Den experimentella partikelfysikens framtid.

Storlek: px
Starta visningen från sidan:

Download "Den experimentella partikelfysikens framtid."

Transkript

1 Den experimentella partikelfysikens framtid. Sten Hellman materiens minsta beståndsdelar 2002 Vad vill vi veta? Varför? Hur skall det gå till? 2

2 Det finns många frågor som partikelfysiker vill ha svar på, men de flesta har minst en av följande frågor högt på vår önskelista: 1 - Hur uppkommer vilomassa? 2 - Vad består universums mörka materia av? 3 - Varför finns det mer materia än anti-materia i universum? Är Higgsmekanismen den korrekta beskrivningen av det elektrosvaga symmetribrottet? Finns det supersymmetriska partiklar, och är R-paritet bevarad? Hur skall vi förklara CP-brottet Frågorna exemplifierar att egenskaperna hos materiens minsta beståndesdelar och de krafter som verkar mellan dessa har ett avgörande inflytande på hur den värld vi lever i ser ut. De illustrerar också den starka koppling mellan partikelfysik och kosmologi som vuxit fram de senaste decennierna. 3

3 Vad är vilomassa? - inte så självklart som vi kanske tror! n + 92 U Xe Sr n 180 MeV E = mc 2 4

4 5 I ett material, t.ex. glas, går ljuset långsammare än i luft

5 Förklaringsmodeller: Abosrption och re-emission Eller... Fotonen har en massa i materialet, där den växelverkar med det elektromagnetiska fältet Rörelse-energi Rörelse-energi och massa (E=mc 2!) Rörelse-energi 6

6 På ett analogt sätt kan man anta att t ex en elektron som rör sig i vakuum saktar upp (=erhåller massa) genom att växelverka med ett fält - Higgs-fältet e - Vi behöver något i stil med Higgs-fältet i partikelfysiken, annars fungerar inte Standard modellen! en unik egenskap hos Higgs-fältet är att det finns överallt, det är skilt från noll även i vakuum (jfr det elektromagnetiska fältet som är noll om det inte finns elektriska laddningar närvarande) olika partiklar erhåller olika massa pga att de kopplar olika starkt till Higgs-fältet För att visa att det här är en riktig teori vill vi producera den fältpartikel som hör till Higgs fältet - Higgspartikeln 7

7 Så hur producerar vi Higgspartiklar? Alla processer vi kan visa grafiskt kan naturen både köra baklänges och i sidledd - så länge energi och rörelsemängd är bevarad! e - Higgs Reglerna för hur man manipulerar den här typen av diagram - Feynmandiagram - säger att när en roterad pil pekar åt fel håll (här från höger till vänster) så representerar den en antipartikel, alltså en positron e + Higgs Higgspartiklen sönderfaller sedan till ett par av partikelantipartikel e - 8

8 Att en partikel har hög massa beror på att den kopplar starkt till Higgsfältet, omvänt så kopplar en Higgspartikel starkast till tunga partiklar, det medför två saker: e - e + 1 Higgs När Higgspartikeln sönderfaller till partikel-antipartikel så sker det med störst sannolikhet till de tyngsta möjliga partiklarna. Eftersom energin måste bevaras betyder det att Higgs partiklen helst sönderfaller till den tyngsta partikeln som har en massa mindre än hälften av Higgspartikelns. 1 - elektronen och positronen har inte så stor sannolikhet att skapa just en Higgspartikel när de kolliderar. Oftast bildas någon annan partikel, till exempel en Z- partikel 9 Så skall vi hitta Higgs bör vi titta på andra processer:

9 elektron Z * Z Higgs Z- och Higgspartikeln sönderfaller var för sig till ett partikelantipartikel par. Det är dessa sönderfallsprodukter som vi ser i våra detektorer. positron Den här Z-partikeln måste ha samma massa som en Z och en Higgs tillsammans. Den måste låna energi för det och är därför extremt kortlivad. E t h en partikel som på detta sätt existerar under en kort tid, med fel massa, betecknas med en * 10

10 11

11 12

12 13 ALEPH

13 Produktion och sönderfall av Higgs positron Z kvark anti kvark En Higgs med massa 114 GeV sönderfaller nästan enbart till b & anti-b elektron Z * Higgs b-kvark anti b-kvark Men i experimentet kommer också sk bakgrundsprocesser att produceras, till exempel: positron W* Z Här gömmer sig Higgs? elektron W* Z 14

14 15 Höstens HIGGS searcy

15 Inom partikelteorin har man länge studerat så kallade supersymmetriska teorier. Varje partikel en partner, elektronerna har selektroner och så vidare. Dessa bildades - liksom alla andra partiklar - i big-bang De tyngsta sönderfaller, liksom de tyngsta av de vanliga partiklarna Den lättaste - en slags partner till fotonen - skulle kunna vara stabil och finnas kvar i universum Eftersom vi inte har upptäckt några supersymmetriska partiklar måste de vara ganska tunga kvark gluon elektron neutrino myon foton W Z Higgs skvark gluino selektron sneutrino smyon fotino Wino Zino Higgsino 16

16 En supersymmetrisk partner har samma: - laddning - växelverkan (gluino växelverkar endast starkt, selektronen elektromagnetsikt och svagt och så vidare) som partikeln De flesta - men inte alla - teorier antar att supersymmetriska partiklar har ett multiplikativt kvant-tal, R-paritet, som är bevarat. Detta skulle i så fall medföra att: ~ e + e + Supersymmetriska partiklar produceras parvis e - Z _ ~ _ q gluon t ~ e - q t Den lättaste supersymmetriskas partikeln - LSP -kan inte sönderfalla. om R-paritet är bevarad så skall varje vertex innehålla ett jämt antal supersymmetriska partiklar - alltså kan en SUSY partikel bara sönderfalla till ett udda antal SUSY partiklar ~ t W b ~ b ~ χ o 1 Chi-noll-ett, eller den lättaste neutralion, en blandning av SUSYpartners till Z, foton och Higgs partiklarna. Vanligaste kandidaten för LSP 17 Den här typen av partiklar skulle kunna vara lösningen på ett kosmologiskt problem: - det verkar som om det finns något därute som vi inte vet vad det är!

