Detta examensarbete har gjorts på Försäkringskassans huvudkontors utvecklingscentrum.

Storlek: px
Starta visningen från sidan:

Download "Detta examensarbete har gjorts på Försäkringskassans huvudkontors utvecklingscentrum."

Transkript

1

2 2 Sammanfattning Försäkringskassan behöver göra pensionsskuldsberäkningar. Garantipensionen och den allmänna tilläggs pensionen (ATP) beror på befolkningens inkomster. Då krävs det en bra inkomstmodell för hela Sveriges befolkning. Den gamla modellen behövde förbättras. En ny lösning är att studera Lorenzkurvan, som beskriver inkomstfördelningen i ett land. Den nya modellen för inkomster, som presenteras i denna studie, simuleras den relativa rangen istället för inkomsterna i kronor. Fördelning för den relativa rangen, hädanefter kallad rang, liknar en betafördelning och därför görs antagandet att rangen är betafördelad. Betaregression är en prediktionsmodell då den beroende modellen är betafördelad. Regressionsmodellen använder sig av en transformation. Det finns en färdig funktion i det statistiska programmet R som utför betaregression, vilket används i studien. Populationen med inkomst är uppdelad i fyra underpopulationer: män födda i Sverige, män födda utomlands, kvinnor födda i Sverige och kvinnor födda utomlands. För varje underpopulation är skattningarna gjorda för olika åldrar för sig. Inkomst år y+1 beror på * Inkomst år y * Pensionsgrundande inkomst år y-3 till år y-1 * Summa pensionsgrundande inkomst till och med år y-4 Modellen ger ett bra väntevärde, men standardavvikelsen är över/underskattad. För en bättre modell kan förslag ges till att i framtida studier titta på precision parametern (ett mått på variansen, φ = p + q, där p och q är parametrarna i betafördelningen) som en prediktor i modellen. För detta behövs algoritmen i betaregression göras manuellt.

3 3 Förord Detta examensarbete har gjorts på Försäkringskassans huvudkontors utvecklingscentrum. Jag vill ge ett stort tack till min handledare Danne Mikula på Försäkringskassan för all hjälp, stöd och tålamod. Jag uppskattar all tid du tagit för att diskutera projektet med mig. Det har varit ett roligt och givande arbete. Jag vill dessutom tacka till min handledare Dag Jonsson på Matematiska institution vid Uppsala Universitet, för alla synpunkter och råd om utformningen av uppsatsen.

4 4 Innehållsförteckning 1 Inledning, pensionssystemet Allmänna pensionen Tjänstepensionen Privat sparande Beräkningar i allmänna pensionssystem Försäkringskassans roll Gamla inkomstmodell Inkomstmatriser Problem med gamla inkomstmodellen Datamaterial Analys Lorenz-kurvan Modellens struktur Rangens fördelning Betaregression Finns det problem med betaregression? Resultat Parametrar Diskussion Valet av parametrar Modellens standardavvikelse Slutord Referenser och källor Appendix Mer skattningar Parametrarna i modell Medelvärde av standardavvikelsen Programkod tillhörande analysen Lorenz-curva Spline Återskappande av Lorenz curve Medelinkomster Skattningar av parametrar...43

5 5 1 Inledning, pensionssystemet Sveriges pensionssystem fungerar i stora stycken som vanligt banksparande. Alla personer har individuella pensionskonton som har en värdeförändring under årens lopp. Sparandet i en pensionsförsäkring är låst för uttag av pengarna till personen uppnått lägsta åldern för uttag av pensionen. Alla pensionsförsäkringar hör samman med ett kollektiv, allt från en liten till en stor grupp människor. Ett syfte med pensionsförsäkringar är att omfördela tillgångar mellan personer i kollektivet; i sin egen årskull bidrar personer som lever kortare tid än genomsnittet med pensionspengar (arvsvinst) till personer som lever längre än genomsnittet. (Pensionssystemets årsredovisning 2005) Pensionssystemet består av tre delar : Allmän pension (gäller för alla) Tjänstepension (gäller de flesta) Privat sparande (frivilligt) Fördelningen kan illustreras i form av en triangel: (Försäkringskassan) Pensionens storlek från varje del beror på hur mycket som finns på pensionskontot, från vilken tidpunkt när pensionen ska betalas ut samt om det är under en begränsad tid eller livsvarigt. Den allmänna pensionen betalas alltid ut livsvarigt. Förväntad livslängd för individen spelar också roll för pensionens storlek.

