kan markera ut tal 0-100 på en tallinje. Jag förstår tiotal och ental för talen 0-100. B Taluppfattning

Läs mer