17 Finns det mer därute? 18 Andromeda galaxen

18 Rotationskurvor Om däremot det mesta av massan är koncentrerad i centrum av systemet så säger Keplers lag: Vinkelhastigheten är ungefär konstant för objekt som befinner sig inuti en någorlunda jämn massfördelning v ~ 1 r 1/2 19

19 Mörk Materia NGC 6503 En elliptisk galax i Drakens stjärnbild, ca 25 miljoner ljusår ifrån oss Det finns mörk materia därute! Och det är inte - eller i alla fall inte så mycket - vanlig materia! 20

20 Inga SUSY partiklar hittade Vare sig vid hadronkolliderare... (UA1/UA2 vid CERN, CDF/D0 vid FNAL) eller vid LEP e - ~ t W b ~ q saknad energi _ q b hadron jets ~ χ o 1 ν χ o 1 e + χ + 1 χ - 1 χ o 1 ν 21

21 Vid Big bang var universum symmetriskt, det fanns lika mycket materia som antimateria. Här och nu är detta uppenbarligen inte längre sant - och det verkar vara så i hela det universum vi kan överblicka CP assymetrin Så vart tog antimaterien vägen? Svaret finns kanske inom partikelfysiken: Det finns en partikel - K 0 mesonen som oscillerar fram och tillbaka mellan partikel och antipartikel anti-särkvark anti-nerkvark. K 0 K 0 nerkvark särkvark.. Så länge som detta är symmetriskt så ger det här ingen förklaring till varför vi finns, det är lika sannolikt att en partikel blir antipartikel som tvärtom: K-mesonen tillbringar i så fall lika mycket tid som partikel som antipartikel och när den sönderfaller (och oscillerandet slutar) så är det lika troligt att den är det ena som det andra. Men K-systemet är inte symmetriskt! Det är enklare för antipartikeln att oscillera till en partikel än motsatsen. Detta är den enda process vi sett som inte är symmetrisk mellan partiklar och antipartiklar. 22

22 Så hur undersöker man CP-brott Producera en b och en anti-b kvark Dessa hadroniserar till en B 0 och en B 0 meson µ + När en av dem sönderfaller på ett sätt som är unikt för ett egentillstånd, taggas den andra som det motsatta tillståndet. b - _ B 0 Positiv myon - alltså anti-b b Andra sidan innehåller b-kvarken B 0 K 0 π + J/Ψ e - e + π - De gånger den andra sönderfaller på ett sätt som är möjligt för bägge typerna av neutrala B-mesoner kan man testa om detta sönderfall sker på olika sätt beroende på vilken typ man taggat med. Om så är fallet så är detta en inidikation på CP brott. 23

23 PEP-II vid SLAC kolliderar 9 GeV elektroner med 3.1 GeV positroner Assymetriska kollisioner gör det enklare att mäta sönderfallssträckor, och därmed livstider. 24

24 För att kunna gå vidare behöver vi acceleratorer med högre energi: Produktion av en partikel är i princip att köra sönderfallet baklänges: Samma partikel kan produceras genom att låta de partiklar som bildas i ett sönderfall kollidera - med precis rätt energi! positron En Z-partikel med massan 90 GeV kan sönderfalla till en elektron och en positron Z elektronen och positronen får då vardera energin 45 GeV, eftersom deras massa är lite blir detta huvudsakligen rörelse-energi elektron En elektron och en positron vardera med rörelse-energi 45 GeV kan producera en Z. elektron Z positron Vill man producera en Higgs partikel genom att kollidera elektroner och positroner måste de var och en ha en energi som motsvarar halva massan av Higgs partikeln Så ju tyngre partiklar vi vill producera desto kraftfullare acceleratorer behövs. 25

25 Acceleratorer kan klassificeras som Hadronkolliderare (proton-proton eller proton-antiproton) En hadron är ett sammansatt objekt: Valenskvark Sjökvark Gluon Den fundamentala kollisionen kan vara kvark-kvark, kvark-antikvark, (anti)kvark-gluon, gluon-gluon. - en stor mängd olika partiklar kan bildas - den starka växelverkan dominerar. Processer som enbart sker med svag eller elektromagnetisk växelverkan får stora bakgrunder Sannolikhet - kollisionsenergin är ej välbestämd Leptonkolliderare (elektron-positron) Elektroner och positroner är elementarpartiklar i ordets egentliga mening: - man kan bara producera partiklar, eller par av partiklar som har samma kvant-tal som ett partikelantipartikelpar, som t ex Z eller Higgs, eller ett nytt par av partikel-antipartikel som t ex top och anti-top. Däremot kan man inte producera t ex enstaka W. - leptonerna känner endast den elektrosvaga kraften. Inga stora bakgrunder från stark-växelverkan processer - kollisionsenergin är välbestämd. Det betyder att man kan stämma av energin så att den är densamma som den partikel man vill producera. Då kommer sannolikheten att bilda just den partikeln att dominera, man kan alltså på sätt och vis bestämma vad som skall produceras. 26 Andelen av hadronens energi som bärs av partoen

26 Synkrotronstrålning En laddad partikel som accelereras, till exempel genom att böjas av i ett magnetfält, sänder ut elektromagnetisk strålning, synkrotronljus. Denna strålning bär med sig energi bort från de accelererade partiklarna. Denna energi måste ersättas av acceleratorn. Hur mycket energi som förloras är proportionellt mot fjärde potensen av energin hos partiklarna, E 4, och är omvänt proportionellt mot krökningsradien. Dessutom beror energiförlusterna på partikelns massa. Sammantaget förlorar partiklarna i en accelerator: elektroner E = 88.5 E 4 r protoner E = 7.8 E 4 r ( E i GeV, r i km) När energin går upp ökar kostnaden för att ersätta förlorad energi snabbt Detta försöker man motverka genom att öka r, man bygger större ringar, vilket också blir mycket dyrt En möjlig utväg blir att bygga linjära kolliderare, en ganska komplicerad affär, eftersom man då måste se till att accelerera partiklarna till högsta energi på en enda passage genom acceleratorn. 27

27 Så framtiden verkar ligga inom: Cirkulära hadron-kolliderare relativt lätt att få höga energier generella i bemärkelsen att man har många olika typer av kollisioner, och därigenom kan producera en stor mängd olika partiklar. Detta ökar chanserna för oväntade upptäckter. ställer stora krav på detektorerna, bakgrunden från processer som sker via den starka växelverkan är mycket stor. En maskin för upptäckter Linjära lepton-kolliderare tekniskt svårare att nå höga energier enklare att ställa in, genom att välja energi kan man påverka vilka partiklar som bildas enklare för detektorer, inte så mycket bakgrund 28 En maskin för precisions-studier

28 LHC -parametrar: 14 TeV proton-proton kollisioner tungjonkollisioner 28 km omkrets 8.6 Tesla magnetfält 2 stora general purpose detektorer för proton-proton ATLAS och CMS 1 dedicerat experiment för att studera CP-brott i B-systemet 1 dedicerat tungjon experiment ALICE som protonkolliderare kommer LHC att producera kollisioner per sekund och experiment Färdig för datatagning år

29 ALICE CMS 30 ATLAS

30 ATLAS 31

31 ATLAS och Higgs Higgs massan 120 GeV: H -> γγ Higgs massan 130 GeV: H -> ZZ e + e - e + e - Higgs massan 700 GeV: H -> ZZ νν jj H -> WW e + ν e - ν 32

32 ATLAS och CP-brott i B-systemet ATLAS kommer att vara oerhört rikt på B-mesoner, men... man måste hitta dem bland alla övriga händelser man måste para ihop B-mesonerna korrekt för att bestämma vilken typ av B-meson som bildats Exempel B - -> µ - ν K - π + B 0 -> J/Ψ K 0 π + π - e + e - myonen från sönderfallet av den laddade B-mesonen används dels för att trigga eventet - dvs för att avgöra - att ett bb par producerats och dels för att avgöra - vilken kvark, b eller b, som den neutrala B-mesonen innehåller. Är CP bruten kommer man att se en skillnad på den neutrala sidan, beroende på om tagsidan har en positiv eller negativ myon 33