6 6 1.1 Allmänna pensionen Det statliga pensionssystemet består av inkomstpension, premiepension och garantipension. Försäkringskassan administrerar inkomstpensionen samt garantipensionen och Premiepensionsmyndigheten (PPM) administrerar premiepensionen. All intjänad pensionsgrundande inkomst ligger till grund för varje persons allmänna pension. Den pensionsgrundande inkomsten (pgi) är densamma som den skattepliktiga årsinkomsten (förutom lön på arbete räknas arbetslös-, sjuk och aktivitetsersättning) upp till 7,5 inkomstbasbelopp ( kr, år 2006). Från den pensionsgrundande inkomsten dras 7 % till pensionen samtidigt som skatten dras. Även arbetsgivaren betalar avgifter för sina anställda, f.n. 10,21% av den pensionsgrundande inkomsten (för belopp över inkomstbasbeloppet betalas procentsatsen som en extra statsskatt). Pensionsunderlaget definieras som den pensionsgrundande inkomsten subtraherad med pensionsavgiften på 7% (pensionsunderlaget är 93% av den pensionsgrundande inkomsten). Pengarna som går till pensionskontot är 17,21% av den pensionsgrundande inkomsten och tillika 18,5% av pensionsunderlaget ( 0,1721 / 0,93 = 0,185 ). Av de totalt sätt 18,5 procenten går 16 procentenheter till inkomstpensionen samt 2,5 procentenheter till premiepensionen. Även studier, plikttjänstgöring, förtidspension och år med små barn ökar på det individuella pensionskontot. Det här pensionssystemet gäller för personer födda efter Personer födda före 1938 har en pension beräknad enligt äldre regler; istället för inkomstpension och premiepension får de folkpension och allmän tilläggspension (atp). Folkpensionens storlek är en fast procentandel av inkomstbasloppet för alla och tilläggspensions storlek är baserad på de femton bästa årsinkomsterna och det krävs 30 inkomstår för att få en oavkortad pension. För personer födda mellan 1938 och 1953 finns övergångsregler mellan det gamla och det nya pensionssystemet. De får sin allmänna pension som en blandning av tilläggs-, inkomst- och premiepension. Ju yngre personen är, desto mindre del betalas ut som tilläggspension och större del som inkomst- och premiepension. Den allmänna pensionen är livsvarig och kan tidigast utbetalas från 61 år ålder. Inkomstpensionen bygger på ett fördelningssystem, som innebär att pengarna som kommer in slussas direkt vidare till dagens pensionärer. Det finns även fyra buffertfonder: Första, Andra, Tredje och Fjärde Allmänna Pensionsfonden. Pensionssystemet kan sägas ha en pensionsskuld till alla som har pengar inbetalda till inkomstpensionen Premiepensionen är ett så kallat premiereservsystem, som betyder att pengarna som avsätts till premiepensionen inte slussas direkt ut till dagens pensionärer utan sparas tills individen själv går i pension. Pengarna betalas in på ett individuellt premiepensionskonto där personen själv väljer vilka fonder pengarna placeras i.

7 7 Total pensionsskuld 31 december 2005 visas i figur 1. figur 1 (Pensionssystemets redovisning 2005) Garantipensionen är ett grundskydd för personer med låga eller inga inkomster och fyller ut pensionen till ett visst belopp (7047 kronor/månad för ogifta och 6286 kronor/månad för gifta, år 2006). Grafik visas i figur 2. Full garantipension får bara personer som bott i Sverige minst 40 år; dock finns undantag för flyktingar. Garantipensionen finansieras med skatter. figur 2 (Pensionssystemets årsredovisning 2005, Försäkringskassan)

8 8 1.2 Tjänstepensionen De flesta fast anställda har någon form av tjänste- eller avtalspension som arbetsgivaren betalar. Den grundar sig på att arbetstagaren ska få ut en del av sin lön som pension och det bygger på ett avtal mellan fackförbund och arbetsgivare. Tjänstepensionen är ett komplement till den allmänna pensionen och det finns två grundmodeller: premiebestämd och förmånsbestämd. Tjänstepensionsavtalen varierar med arbetsgivare. I vissa avtal kan tjänstepensionen väljas att bli utbetald under en tid om minst fem år istället för livsvarigt, dock tidigast från 55 års ålder. Förmånsbestämd tjänstpension innebär att den anställda garanteras en viss procent av slutlönen. Den kompletteras ofta med en premiebestämd del. Premiebestämd tjänstepension innebär att den anställda själv får placera en premie i fonder eller traditionella pensionsförsäkringar. Tjänstepensionens storlek kan variera kraftigt beroende på hur pengarna är placerade. (Försäkringskassan) 1.3 Privat sparande Pensionen kan kompletteras genom eget sparande i privata pensionsförsäkringar. Det finns tre typer av privat pensionssparande: traditionell pensionsförsäkring, fondförsäkringar och individuellt pensionssparande Traditionella pensionsförsäkringar ger en minsta garanterad ränta på kapitalet. Den verkliga återbäringsräntan kan dock bli högre. I en fondförsäkring bestäms pengarnas utveckling enbart av hur fonderna man själv valt går. Individuellt pensionssparande innebär att personen själv bestämmer hur pengarna ska investeras i fonder eller värdepapper utan medverkan av försäkringsbolag men med samma låsning av pengarna. (Finansdepartementets skolwebb) 2 Beräkningar i allmänna pensionssystem 2.1 Försäkringskassans roll Alla försäkringsgivare presenterar varje år en årsredovisning. Staten, genom försäkringskassan presenterar sin årsredovisning för det allmänna pensionssystemet. För att kunna göra det behöver man veta pensionsskuldens storlek. I och med att tilläggspensionen beror på de femton bästa årsinkomsterna, vet man inte idag storleken på skulden till personer som fortfarande arbetar. Därmed är man beroende av en uppskattning av skulden, vilket beräknas bland annat med hjälp av en inkomstmodell. Även för att uppskatta de framtida behoven av hur mycket garantipension staten behöver betala ut, krävs kunskap över inkomstfördelningen. I pensionssystemets årsredovisning presenteras olika framtidsscenarier 75 år fram i tiden där inkomstmodellen också är en viktig del i beräkningarna. Framskridningarna presenteras i tre olika utvecklingsförlopp; bas, optimistisk respektive pessimistisk. Basscenariet utgår från Statistiska

9 9 Centralbyrån (SCB:s) senaste befolkningsstatistik samt en viss årlig inkomsttillväxt och avkastning på buffertfondens medel. Det optimistiska respektive pessimistiska scenariot har något mer positiva alternative negativa antaganden. Ett mått på fondstyrkan är buffertfondens storlek dividerat med samma års pensionsutgifter och som över tiden illustreras i figur 3. figur 3 (Pensionssystemets redovisning 2005) 2.2 Gamla inkomstmodell Den gamla modellen skapades i början på 1970-talet på Matematisk-statistiska byrån på Riksförsäkringsverket. Modellen är en dynamisk mikrosimuleringsmodell uppdelad i två steg. I steg 1 simuleras demografi och inkomster och i steg 2 tillämpas pensionsregler. Modellen i steg 1 bestod av en markovmodell med uppsättningar av markovmatriser, en för status och två för inkomster samt i tre dimensioner (ålder, kön, född i Sverige/född utomlands). Personer under 16 år benämns barn och för gruppen modelleras enbart in- och utflyttning från Sverige samt dödsårsimulering. Förvärvsaktiva betecknar personer i åldrarna år och delas i sin tur upp i grupperna aktiva och förtidspensionärer. Personer i åldrarna 65 år och uppåt benämns ålderspensionärer. För de förvärvsaktiva görs den huvudsakliga modelleringen. Enbart dödsår modelleras för ålderspensionärer. Varje variabel i modellen är inte användbar för varje person, därav får den värdet noll ( Null ) när så är fallet. (Beskrivning av beräkningsgången I)

10 10 Statusindelningen illusteraras av figur 4. figur 4, statusindelning Män (födda i Sverige) Kvinnor (födda i Sverige) Null, sve akt, sve ftp, sve åldersp Null, sve akt, sve ftp, sve åldersp Null, utm akt, utm ftp, utm avliden Null, utm akt, utm ftp, utm avliden Män (födda utomlands) Kvinnor (födda utomlands) Null, sve akt, sve ftp, sve åldersp Null, sve akt, sve ftp, sve åldersp Null, utm akt, utm ftp, utm avliden Null, utm akt, utm ftp, utm avliden sve = bor i Sverige, utm = bor utomlands, akt = aktiv, ftp = förtidspensionär, åldersp = ålderspensionär (Beskrivning av beräkningsgången I)

11 11 Inkomstmatrisen definieras av 18 klasser vilket figur 5 visar: Figur 5, definition av inkomstklass K K Inkbb poäng historiskt > > >1599 K = inkomstklass, inkbb = inkomstbasbelopp (Beskrivning av beräkningsgången I)

12 12 Flöde av personer sker enligt figur 6 Barn Förvärvsaktiva Ålderspensionärer Avlidna (Beskrivning av beräkningsgången I) Inkomstmatriser De två uppsättningarna av inkomstmatriser, inledning och horisont, viktas samman av en viktfaktor w y. I början av simuleringarna ska den inledande inkomstmatrisen dominera medan horisontmatrisen får j större vikt ju längre simuleringen pågått. Låt k vara sannolikheten att en person i åldern { 17,18,...63,64 { 1,2,...,18 i a a ε vid andra årets slut förflyttar sig ifrån inkomstklass i år 1 till inkomstklass j år 2, där i, j ε och är definierad av figur xy. För den inledande inkomstmatrisen betecknas i j sannolikheten kˆ i j a och för horisontmatrisen betecknas sannolikheten k a. Den totala sannolikheten i j i j i j blir med införda beteckningar k = w kˆ + (1 w ) k. Från lagen om total sannolikhet fås 18 a y a i j sambandet k = 1. Sextonåringars och förstagångsinvandrare fås från två tidsserier för män och kvinnor. j= 1 a (Beskrivning av beräkningsgången I) k a 2.3 Problem med gamla inkomstmodellen Det fanns problem med inkomstsimuleringarna i den gamla modellen. Klasserna var dels för få och dels generade modellen själv en varierande inkomstfördelning. Summan av alla inkomster och snittinkomsten påverkades av detta och för ett pensionssystem är det inte bra om mindre pengar kommer in i systemet än vad man tidigare räknat med. En temporär lösning på problemet var att göra justering av

13 13 inkomstfördelningarna genom att ha använda sig av tidigare fastställda inkomstfördelningar. Detta var inte en bra permanent lösning för att simulera inkomsterna, det behövdes en bättre modell för inkomsterna. 2.4 Datamaterial Datamaterialet i denna studie kommer från Försäkringskassans databas MIDAS. Hela Sveriges befolkning ingår i materialet. Det statistiska programmet R används för hämtning och beräkningar av datamaterialet. 3. Analys 3.1 Lorenz-kurvan Lorenz-kurvan är ett sätt att beskriva inkomstfördelningen i ett land. Den tas fram från empiri och i denna modell är det lämpligt att anta att den är konstant över åren, vilket naturligtvis inte behöver vara sant. Men det behövs stabilitet i modellen och på grund av detta görs ett antagande om att Lorenz-kurvan är konstant. I den nya inkomstmodellen simuleras den relativa rangen, hädanefter kallad rang. Följande definitioner görs: Inc i = inkomst for i : te person i ordning från lägsta till högsta rang i = { ordningsnr för i : te person, sorterad efter inkomst { antal personer kumulativa summan i = i k = 1 k Inc Inc k k Lorenz-kurvan är den kumulativa summan som en funktion av rangen. Endast personer med inkomst under året tas med här i beräkningarna för Lorenz-kurvan.