33 ATLAS och SUSY Att upptäcka supsersymmetri via den klassiska signaturen med jets och saknad energi kommer att vara relativt enkelt. Tvärsnitten för produktion är stora - produktionen sker via den starka växelverkan - och signalen tydlig. SUSY bör kunna upptäckas relativt snabbt för massor upp till TeV Eftersom datamängderna kommer att bli stora så kommer detaljstudier att bli möjliga. Man kommer att kunna bestämma de flesta av teorins parameterar, som t ex massor för olika partiklar med hög nogrannhet. 34

34 Linjärkolliderare JLC - Japan Linear Collider kilometer: total längd km 35

35 Linjärkolliderare Just nu bedrivs fyra förstudier: 1. TESLA vid DESY i Hamburg 2. JLC i Japan 3. NLC - Next Linear Collider - i USA Någon av dessa kommer säkert att projekteras en bit in på nästa decennium som en världsaccelerator. 4. CLIC - CERN Linear Collider - på CERN är ett mer långsiktigt projekt som kan realiseras en generation efter någon av de ovanstående. TESLA Total längd ca 33 km, kollisionsenergi GeV, supraledande acceleratorelement (ca st) som opererar vid 2K Tekniskt förslag framlagt i fjol, beslut kan tas nästa år. Beräknad byggtid 6-8 år. 36

36 Myonkolliderare - förenar det bästa av två världar: - de kolliderande partiklarna är leptoner, det vill säga sant elementära partiklar: vi kan bestämma initialtillståndet väl och stämma maskinen så att en given partikeltyp produceras, tex Higgs eller top - antitop par - myonerna är tunga, 200 gånger tyngre än elektronen: Problemet med synkrotronstrålning är mindre, och vi kan bygga en cirkulär maskin. Men. - myonen sönderfaller efter ca 2 microsekunder: Det gäller att skynda sig! Tidsdilationen hjälper, när de väl accelererats upp i hastigheter nära ljusets så lever de längre i labsystemet. Ändå har ungefär hälften av myonerna sönderfallit efter ca 1000 varv. - Dessutom produceras en intensiv neutrinostrålning som är omöjlig att skärma bort när myonerna sönderfaller. Detta leder till mer huvudbry när acceleratorn designas. Kanske måste acceleratorn ligga på en bergstopp eller i öknen. Men neutrinostrålarna kan användas för fysik!! 37

37 38

38 Så för att sammanfatta: Vi vill upptäcka: - ursprunget till vilomassan - universums okända materia - orsaken till att vi finns: asymmetrin materia-antimateria - något helt oväntat Och det gör vi: 2007 vid LHC Vid en linjär leptonkolliderare 2025-???: Neutrinofabrik? Myonkolliderare? CLIC? VLHC (Very Large Hadron Collider)? 39

Acceleratorer och Detektorer Framtiden. Barbro Åsman den

Acceleratorer och Detektorer Framtiden. Barbro Åsman den Acceleratorer och Detektorer Framtiden Barbro Åsman den 11-07-06 Rutherfords experiment Rutherfords experiment Atommodeller Thomsons modell Rutherfords resultat Studerade radioaktiv strålning tillsammans

Läs mer

LHC Vad händer? Christophe Clément. Elementarpartikelfysik Stockholms universitet. Fysikdagarna i Karlstad, 2010-10-09

LHC Vad händer? Christophe Clément. Elementarpartikelfysik Stockholms universitet. Fysikdagarna i Karlstad, 2010-10-09 LHC Vad händer? Christophe Clément Elementarpartikelfysik Stockholms universitet Fysikdagarna i Karlstad, 2010-10-09 Periodiska systemet 1869 Standardmodellen 1995 Kvarkar Minsta beståndsdelar 1932 Leptoner

Läs mer

Higgspartikeln. och materiens minsta beståndsdelar. Johan Rathsman Teoretisk Partikelfysik Lunds Universitet. NMT-dagar i Lund

Higgspartikeln. och materiens minsta beståndsdelar. Johan Rathsman Teoretisk Partikelfysik Lunds Universitet. NMT-dagar i Lund och materiens minsta beståndsdelar Teoretisk Partikelfysik Lunds Universitet NMT-dagar i Lund 2018-03-14 Översikt 1 och krafter 2 ska partiklar och krafter 3 på jakt efter nya partiklar 4 och krafter materiens

Läs mer

Upptäckten av Higgspartikeln

Upptäckten av Higgspartikeln Upptäckten av Higgspartikeln 1. Introduktion 2. Partikelfysik 3. Higgspartikeln 4. CERN och LHC 5. Upptäckten 6. Framtiden 1 Introduktion De senaste åren har ni säkert hört talas om den så kallade Higgspartikeln

Läs mer

Hur mycket betyder Higgspartikeln? MASSOR!

Hur mycket betyder Higgspartikeln? MASSOR! Hur mycket betyder Higgspartikeln? MASSOR! 1 Introduktion = Ni kanske har hört nyheten i somras att mina kollegor i CERN hade hittat Higgspartikeln. (Försnacket till nobellpriset) = Vad är Higgspartikeln

Läs mer

Supersymmetri. en ny värld av partiklar att upptäcka. Johan Rathsman, Lunds Universitet. NMT-dagar, Lund, Symmetrier i fysik

Supersymmetri. en ny värld av partiklar att upptäcka. Johan Rathsman, Lunds Universitet. NMT-dagar, Lund, Symmetrier i fysik en ny värld av partiklar att upptäcka, Lunds Universitet NMT-dagar, Lund, 2014-03-10 1 i fysik 2 och krafter 3 ska partiklar och krafter 4 på jakt efter nya partiklar Newtons 2:a lag i fysik Newtons andra

Läs mer

Higgsbosonens existens

Higgsbosonens existens Higgsbosonens existens Ludvig Hällman, Hanna Lilja, Martin Lindberg (9204293899) (9201120160) (9003110377) SH1012 8 maj 2013 Innehåll 1 Sammanfattning 2 2 Standardmodellen 2 2.1 Kraftförmedlarna.........................

Läs mer

Standardmodellen. Figur: HANDS-ON-CERN

Standardmodellen. Figur: HANDS-ON-CERN Standardmodellen Den modell som sammanfattar all teoretisk kunskap om partikelfysik i dag kallas standardmodellen. Standardmodellen förutspådde redan på 1960-talet allt det som man i dag har lyckats bevisa

Läs mer

Christian Hansen CERN BE-ABP

Christian Hansen CERN BE-ABP Christian Hansen CERN BE-ABP LHC - Vart, Varför och Hur? Acceleration och Gruppering Böjning Fokusering Kollision LHC - Vart, Varför och Hur? Acceleration och Gruppering Böjning Fokusering Kollision 1952

Läs mer

Att utforska mikrokosmos

Att utforska mikrokosmos 309 Att utforska mikrokosmos Hur lundafysiker mätte en ny spridningseffekt, var med och bestämde familjeantalet av leptoner och kvarkar och deltog i jakten på Higgs partikel. Vad vi vet och vill veta Idag

Läs mer

Supersymmetri. en ny värld av partiklar att upptäcka. Johan Rathsman, Lunds Universitet. NMT-dagar, Lund, Symmetrier i fysik

Supersymmetri. en ny värld av partiklar att upptäcka. Johan Rathsman, Lunds Universitet. NMT-dagar, Lund, Symmetrier i fysik en ny värld av partiklar att upptäcka, Lunds Universitet NMT-dagar, Lund, 2011-03-10 1 i fysik 2 och krafter 3 ska partiklar och krafter 4 på jakt efter nya partiklar Newtons 2:a lag i fysik Newtons andra

Läs mer

LHC Vad händer? Christophe Clément. Elementarpartikelfysik Stockholms universitet. Fysikdagarna i Karlstad,

LHC Vad händer? Christophe Clément. Elementarpartikelfysik Stockholms universitet. Fysikdagarna i Karlstad, LHC Vad händer? Christophe Clément Elementarpartikelfysik Stockholms universitet Fysikdagarna i Karlstad, 2010-10-09 Periodiska systemet 1869 Standardmodellen 1995 Kvarkar Minsta beståndsdelar 1932 Leptoner

Läs mer

Theory Swedish (Sweden)

Theory Swedish (Sweden) Q3-1 Large Hadron Collider (10 poäng) Läs anvisningarna i det separata kuvertet innan du börjar. I denna uppgift kommer fysiken i partikelacceleratorn LHC (Large Hadron Collider) vid CERN att diskuteras.

Läs mer

Partikeläventyret. Bernhard Meirose

Partikeläventyret. Bernhard Meirose Partikeläventyret Bernhard Meirose Vad är Partikelfysik? Wikipedia: "Partikelfysik eller elementarpartikelfysik är den gren inom fysiken som studerar elementarpartiklar, materiens minsta beståndsdelar,

Läs mer

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Bevarandelagar i reaktioner MP 13-3 Elementarpartiklarnas periodiska system Standard Modellen och kraftförening MP 13-4 Vad härnäst? MP 13-5

Läs mer

Föreläsning 12 Partikelfysik: Del 1

Föreläsning 12 Partikelfysik: Del 1 Föreläsning 12 Partikelfysik: Del 1 Vad är de grndläggande delarna av material? Hr växelverkar de med varandra? Partikelkolliderare Kvarkar Gloner Vi är nästan i sltet av historien Med den här krsen har

Läs mer

Krävs för att kunna förklara varför W och Z bosoner har massor.

Krävs för att kunna förklara varför W och Z bosoner har massor. Higgs Mekanismen Krävs för att kunna förklara varför W och Z bosoner har massor. Ett av huvudmålen med LHC. Teorin förutsäger att W och Z bosoner är masslösa om inte Higgs partikeln introduceras. Vi observerar

Läs mer

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Bevarandelagar i reaktioner MP 13-3 Elementarpartiklarnas periodiska system Standard Modellen och kraftförening MP 13-4 Vad härnäst? MP 13-5

Läs mer

III Astropartikelfysik och subatomär fysik

III Astropartikelfysik och subatomär fysik III Astropartikelfysik och subatomär fysik III.1. Sammanfattande bedömning Under de senaste tjugo åren har vår förståelse för såväl naturens mest fundamentala beståndsdelar och processer som universums

Läs mer

Varför forskar vi om elementarpartiklar? Svenska lärarare på CERN 2013-10-31 Tord Ekelöf, Uppsala universitet

Varför forskar vi om elementarpartiklar? Svenska lärarare på CERN 2013-10-31 Tord Ekelöf, Uppsala universitet Varför forskar vi om elementarpartiklar? 1 Large Hadron Collider LHC vid CERN i Genève Världens mest högenergetiska protonkrockare 2 Varför hög energi? Enligt kvantmekaniken medger hög energi att man kan

Läs mer

Att förena gravitation och elektromagnetism i en (klassisk) teori. Kaluza [1919], Klein [1922]: Allmän

Att förena gravitation och elektromagnetism i en (klassisk) teori. Kaluza [1919], Klein [1922]: Allmän M-teori Strängteori Supersträngteori Einsteins Dröm Att förena gravitation och elektromagnetism i en (klassisk) teori Kaluza [1919], Klein [1922]: Allmän relativitetsteori i en extra dimension kanske ger

Läs mer

Del A: Seminarium i Hedemora Tord Ekelöf, Uppsala universitet

Del A: Seminarium i Hedemora Tord Ekelöf, Uppsala universitet Del A: *Partikelfysik, en överblick * Introduktion om Big Bang, materia och antimateria i lika delar, hur vet vi det?, universum bildades, materia blev kvar. Vart tog all antimateria vägen? *Neutriner:

Läs mer

Christophe Clément (Stockholms Universitet)

Christophe Clément (Stockholms Universitet) Svenska Lärare på CERN Christophe Clément (Stockholms Universitet) Översikt 1. Varför bygger vi LHC & ATLAS experimentet? 2. Hur funkar ATLAS experimentet? 3. Material Varför bygger vi LHC & ATLAS experimentet?

Läs mer

Partikelfysik och Kosmologi

Partikelfysik och Kosmologi Partikelfysik Partikelfysik och Kosmologi Materiepartiklar (spinn = ½ ): kvarkar och leptoner Leptoner ν e e Laddning massa leptontal ingen < 3 ev/c 2 L e = + 1-1 511 kev/c 2 L e = + 1 upp ner Kvarkar

Läs mer

Hur kan man finna Higgs boson? Donna Montagna, Kalle Nyman & Peter Henningsson

Hur kan man finna Higgs boson? Donna Montagna, Kalle Nyman & Peter Henningsson Hur kan man finna Higgs boson? Donna Montagna, Kalle Nyman & Peter Henningsson Projektarbete SH 1101 Modern Fysik VT 2012 1 Introduktion På sextiotalet hade partikelfysiken kommit till ett skede då flera

Läs mer

Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad. Institutionen för Astronomi och teoretisk fysik Lunds Universitet. S:t Petri,

Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad. Institutionen för Astronomi och teoretisk fysik Lunds Universitet. S:t Petri, Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad Institutionen för Astronomi och teoretisk fysik Lunds Universitet S:t Petri, 12.09.05 Higgs 1 Leif Lönnblad Lund University Varför är Higgs viktig?

Läs mer

Innehåll. Förord...11. Del 1 Inledning och Bakgrund. Del 2 Teorin om Allt en Ny modell: GET. GrundEnergiTeorin

Innehåll. Förord...11. Del 1 Inledning och Bakgrund. Del 2 Teorin om Allt en Ny modell: GET. GrundEnergiTeorin Innehåll Förord...11 Del 1 Inledning och Bakgrund 1.01 Vem var Martinus?... 17 1.02 Martinus och naturvetenskapen...18 1.03 Martinus världsbild skulle inte kunna förstås utan naturvetenskapen och tvärtom.......................