14 14 figur 7 Den gröna linjen är Lorenz-kurvan i figur 7.. Den svarta linjen visar Lorenz-kurvan om alla som arbetade i Sverige skulle tjäna lika mycket. Från denna graf kan man räkna ut en persons inkomst, givet antalet personer, totala inkomstsumman samt personens rang: där L är Lorenz-grafen, N är antalet personer samt i i 1 Inc i = L L * S N N, S = N k= 1 Inc i. 3.2 Modellens struktur För att få fram personers rang år y+1 delas befolkningen in i tre klasser Inkomst år y och pgi år y-1 (klass 1) Inkomst år y men ingen pgi år y-1 (klass 2) Ingen inkomst år y (klass 3) Varje klass delas upp på 4 grupper Man, född i Sverige (msw) Man, född utanför Sverige (mab) Kvinna, född i Sverige (wsw) Kvinna, född utanför Sverige (wab) Varje grupp delas upp i åldersklasser. Det finns inga begränsningar av åldersspannet i modellen men här har åldrarna 25 till 61 studerats för år y.

15 15 I den nya modellen studeras rangordningarna i stället för inkomsterna i kronor. För klass 1 simuleras rangen och för klass 2 och 3 får man inkomstfördelningen år y+1 fram empiriskt genom skapande av Lorenz-kurvan. I figur 8 visas Lorenz-kurvan (för klass 2) för gruppen män 25 år födda i Sverige. figur 8 Lorenz-kurva, a= 25 s= 1 u= 0 kumulativa summan rang Ett enklare sätt att få fram Lorenz-kurvan har fåtts fram i denna studie. Kurvan kan tas fram genom att enbart veta 12 punkter på kurvan. Därefter återskapas Lorenz-kurvan med funktionen spline i statistiska programmet R. Punkterna väljs så att de ligger med lika avstånd på kurvan. Detta visas i figur 9.

16 16 figur 9 För att den nya inkomstmodellen ska bli komplett tas medelinkomsterna fram för olika åldrar och grupper. I figur 10 finns medelinkomsterna per månad (för personer med inkomst) för figur 10 Medelinkomster per månad, år 2001 kronor män födda i Sverige män födda utanför Sverige kvinnor födda i Sverige kvinnor födda utanför Sverige ålder

17 Rangens fördelning För personer med inkomster som har haft inkomst båda åren, ger rangen för inkomsterna ett år plottad mot rangen för inkomsterna året i figur 11. figur 11 Täthetsfunktionen undersökt empiriskt för inkomstrangen år 2001 finns i figur (med rangen uppdelad i 100 klasser). figur 12 figur 13 Frequency Frequency klasser för rangen år 2002, då rangen år 2001 är klasser för rangen år 2002, då rangen år 2001 är 0.5

18 18 Frequency Frequency f figur 14 figur klasser för rangen år 2002, då rangen år 2001 är klasser för rangen år 2002, då rangen år 2001 är 0.9 Rangens empiriska täthetsfunktion påminner om betafunktionen. Ritar man upp riktiga betafunktioner ser det ut som i figur 16. figur 16 betafunktioner för man 40år rank 0,2 rank 0,5 rank 0,7 rank 0, y

19 19 Det finns något som påminner om en betastruktur hos rangen, som ligger på ett ändligt intervall (mellan 0 och 1) och man kan se den som kontinuerlig. Därför antas rangen i denna modell vara betafördelad. Betafördelningens täthetsfunktion ser ut som följer: Γ Γ ( p + q) ( p) Γ( q) q ( y) 1 p f ( y, p, q) = y 1 1, där 0<y<1, p>0, q>0 och Γ( ) är gammafunktionen. Väntevärdet och variansen för y är E ( y) = p p + q och pq var( y) = 2 ( p + q) ( p + q + 1) 3.4 Betaregression Silva L.P Ferrari och Francisco Cribari-Neto (2004) föreslår en regressionsmodell för betafördelade variabler. Den används för att anpassa en regressionsmodell där den beroende variabeln är betafördelad. Denna modell passar när den beroende variabeln är kontinuerlig och ligger i intervallet [0 1]. Betaregression finns som färdig funktion (betareg) i det statistiska programmet R. För denna regressionsmodell görs en transformation för att istället för de vanliga parametrarna i betafördelningen använda en parameter som representerar väntevärdet av utfallet, µ, samt en parameter p som representerar precisionen, φ. Låt µ = och φ = p + q, vilket leder till att vi får p + q och var E ( y) = µ V ( ) ( µ ) y, där V = µ ( 1 µ ) = 1+ φ Betafördelningens täthetsfunktion kan skrivas om med den nya tranformationen till φ Γ( φ) ( uφ) Γ( ( 1 µ ) φ) ( ) ( 1 µ ) φ y 1 µ φ f ( y, µ, ) = y 1 1, 0<y<1 Γ

20 20 Modellen får man genom att anta att det existerar en funktion g(µ), där µ är väntevärdet av y, som kan skrivas som g k x i i = 1 ( µ ) = T k där k är känt och fixt, = ( β β ) är en vektor av regressionsparametrar ( R ) β 1,..., k β och x 1,..., xk är de oberoende variablerna i regressionsmodellen. Enligt Ferrari och Cribari-Nettos modellen kan vi skriva T där x ( x,..., x ) k µ T e = 1+ e x β T β, x β =. Skattningen av regressionsparametrarna gör med maximum likelihoodmetoden och 1 log-likelihoodfunktionen maximeras med Quasi-Newton BFGS -algoritmen. Ferrari och Cribari-Neto har valt startvärden till funktionen betareg i det statistiska programmet R; funktionen kan skatta regressionsparametrarna givet en ekvation av den beroende av variabeln och de oberoende variablerna. i Ett försök att parametrisera nästa års inkomst (inc1) med betafördelningar och årets inkomst (inc0) som enda förklarande variabler ger bilden i figur 17. Inc1 är skattat med betaregression och den blå linjen är väntevärdet av inc1. figur Finns det problem med betaregression? Ja! QuasiNewton-metoden bygger upp stora matriser med första derivatan och detta är CPU- och minneskrävande. Detta begränsar metoden till att man inte bör använda större urval än individer. Det krävs även en dator med ett stort minne för att klara dessa körningar utan att det ska ta veckor.