Läs mer

Lösningar - Rätt val anges med fet stil i förekommande fall (obs att svaren på essäfrågorna inte är uttömmande).

Lösningar - Rätt val anges med fet stil i förekommande fall (obs att svaren på essäfrågorna inte är uttömmande). STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Materiens Minsta Byggstenar, 5p. Lördag den 15 juli, kl. 9.00 14.00 Lösningar - Rätt val anges med fet stil i förekommande fall (obs att svaren på essäfrågorna

Läs mer

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Bevarandelagar i reaktioner MP 13-3 Elementarpartiklarnas periodiska system Standard Modellen och kraftförening MP 13-4 Vad härnäst? MP 13-5

Läs mer

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi Föreläsning 13/5 Relativistisk kinematik Ulf Torkelsson 1 Relativistisk rörelsemängd, kraft och energi Antag att en observatör O följer med en kropp i rörelse. Enligt observatören O så har O hastigheten

Läs mer

Introduktion till partikelfysik. CERN Kerstin Jon-And Stockholms universitet

Introduktion till partikelfysik. CERN Kerstin Jon-And Stockholms universitet Introduktion till partikelfysik CERN 2008-10-27 Kerstin Jon-And Stockholms universitet elektron (-1) 1897 Thomson (Nobelpris 1906) 1911 Rutherford (Nobelpris kemi 1908!) proton +1 1919 Rutherford neutron

Läs mer

Cygnus. I detta Cygnus. medlemsblad för Östergötlands Astronomiska Sällskap (ÖAS) Se våra aktiviteter i ÖAS under höstsäsongen.

Cygnus. I detta Cygnus. medlemsblad för Östergötlands Astronomiska Sällskap (ÖAS) Se våra aktiviteter i ÖAS under höstsäsongen. ÖAS tackar alla medlemmar som valt att bli e-medlemmar och därmed får digitalt, då det sparar både på miljön och på vårt arbete! Som e-medlem får du meddelanden via e-post om aktuella händelser och när

Läs mer

Elementarpartikelfysik sammanfattning (baserad på anteckningar av Sten Hellman)

Elementarpartikelfysik sammanfattning (baserad på anteckningar av Sten Hellman) Elementarpartikelfysik sammanfattning (baserad på anteckningar av Sten Hellman) Spridningsexperiment, tvärsnitt Standardmodellen: Klassificering av partiklar (baryon, lepton, kraftförmedlare,...) Egenskaper

Läs mer

LHC Att Studera Universums Minsta Beståndsdelar i Världens största Experiment

LHC Att Studera Universums Minsta Beståndsdelar i Världens största Experiment LHC Att Studera Universums Minsta Beståndsdelar i Världens största Experiment 1 Introduktion = Vem är jag? = Vad ska jag prata om? = LHC, the Large Hadron Collider = Startade så smått för ett och ett havlt

Läs mer

Tentamen i FUF050 Subatomär Fysik, F3

Tentamen i FUF050 Subatomär Fysik, F3 Tentamen i FUF050 Subatomär Fysik, F3 Tid: 013-05-30 fm Hjälpmedel: Physics Handbook, nuklidkarta, Beta, Chalmersgodkänd räknare Poäng: Totalt 75 poäng, för betyg 3 krävs 40 poäng, för betyg 4 krävs 60

Läs mer

Partikelfysik och det Tidiga Universum. Jens Fjelstad

Partikelfysik och det Tidiga Universum. Jens Fjelstad Partikelfysik och det Tidiga Universum Jens Fjelstad 2010 05 10 Universum Expanderar Hubbles Lag: v = H 0 D D avståndet mellan två punkter i universum v den relativa hastigheten mellan punkterna H 0 (70km/s)/Mpc

Läs mer

Om Particle Data Group och om Higgs bosonens moder : sigma mesonen

Om Particle Data Group och om Higgs bosonens moder : sigma mesonen Om Particle Data Group och om Higgs bosonens moder : sigma mesonen Abstract Samtidigt som jag in på 1980 talet blev intresserad av huruvida den kontroversiella spinnlösa "sigma mesonen" existerar eller

Läs mer

Utbildningsutmaningar för ATLAS-experimentet

Utbildningsutmaningar för ATLAS-experimentet Utbildningsutmaningar för ATLAS-experimentet Erik Johansson Stockholms universitet 1 Projektledare Michael Barnett Lawrence Berkeley Nat. Lab. Erik Johansson Stockholms universitet 2 ATLAS utmaningar 1.

Läs mer

1.5 Våg partikeldualism

1.5 Våg partikeldualism 1.5 Våg partikeldualism 1.5.1 Elektromagnetisk strålning Ljus uppvisar vågegenskaper. Det är bland annat möjligt att åstadkomma interferensmönster med ljus det visades av Young redan 1803. Interferens

Läs mer

Kvarkar, leptoner och kraftförmedlare. Kerstin Jon-And Fysikum, SU 28 april 2014

Kvarkar, leptoner och kraftförmedlare. Kerstin Jon-And Fysikum, SU 28 april 2014 Kvarkar, leptoner och kraftförmedlare Kerstin Jon-And Fysikum, SU 28 april 2014 ATOMEN En atomradie = 0, 000 000 000 1 meter positiv negativ γ γ En atomkärnas radie = 0, 000 000 000 000 01 meter en tiotusendel

Läs mer

Föreläsningsserien k&p

Föreläsningsserien k&p Föreläsningsserien k&p 1. "Begrepp bevarandelagar, relativistiska beräkningar" 1-3,1-4,1-5,2-2 2. "Modeller av atomkärnan" 11-1, 11-2, 11-6 3. "Radioaktivitet, alfa-, beta-, gammasönderfall" 11-3, 11-4

Läs mer

Distribuerad data-analys inom CMS-experimentet

Distribuerad data-analys inom CMS-experimentet Distribuerad data-analys inom CMS-experimentet Distribuerad data-analys inom CMS-experimentet Tomas Lindén Forskningsinstitutet för fysik CMS programmet De andra Finlandssvenska fysikdagarna 13.-15. November

Läs mer

1 Den Speciella Relativitetsteorin

1 Den Speciella Relativitetsteorin 1 Den Speciella Relativitetsteorin Den speciella relativitetsteorin är en fysikalisk teori om lades fram av Albert Einstein år 1905. Denna teori beskriver framför allt hur utfallen (dvs resultaten) från

Läs mer

Mer om E = mc 2. Version 0.4

Mer om E = mc 2. Version 0.4 1 (6) Mer om E = mc Version 0.4 Varifrån kommer formeln? För en partikel med massan m som rör sig med farten v har vi lärt oss att rörelseenergin är E k = mv. Denna formel är dock inte korrekt, även om