21 21 4 Resultat 4.1 Parametrar Undersökta parametrar för att få fram inkomsten år (y+1) (inc1) a. Inkomsten år y (inc0) b. Totala livsinkomsten t.o.m. år y (beh0) c. Total pensionsgrundande inkomsten (pgi) t.o.m. år y (pgi_total) d. Totala pgin t.o.m.år (y-4) (pgi_long) e. Summan av pgin under år (y-4) till år y (pgi5) f. Summan av pgin år (y-3) till år (y-1) (pgi_short) g. Antal år i Sverige hos utrikesfödda personer (Swe) Antal år sedan första pgin h. Utbildning i. Barn under 2 eller 4 års ålder Variablerna är mycket starkt multikollinearade och därför kan inte effekten av enskild parameter studeras med de övriga parametrarna närvarande. För prediktion gör det inget att det förekommer kovarians mellan variablerna. Deras sammanlagda effekt ger ett bra resultat. Modellen som har kommit fram är ganska enkel och har valts ut med tanke på p-värden och psedo-r2. Det nästkommande årets inkomst beror på årets inkomst (inc0), pgin de senaste åren (pgi_short) och pgin under en lång period (pgi_long). Ekvation som fås fram är: inc < β 1 + β 2inc0 + β 3 pgi _ short + β 1 4 pgi _ long Grupperna är män födda i Sverige, män födda utanför Sverige, kvinnor födda i Sverige och kvinnor födda utanför Sverige. Varje ålder i de fyra grupper studeras var för sig och får olika skattningar. Parametervärdena antas variera långsamt med åldern och skattningar från två intilliggande åldersgrupper bör inte skilja sig allt för mycket. För att skatta β1, β 2, β 3 och β 4 för varje ålder och grupp har upprepade försök gjorts 10 gånger, varje gång på ett slumpmässigt urval på 2000 individer. För varje grupp har 10 skattningar gjorts för varje ålder och en skattning av β1, β 2, β 3 och β 4 och φ får man genom användandet av funktionen loess i statistiska programmet R. Först sorteras felaktiga skattningar bort empiriskt, betaregression kan ibland gå snett och genera skattningar som inte accepteras i modellen. När detta är gjort skattar funktionen loess parametrarna dels efter medelvärdet av skattningarna en viss ålder och dels med intryck av vilka värden parameten tar för åldrar runt omkring. För inrikesfödda män ser skattningarna ut så här. Den rätta linjen är loess-skattningen och prickarna är de 10 observationer som tagits fram (felaktiga skattningar borttagna): Skattning av parametern intercept,, 1 β, för män födda i Sverige finns i figur 18. På y-axeln anges värdet på parametern och på x-axeln åldern.

22 22 figur 18 intercept, sex = 1, origin = 0 intercept age Skattning av inc0-parametern, β 0,, för män födda i Sverige syns i figur 19. På y-axeln anges värdet på parametern och på x-axel åldern. figur 19 inc0, sex = 1, origin = 0 inc age Skattning av pgi_short-parametern, 3 β, för män födda i Sverige visas i figur 20. På y-axeln anges värdet på parametern och på x-axeln åldern.

23 23 figur 20 pgi_short, sex = 1, origin = 0 pgi_short age Skattning av pgi_long- parametern, β 4, för män födda i Sverige visas i figur 21. På y-axeln anges värdet på parametern och på x-axel åldern. figur 21 pgi_long, sex = 1, origin = 0 pgi_long age

24 24 Skattning av parametern phi för män födda i Sverige finns i figur 22. På y-axeln anges värdet på parametern och på x-axel åldern. Parametern visar ett mått på variationen: större phi visar på en mindre variation och tvärtom. figur 22 phi, sex = 1, origin = 0 phi age Hur väl stämmer väntevärdet från simuleringarna med väntevärdet av utfallet? Fallet män 40 år, födda i Sverige, studeras. Den blå grafen i figur 23 visar ett medelvärde av väntevärdet från modellen och y-axel visar ett medelvärde av utfallet. Den gröna linjen visar hur den rätta linjen skulle ha sett ut om de hade varit lika. sex = 1 age = 40 orgin= 0 figur 23 Resultatet visar att väntevärdet i modellen stämmer någorlunda överens med verkligheten. Hur ser då variansen ut? Den gröna kurvan i figur 24 är standardavvikelsen för utfallet subtraherad med meanvalue_inc meanvalue_my

25 25 väntevärdet och den röda kurvan är standardavvikelsen för simuleringen subtraherad med väntevärdet. sex = 1 age = 40 orgin= 0 figur 24 std stdev (utfall - my) stdev(simulering - my) rang Modellen ger en överskattad varians för personer som ligger i lönespannet i mitten och underskattar variansen för personer som ligger lågt respektive högt i lönespannet. Detta är ett problem i modellen. En lösning på problemet kan vara att undersöka om det går att dela upp skattningarna. Dela upp varje delpopulation i två grupper, en grupp (k=1) som har ingående inkomst med rang mellan 0,25 och 0,75 och en annan grupp (k=2) som har ingående inkomst med rang under 0,25 eller över 0,75. Definiera en variabel, k_value, som är lika med 1 för en typ av skattning med avseende på rangen och är lika med 2 för två typer av skattningar med avseende på rangen. Standardavvikelsen visas i figur 25, där den röda linjen är standardavvikelsen för simuleringarna subtraherad med väntevärdet med k_value=1, den blå linjen är standardavvikelsen för simuleringarna subtraherad med väntevärdet med k_value=2 och den gröna linjen är standardavvikelsen för utfallet subtraherad med väntevärdet. sex = 1 age = 40 orgin= 0 figur 25 std stdev (simulering - my), k_value=1 stdev (simulering - my), k_value=2 stdev(utfall - my) rang