Läs mer

Modernfysik 2. Herman Norrgrann

Modernfysik 2. Herman Norrgrann Modernfysik 2 Herman Norrgrann Innehåll Acceleratorfysik Relativitetsteori Standardmodellen Studiebesök Inlämningsuppgift CERN? Acceleratorfysik inledning Inom elementarpartikelfysiken jobbar man med mycket

Läs mer

Leptoner och hadroner: Teori och praktik inom partikelfysiken

Leptoner och hadroner: Teori och praktik inom partikelfysiken Preprint typeset in JHEP style - HYPER VERSION Leptoner och hadroner: Teori och praktik inom partikelfysiken Paul Hoyer Institutionen för fysikaliska vetenskaper, PB 64, FIN-00014 Helsingfors Universitet

Läs mer

14. Elektriska fält (sähkökenttä)

14. Elektriska fält (sähkökenttä) 14. Elektriska fält (sähkökenttä) För tillfället vet vi av bara fyra olika fundamentala krafter i universum: Gravitationskraften Elektromagnetiska kraften, detta kapitels ämne Orsaken till att elektronerna

Läs mer

Higgspartikeln upptäckt äntligen!

Higgspartikeln upptäckt äntligen! Gunnar Ingelman Jonas Strandberg KOSMOS 2012: 7-24 Svenska fysikersamfundet Higgspartikeln upptäckt äntligen! CERN 4 juli 2012 Redan klockan fem på morgonen den fjärde juli ringlade köerna långa utanför

Läs mer

DEN MÖRKA MATERIAN Hallands Astronomiska Sällskap

DEN MÖRKA MATERIAN Hallands Astronomiska Sällskap DEN MÖRKA MATERIAN Hallands Astronomiska Sällskap Anteckningar efter kurs 26/2 2013 Arne Sikö 0 Inledning Det var meningen att vi skulle ta upp både mörk materia och mörk energi, men det senare hanns inte

Läs mer

Tomrummet Partikelfysik 2008 av Josef Kemény

Tomrummet Partikelfysik 2008 av Josef Kemény Tomrummet Partikelfysik 2008 av Josef Kemény Tomrummet i mikrokosmos I det ser vi partiklar Tomrummet i makrokosmos I det ser vi solar/stjärnor Nobelpris i fysik 2008 Yoichiro Nambu, Toshihide Maskawa

Läs mer

Preliminärt lösningsförslag till Tentamen i Modern Fysik,

Preliminärt lösningsförslag till Tentamen i Modern Fysik, Preliminärt lösningsförslag till Tentamen i Modern Fysik, SH1009, 008 05 19, kl 14:00 19:00 Tentamen har 8 problem som vardera ger 5 poäng. Poäng från inlämningsuppgifter tillkommer. För godkänt krävs

Läs mer

Välkommen till CERN. Lennart Jirden CERN PH Department Genève

Välkommen till CERN. Lennart Jirden CERN PH Department Genève Välkommen till CERN Lennart Jirden CERN PH Department Genève Vad betyder «CERN»? 1952 Conseil Européen pour la Recherche Nucléaire European Council for Nuclear Research Vad betyder «CERN»? Organisation

Läs mer

Speciell relativitetsteori

Speciell relativitetsteori 4.Speciell relativitetsteori 4. Grundläggande postulat: I De lagar som beskriver fysikaliska fenomen, är desamma i alla inertialsystem II. Ljusets hastighet i vakuum är detsamma i alla inertialsystem.

Läs mer

Universums uppkomst: Big Bang teorin

Universums uppkomst: Big Bang teorin Universums uppkomst: Big Bang teorin Universum expanderar (Hubbles lag) Kosmisk bakgrundsstrålning Fördelningen av grundämnen Några kosmologiska frågor 1. Har universum alltid expanderat som idag eller

Läs mer

Kosmisk strålning & tungjonsfysik

Kosmisk strålning & tungjonsfysik Kosmisk strålning & tungjonsfysik Hur man i Lund kunde bestämma den märkliga K-mesonens egenskaper och senare återskapa de fysikaliska processerna några milliondels sekunder efter Big Bang. Kosmisk strålning

Läs mer

Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall

Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall Radioaktivitet, alfa-, beta-, gammasönderfall Halveringstid (MP 11-3, s. 522-525) Alfa-sönderfall (MP 11-4, s. 525-530) Beta-sönderfall (MP 11-4, s. 530-535) Gamma-sönderfall (MP 11-4, s. 535-537) Se även

Läs mer

EXAMENSARBETE C. Kvarkar. - upptackt och aterupptackt

EXAMENSARBETE C. Kvarkar. - upptackt och aterupptackt Kvarkar - upptackt och aterupptackt Stina Ostlund Handledare: Richard Brenner Amnesgranskare: Elin Bergeas Kuutmann Examensarbete C i fysik, 15 hp 9 juni 2017 EXAMENSARBETE C Institutionen f or hogenergifysik

Läs mer

Big bang Ulf Torkelsson. 1 Enkla observationer om universums kosmologiska egenskaper

Big bang Ulf Torkelsson. 1 Enkla observationer om universums kosmologiska egenskaper Föreläsning 2/4 Big bang Ulf Torkelsson 1 Enkla observationer om universums kosmologiska egenskaper Oberoende av i vilken riktning på himlen vi tittar, så ser universum i stort sett likadant ut. Det tycks

Läs mer

Upp gifter. är elektronbanans omkrets lika med en hel de Broglie-våglängd. a. Beräkna våglängden. b. Vilken energi motsvarar våglängden?

Upp gifter. är elektronbanans omkrets lika med en hel de Broglie-våglängd. a. Beräkna våglängden. b. Vilken energi motsvarar våglängden? Upp gifter 1. Räkna om till elektronvolt. a. 3,65 10 J 1 J. Räkna om till joule. a.,8 ev 4,5 ev 3. Vilket är den längsta ljusvåglängd som kan slå loss elektroner från en a. natriumyta? kiselyta? 4. Kan

Läs mer

Rörelsemängd och energi

Rörelsemängd och energi Föreläsning 3: Rörelsemängd och energi Naturlagarna skall gälla i alla interial system. Bl.a. gäller att: Energi och rörelsemängd bevaras i all växelverkan mu p = Relativistisk rörelsemängd: 1 ( u c )

Läs mer

Nobelpriset i fysik 2008

Nobelpriset i fysik 2008 P OPULÄRVETENSKAPLIG INFORMATION Nobelpriset i fysik 2008 Varför finns det någonting istället för ingenting? Varför finns det så många olika elementarpartiklar? Årets Nobelpristagare har kommit med teoretiska

Läs mer

4.10. Termonukleär fusion

4.10. Termonukleär fusion 4.10. Termonukleär fusion [Understanding Physics: 21.10-21.12] Att hålla igång en fissionsprocess är lätt, eftersom de kolliderande partiklarna, neutronerna, är elektriskt neutrala, och därför inte påverkas

Läs mer

Välkommen till CERN. Lennart Jirden CERN PH Department Genève

Välkommen till CERN. Lennart Jirden CERN PH Department Genève Välkommen till CERN Lennart Jirden CERN PH Department Genève Innehåll Vad betyder «CERN»? Conseil Européen pour la Recherche Nucléaire European Council for Nuclear Research 1952 Vad betyder «CERN»? Organisation

Läs mer

Preonstjä. av Johan Hansson och Fredrik Sandin

Preonstjä. av Johan Hansson och Fredrik Sandin Preonstjä av Johan Hansson och Fredrik Sandin M odern astrofysik har gett förnyade insikter om materians uppbyggnad och möjliga tillstånd. Neutronstjärnor och svarta hål förutsas först teoretiskt innan

Läs mer

CERNs facny kvarter. Man har inte haft råd att renovera byggnaderna, man gräver ner pengarna 100m under jorden istället.