26 26 Den uppdelade skattningen (k_value = 2) ger en standardavvikelse för simuleringarna som ligger närmare utfallets standardavvikelse. Däremot är standardavvikelsen inte helt optimal i förhållande till verkligheten. I figur studeras några andra åldersexempel för standardavvikelsen. sex = 1 age = 30 orgin= 0 std stdev (simulering - my), k_value=1 stdev (simulering - my), k_value=2 stdev(utfall - my) figur 26 Män, 30 år, födda i Sverige (figur26): För låga värden på rangen är standardavvikelsen underskattad. I mittenintervallet blir standardavvikelsen överskattad och slutligen underskattad för riktig hög rang. Den uppdelade skattning ger en bättre standardavvikelse. std rang Kvinnor, 32 år, födda i Sverige (figur27): sex = 1 age = 42 orgin= 1 stdev (simulering - my), k_value=1 stdev (simulering - my), k_value=2 stdev(utfall - my) figur 27 För låga värden på rangen är standardavvikelsen underskattad. I mittenintervallet blir standardavvikelsen överskattad. Den uppdelade skattning ger en bättre standardavvikelse. För högt värde på rangen ger den uppdelade skattningen en ganska hyfsad standardavvikelse jämfört med utfallets. figur 28 std sex = 2 age = 32 orgin= 0 stdev (simulering - my), k_value=1 stdev (simulering - my), k_value=2 stdev(utfall - my) Män, 42 år, födda utomlands (figur 28): Den uppdelade skattningens standard avvikelse följer utfallets standardavvikelse till stor del. Fortfarande finns dock en viss överskattning/underskattning av standardavvikelsen. rang rang

27 27 std sex = 2 age = 35 orgin= 1 stdev (simulering - my), k_value=1 stdev (simulering - my), k_value=2 stdev(utfall - my) figur 29 Kvinnor, 35 år, födda utomlands (figur 29): Simuleringarnas standardavvikelse följer till stor del med utfallets standardavvikelse rang Med uppdelade skattningar, för män 40 år, ser vi utfallet plottat mot väntevärdet enligt blå graf nedan. Den gröna grafen är den räta linjen om hade varit lika i figur 30. sex = 1 age = 40 orgin= 0 figur 30 meanvalue_inc meanvalue_my I figur 31 visas utfallet plottat mot väntevärdet av modellen (µ) från båda typer av skattningarna. Den röda med en typ av skattning och den blå med uppdelad skattning (2 stycken) och den gröna visar ifall utfallets medelvärde hade varit lika med modellens väntevärde.

28 28 figur 31 meanvalue inc sex = 1 age = 40 orgin= 0 k_value=2 k_value= meanvalue my

29 29 5 Diskussion 5.1 Valet av parametrar Årets inkomst är den mest betydelsefulla prediktorn av nästa års inkomst. Den kan ensam förklara en stor del, men en regressionsmodell med fler variabler förbättrar modellen. Total livsinkomst, total pgi samt summa total pgi t.o.m fyra år tillbaks har ungefär samma påverkan på modellen. Skillnaderna i p-värden och pseudo_r2 kan ibland enbart hänga på ytterst små marginaler. Delvis för att inte ha parametrar som överlappar och delvis för att ändå påvisa bästa värden, valdes parametern total pgi t.om. fyra år tillbaks (pgi_long). Vid studier hur pgin under de närmaste åren påverkades sågs att de senaste fem åren samt senaste tre åren hade en liknade påverkan. Men att anpassa till andra parametrar var det lämpligaste valet att välja pgin under de senaste tre åren som en parameter i modellen. Antal år i Sverige hos utrikesfödda personer är inte en statistisk försvarbar parameter i modellen. Inte heller antal år sedan första pgin har en plats. Nivån på högsta utbildning som olika dummy parametrar gör modellen sämre, vilket kan antas bero på att högre utbildning inte garanterar högre lön i en åldersklass. Det är till största del en viss åldersgrupp som har småbarn och eftersom skattningarna sker i en åldersklass för sig, så påverkar det inte rangen hos gruppen av den faktorn tillräckligt för en statistisk säkerställning för at det skulle kunna vara en prediktor. 5.2 Modellens standardavvikelse Modellen har en standardavvikelse som inte stämmer helt överens med verkligheten. Ett förslag till en förbättring, vilket krävs betydligt mer arbete än ramen för detta exjobb, vore att låta precisionsparametern phi ingå som prediktor i modellen (genom att skriva en egen funktion som utför betaregression). 5.3 Slutord Modellen är bra. Parametrarna har låga p-värden och höga psedu-r2 värden. Modellens väntevärde stämmer väl överens med verklighetens väntevärden. Den är dessutom enkel. Men modellen kan bli bättre. Modellens standardavvikelse kan förbättras.

30 30 6. Referenser och källor Ferrari Silva & Cribari-Neto Francisco, Beta regression for modelling rates and proportions Finansdepartementets skolwebb Försäkringskassan: Om Pensionssystemet, Leander Jonas: Beskrivning av beräkningsgången I, steg 1, Försäkringskassan, 2001 Pensionssystemets Årsredovisning 2005, Försäkringskassan, 2006 Ospina Raydonal, Cribari-Neto Francisco, Vasconcellos Klaus L.P, Improved point and interval estimation for a beta regression model Paolino Philip, Maximum Likelihood Estimation of Models with Beta-Distributed Dependent Dependent Variables

31 31 7. Appendix 7.1 Mer skattningar 7.11 Parametrarna i modell Skattningar män födda utanför Sverige figur 32 figur 33 intercept, sex = 1, origin = 1 inc0, sex = 1, origin = 1 intercept inc age age Figur 34 figur 35 pgi_long, sex = 1, origin = 1 pgi_short, sex = 1, origin = 1 pgi_long pgi_short age age

32 32 figur 36 phi, sex = 1, origin = intercept, sex = 2, origin = 0 intercept phi age Skattningar kvinnor födda i Sverige figur age

33 inc0, sex = 2, origin = 0 33 inc age figur 38 pgi_short figur 39 pgi_short, sex = 2, origin = 0 pgi_long, sex = 2, origin = age pgi_long age figur 40 phi figur 41 phi, sex = 2, origin = age

34 34 Skattningar kvinnor födda utomlands figur 41 figur 42 intercept, sex = 2, origin = 1 k = 0 inc0, sex = 2, origin = 1 k = 0 intercept inc age age figur 43 pgi_long, sex = 2, origin = 1 k = 0 pgi_long age

35 35 figur 44 figur Medelvärde av standardavvikelsen Dela upp rangen i 40 intervall och i varje intevall ta meddelvärdet av standavvikelsen för alla åldrar, då fås den plot med en skattning för rangen (k_value=1)

36 36 figur 46 medelvärde av standardavvikelsen, med k_value= 1 stdev heldragen linjen: medel.stdev (utfall - my) sträckad linje: medel.stdev (utfall - simulering ) män födda i Sverige män födda utanför Sverige kvinnor födda i Sverige kvinnor födda utanför Sverige y För en skattning med uppdelad skattning av rangen, få följande plot istället figur 47 medelvärde av standardavvikelsen, med k_value= 2 stdev heldragen linjen: medel.stdev (utfall - my) sträckad linje: medel.stdev (utfall - simulering ) män födda i Sverige män födda utanför Sverige kvinnor födda i Sverige kvinnor födda utanför Sverige y 7.2 Programkod tillhörande analysen Lorenz-curva #Plot the Lorenz-curve

37 37 library("mimesis") imim() y < cohort <- getv(midas,"birthyear") deathy <- getv(midas,"deathyear") age <- y-cohort utantakinc0 <- getv(midas,"pgifull","inkomst",y,na=0) utantakinc1 <- getv(midas,"pgifull","inkomst",y+1, na=0) pgi_minus1y <- getv(midas,"ppgi","accrual",y-1,na=0) lorenz <- function(sel1,a,s,u){ cohort <- cohort[sel1] deathy <- deathy[sel1] age <- age [sel1] origin <- getv(midas,"origin")[sel1] #men( sex=1), women (sex2) sex <- getv(midas,"sex")[sel1] # utantakinc0 = income year y, utantakinc1 = income year y+1 utantakinc1 <- pgi_minus1y <- utantakinc1 [sel1] pgi_minus1y [sel1] #The selected age, sex and origin are choosen sel2 <- which(age==a & sex==s & origin==u) inc1 <-utantakinc1[sel2] TOTALINCOME <-sum(as.numeric(inc1)) inc1 <- sort(inc1) TI <-cumsum(inc1) TI <- TI/TOTALINCOME R <-(1:length(TI))/length(TI) plot(r,ti, main = paste("lorenz-kurva,a= ",a,"s= ",s,"u= ",u ), xlab="rang",ylab="kumulativa summan", xlim=c(0,1),ylim=c(0,1),cex=0.2,col=3) x<-(1:100)/100 y<-x lines(x,y,col=1) # RUNS #Which people that are selected sel1 <- which( (age >= as.integer(0)) & (age <= as.integer(70)) & ((deathy== as.integer(0)) (deathy> y+1)& utantakinc0>0 & utantakinc1>0& pgi_minus1y==0 ) a <- 25 s <- 1 u <- 0 lorenz(sel1,a,s,u)

38 Spline #The function "getspline_points" selects points on the Lorenz-curve, # enough to re-create it with Spline # Taking an average for all ages # The output is a vector with the rang-value # The user choose for which people this is done # i.e for people with no income year y #Function relorenz test to re-create the curve # The user need to get package "splines"!!! library("mimesis") imim() # *** GLOBALS **** y < cohort <- getv(midas,"birthyear") deathy <- getv(midas,"deathyear") age <- y-cohort utantakinc0 <- getv(midas,"pgifull","inkomst",y,na=0) utantakinc1 <- getv(midas,"pgifull","inkomst",y+1, na=0) pgi_minus1y <- getv(midas,"ppgi","accrual",y-1,na=0) getspline_points <- function (minage, maxage, sel1){ cohort <- cohort[sel1] deathy <- deathy[sel1] age <- age [sel1] origin <- getv(midas,"origin")[sel1] #men( sex=1), women (sex2) sex <- getv(midas,"sex")[sel1] # utantakinc0 = income year y, utantakinc1 = income year y+1 utantakinc1 <- pgi_minus1y <- utantakinc1 [sel1] pgi_minus1y [sel1] #The function which selects points to the Spline curve #x and y is input vector #p i snumber of point we want points <- function(x,y,k){ k <- k-1 if(length(x)!= length(y)) return(null) leng<-length(x) dx <- x[2:leng]-x[1:(leng-1)] dy <- y[2:leng]-y[1:(leng-1)] L<-sqrt(dx^2+dy^2) L<-cumsum(L) L<-L/L[leng-1] ptx <- (0:k)/k pty <- rep(0,k+1)