CERNs facny kvarter. Man har inte haft råd att renovera byggnaderna, man gräver ner pengarna 100m under jorden istället. Anna besökte Cern Den 29.11-3.12.2009 åkte jag med 19 andra fysikstuderande gymnasister till det världsberömda centret för fysisk forskning, nämligen CERN i Genéve, Schweiz. De flesta deltagarna kom från

Läs mer

Detektion av subatomiska partiklar och framväxten av standardmodellen. Jens Fjelstad

Detektion av subatomiska partiklar och framväxten av standardmodellen. Jens Fjelstad Detektion av subatomiska partiklar och framväxten av standardmodellen Jens Fjelstad 2010 04 19 Neutrinon Lise Meitner & Otto Hahn [1911]: energin hos betapartiklar (elektroner) vid betasönderfall A B +

Läs mer

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

Observera att uppgifterna inte är ordnade efter svårighetsgrad! TENTAMEN I FYSIK FÖR n, 13 APRIL 2010 Skrivtid: 8.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Föreläsning 4 Acceleration och detektion av partiklar

Föreläsning 4 Acceleration och detektion av partiklar Föreläsning 4 Acceleration och detektion av partiklar Enheter och stråleffekter Strålnings växelverkan med materia Acceleration av partiklar Detektion av partiklar Se även: http://physics.web.cern.ch/physics/particledetector/briefbook/

Läs mer

Strängar och extra dimensioner

Strängar och extra dimensioner Strängar och extra dimensioner Världens vackraste ekvation? Rummet, rymden, är arenan där allt i universum utspelar sig. Tiden ger rörelse och dynamik. Av materia är vi alla uppbyggda. Men hur hänger allt

Läs mer

CERNs Acceleratorer en kort introduktion

CERNs Acceleratorer en kort introduktion CERNs Acceleratorer en kort introduktion T. Pettersson 1 Innehåll Introduktion Acceleratorer? Grundläggande fysiklagar & enheter Lineära och circulära maskiner Några magnettyper Supraledande magneter Kolliderare

Läs mer

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0]

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0] Namn: Område: Elektromagnetism Datum: 13 Oktober 2014 Tid: 100 minuter Hjälpmedel: Räknare och formelsamling. Betyg: E: 25. C: 35, 10 på A/C-nivå. A: 45, 14 på C-nivå, 2 på A-nivå. Tot: 60 (34/21/5). Instruktioner:

Läs mer

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity

Läs mer

Beskrivning av ESS Neutrino Super Beam (ESSnuSB) projektet

Beskrivning av ESS Neutrino Super Beam (ESSnuSB) projektet Beskrivning av ESS Neutrino Super Beam (ESSnuSB) projektet Synopsis En djupare kunskap om neutrinon och dess märkliga egenskaper kan hjälpa oss att lösa ett mysterium som forskare ännu inte har kunnat

Läs mer

som kosmiska budbärare

som kosmiska budbärare IceCube på sydpolen söker neutriner som kosmiska budbärare Per Olof Hulth Oskar Klein centre Stockholm University hulth@fysik.su.se 2013-06-04 KVA inspirationsdag Kristianstad - Per Olof Hulth 1 Richard

Läs mer

Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T.

Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T. 1. En elektron rör sig med v = 100 000 m/s i ett magnetfält. Den påverkas av en kraft F = 5 10 15 N vinkelrätt mot rörelseriktningen. Rita figur och beräkna den magnetiska flödestätheten. Förslag: En laddad

Läs mer

Version 24/4/02. Neutriner som budbärare från KOSMOS

Version 24/4/02. Neutriner som budbärare från KOSMOS Neutriner som budbärare från KOSMOS En nästan masslös partikel som kan penetrera ljusår av materia utan att stoppas, vars existens postulerades för att lösa en energikris på 1930-talet och först detekterades

Läs mer

Relativistisk energi. Relativistisk energi (forts) Ekin. I bevarad energi ingår summan av kinetisk energi och massenergi. udu.

Relativistisk energi. Relativistisk energi (forts) Ekin. I bevarad energi ingår summan av kinetisk energi och massenergi. udu. Föreläsning 3: Relativistisk energi Om vi betraktar tillskott till kinetisk energi som utfört arbete för att aelerera från till u kan dp vi integrera F dx, dvs dx från x 1 där u = till x där u = u, mha

Läs mer

Litet quiz om svarta hål och kvantfysik: facit på www2.kau.se/tp/outreach Nedanför quizzet ger jag facit. Men försök själv först!

Litet quiz om svarta hål och kvantfysik: facit på www2.kau.se/tp/outreach Nedanför quizzet ger jag facit. Men försök själv först! Litet quiz om svarta hål och kvantfysik: facit på www2.kau.se/tp/outreach Nedanför quizzet ger jag facit. Men försök själv först! 1. Vad är en gluon ( lim-partikel", från glue på engelska)? a. En riktig

Läs mer

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 12, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 12, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity

Läs mer

1 Den Speciella Relativitetsteorin

1 Den Speciella Relativitetsteorin 1 Den Speciella Relativitetsteorin På tidigare lektioner har vi studerat rotationer i två dimensioner samt hur vi kan beskriva föremål som roterar rent fysikaliskt. Att från detta gå över till den speciella

Läs mer

Om partikelfysik och miljardsatsningar

Om partikelfysik och miljardsatsningar Om partikelfysik och miljardsatsningar Detta är en något utvidgad version av Håkans föreläsning vid MAX IV och ESS i Lund. Det är ett försök att efter bästa förmåga beskriva atomfysikens nuvarande läge

Läs mer

Lundamodellen för högenergikollisioner

Lundamodellen för högenergikollisioner Lundamodellen för högenergikollisioner Om den framgångsrika Lundamodellen för högenergikollisioner teoretiska idéer möter en experimentell verklighet. Lundamodellen för högenergikollisioner 326 Färgade

Läs mer

INTRODUKTION TILL PARTIKELFYSIK. Från atomer till kvarkar

INTRODUKTION TILL PARTIKELFYSIK. Från atomer till kvarkar INTRODUKTION TILL PARTIKELFYSIK Från atomer till kvarkar En elementär historisk översikt av begrepp, upptäckter och vad som därigenom uppnåtts En föreläsning för svenska gymnasieelever juni 2018 Redigerade

Läs mer

Det finns något där ute i universum, något som är. Mörk materia att mäta något man inte kan se. aktuell forskning. av Elin Bergeås Kuutmann

Det finns något där ute i universum, något som är. Mörk materia att mäta något man inte kan se. aktuell forskning. av Elin Bergeås Kuutmann aktuell forskning Gevärskulehopen ( Bullet cluster ). Två galaxhopar kolliderar med varandra. Det rödmarkerade i bilden är stoft som har bromsats upp i kollisionen. Det blåmarkerade innehåller det mesta

Läs mer

Föreläsningsserien k&p

Föreläsningsserien k&p Föreläsningsserien k&p 1. "Begrepp bevarandelagar, relativistiska beräkningar" 1-3,1-4,1-5,2-2 2. "Modeller av atomkärnan" 11-1, 11-2, 11-6 3. "Radioaktivitet, alfa-, beta-, gammasönderfall" 11-3, 11-4

Läs mer

Tentamen i FUF050 Subatomär Fysik, F3

Tentamen i FUF050 Subatomär Fysik, F3 Tentamen i FUF050 Subatomär Fysik, F3 Tid: 2012-08-30 em Hjälpmedel: Physics Handbook, nuklidkarta, Beta, Chalmersgodkänd räknare Poäng: Totalt 75 poäng, för betyg 3 krävs 40 poäng, för betyg 4 krävs 60

Läs mer

Parbildning. Om fotonens energi är mer än dubbelt så stor som elektronens vileoenergi (m e. c 2 ):

Parbildning. Om fotonens energi är mer än dubbelt så stor som elektronens vileoenergi (m e. c 2 ): Parbildning Vi ar studerat två sätt med vilket elektromagnetisk strålning kan växelverka med materia. För ögre energier ar vi även en tredje: Parbildning E mc Innebär att omvandling mellan energi oc massa

Läs mer

Välkommen till CERN. Lennart Jirden CERN PH Department

Välkommen till CERN. Lennart Jirden CERN PH Department Välkommen till CERN Lennart Jirden CERN PH Department En introduktion till CERN Vad Varför Hur Spin-off Senaste nytt Vad betyder «CERN»? Conseil Européen pour la Recherche Nucléaire European Council for

Läs mer

VARFÖR MÖRK ENERGI HAR EN ANMÄRKNINGSVÄRT LITET VÄRDE. Ahmad Sudirman

VARFÖR MÖRK ENERGI HAR EN ANMÄRKNINGSVÄRT LITET VÄRDE. Ahmad Sudirman VARFÖR MÖRK ENERGI HAR EN ANMÄRKNINGSVÄRT LITET VÄRDE Ahmad Sudirman CAD, CAM och CNC Teknik Utbildning med kvalitet (3CTEQ) STOCKHOLM, 9 januari 2014 1 VARFÖR MÖRK ENERGI HAR EN ANMÄRKNINGSVÄRT LITET

Läs mer

Vanlig materia (atomer, molekyler etc.) c:a 4%

Vanlig materia (atomer, molekyler etc.) c:a 4% Universum som vi ser det idag: Vanlig materia (atomer, molekyler etc.) c:a 4% Mörk materia (exotiska partiklar, WIMPs??) c:a 23% Mörk energi (kosmologisk konstant??) c:a 73% Ålder c:a 13,7 miljarder år

Läs mer

Tentamen i Modern fysik, TFYA11/TENA

Tentamen i Modern fysik, TFYA11/TENA IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Fredagen den 21/12 2012 kl. 14.00-18.00 i TER2 och TER3 Tentamen består av 2 A4-blad (inklusive

Läs mer

CERNs Acceleratorer en kort historisk introduktion

CERNs Acceleratorer en kort historisk introduktion CERNs Acceleratorer en kort historisk introduktion T. Pettersson October 2015 1 Innehåll Introduktion Acceleratorer? Grundläggande fysiklagar & enheter Lineära och circulära maskiner Några magnettyper

Läs mer

Småsaker ska man inte bry sig om, eller vad tycker du? av: Sofie Nilsson 1

Småsaker ska man inte bry sig om, eller vad tycker du? av: Sofie Nilsson 1 Småsaker ska man inte bry sig om, eller vad tycker du? av: Sofie Nilsson 1 Ger oss elektrisk ström. Ger oss ljus. Ger oss röntgen och medicinsk strålning. Ger oss radioaktivitet. av: Sofie Nilsson 2 Strålning

Läs mer

Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och

Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och Institutionen för Fysik Göteborgs Universitet LÖSNINGAR TILL TENTAMEN I FYSIK A: MODERN FYSIK MED ASTROFYSIK Tid: Lördag 3 augusti 008, kl 8 30 13 30 Plats: V Examinator: Ulf Torkelsson, tel. 031-77 3136

Läs mer

Politik och partiklar

Politik och partiklar Vårens PROFIL: anna lipniacka Politik och partiklar Text och foto: Robert Cumming Från kommunismens Polen till dagens Skandinavien, från 1980-talets CERN till dagens LHC. Anna Lipniacka söker avslöja universums

Läs mer

ÄFYC01, Fysik 3: Kvantfysik med didaktik, 30 högskolepoäng Fysik 3: Quantum Physics with Didactics, 30 credits Grundnivå / First Cycle

ÄFYC01, Fysik 3: Kvantfysik med didaktik, 30 högskolepoäng Fysik 3: Quantum Physics with Didactics, 30 credits Grundnivå / First Cycle Humanistiska och teologiska fakulteterna ÄFYC01, Fysik 3: Kvantfysik med didaktik, 30 högskolepoäng Fysik 3: Quantum Physics with Didactics, 30 credits Grundnivå / First Cycle Fastställande Kursplanen

Läs mer

Tentamen Relativitetsteori , 27/7 2019

Tentamen Relativitetsteori , 27/7 2019 KOD: Tentamen Relativitetsteori 9.00 14.00, 27/7 2019 Hjälpmedel: Miniräknare, linjal och bifogad formelsamling. Observera: Samtliga svar ska lämnas på dessa frågepapper. Det framgår ur respektive uppgift

Läs mer

Sagan om ringarna. Berättelsen om en liten MAX hur han började gå, växte upp och blev stor.

Sagan om ringarna. Berättelsen om en liten MAX hur han började gå, växte upp och blev stor. 375 Sagan om ringarna Berättelsen om en liten MAX hur han började gå, växte upp och blev stor. En liten ring Sveriges första elektronaccelerator byggdes på KTH 1945. Den hade en diameter på 13 cm och kunde

Läs mer

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik Föreläsning 7 Kvantfysik 2 Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det

Läs mer

Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen

Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen Föreläsning Att uppbygga en bild av atomen Rutherfords experiment Linjespektra och Bohrs modell Vågpartikel-dualism Korrespondensprincipen Fyu0- Kvantfysik Atomens struktur Atomen hade ingen elektrisk

Läs mer