39 39 for(i in 2:k) { ndx <- which.min(abs(ptx[i]-l)) pty[i] <- L[ndx] ptx[i] <- ndx/(leng-1) pty[k+1] <- 1 return(list(ptx=ptx,pty=pty)) #k is number of points k <- 12 #i is the ages that we look at i <- length(seq(minage,maxage,1)) #j is the number of subpopulation we got (age,men/women) j <- 2*i #the points we want save_xvalues <- matrix(na,k,j) #m is a counter, for putting values in the matrix m <- 0 u <- 0 for(s in 1:2) { for (a in minage:maxage) { sel2 <- which(age==a & sex==s & origin==u) inc1<-utantakinc1[sel2] TOTALINCOME <-sum(as.numeric(inc1)) inc1 <- sort(inc1) TI<-cumsum(inc1) TI <- TI/TOTALINCOME R<-(1:length(TI))/length(TI) p1 <- points(r,ti,k) m <- m+1 save_xvalues[,m]<-p1$ptx mean_x<-rep(na,12) for (i in 1:12){ mean_x[i] <- mean(save_xvalues[i,]) write.table(mean_x,file=name) relorenz <- function(name,sel1,a,s,u){ TOTALINCOME <-sum(as.numeric(inc1)) inc1 <- sort(inc1) TI<-cumsum(inc1) TI <- TI/TOTALINCOME R<-(1:length(TI))/length(TI)

40 40 x <- read.table(file=name) x <- x[["x"]] y <- rep(na,12) leng <- length(ti) y[1] <- 0 y[12] <- 1 for(i in 2:11){ Diff <- abs(r-x[i]) where<-which.min(diff) y[i]<-ti[where] c<-interpspline(x,y,period=12) plot(c,xlim=c(0,1), ylim=c(0,1),col=6,main=paste("antal punkter =",12," a= ",a,"s= ",s,"u= ",u), xlab="rang",ylab="kumulativa summan") # *** RUNS *** # Choose for which group you want it for #people between 0 and 70 years old are selected sel1 <- which( (age >= as.integer(0)) & (age <= as.integer(70)) & ((deathy== as.integer(0)) (deathy> y+1)& utantakinc0>0 & utantakinc1>0 & pgi_minus1y==0 ) minage <- 25 maxage <- 61 name <- "D:/RankInc/Lorenz_xvalue_mean_klass2.text" getspline_points(minage, maxage, sel1) sela <- which( ((deathy== as.integer(0)) (death& utantakinc0>0 & utantakinc1>0 & pgi_minus1y==0 & age==a & sex==s & origin==u) relorenz(name,utantakinc1[sela]) Återskappande av Lorenz curve #Re-create the Lorenz-curve library("mimesis") imim()

41 41 y < cohort <- getv(midas,"birthyear") deathy <- getv(midas,"deathyear") age <- y-cohort utantakinc0 <- getv(midas,"pgifull","inkomst",y,na=0) utantakinc1 <- getv(midas,"pgifull","inkomst",y+1, na=0) pgi_minus1y <- getv(midas,"ppgi","accrual",y-1,na=0) relorenz <- function(name,sel1,a,s,u){ age origin sex utantakinc1 sel2 inc1 TOTALINCOME inc1 TI TI R <- age [sel1] <- getv(midas,"origin")[sel1] <- getv(midas,"sex")[sel1] <- utantakinc1 [sel1] <- which(age==a & sex==s & origin==u) <- utantakinc1[sel2] <- sum(as.numeric(inc1)) <- sort(inc1) <- cumsum(inc1) <- TI/TOTALINCOME <- (1:length(TI))/length(TI) x <- read.table(file=name) x <- x[["x"]] y <- rep(na,12) leng <- length(ti) y[1] <- 0 y[12] <- 1 for(i in 2:11){ Diff <- abs(r-x[i]) where<-which.min(diff) y[i]<-ti[where] c<-interpspline(x,y,period=12) plot(c,xlim=c(0,1), ylim=c(0,1),col=6,main=paste("antal punkter =",12," a= ",a,"s= ",s,"u= ",u), xlab="rang",ylab="kumulativa summan") # RUNS #Which people that are selected sel1 <- which ( (age >= as.integer(0)) & (age <= as.integer(70)) & ((deathy== as.integer(0)) (deathy> y+1) & utantakinc0>0 & utantakinc1>0& pgi_minus1y==0 ) a <- 25 s <- 1 u <- 0 name <- "D:/RankInc/Lorenz_xvalue_mean_klass2.text" relorenz(name,sel1,a,s,u)

42 Medelinkomster # *** Medelinkomster *** library("mimesis") imim() average_salary <- function(minage,maxage){ y < cohort <- getv(midas,"birthyear") deathy <- getv(midas,"deathyear") origin <- getv(midas,"origin") utantakinc0<- getv(midas,"pgifull","inkomst",y,na=0) age <- y-cohort origin[origin==38]<- as.integer(0) origin[origin!=0] <- as.integer(1) sel1 <- which( (age >= as.integer(0)) (age <= as.integer(70)) ((deathy== as.integer(0)) (deathy> y+1))& utantakinc0>0 ) age <- age[sel1] utantakinc0<- utantakinc0 [sel1] sex <- getv(midas,"sex")[sel1] origin <- origin [sel1] & medellon <- function(minage,maxage,inc,age){ n <- length(seq(minage,maxage,1)) medel <- rep(na,n) for(i in minage:maxage){ sel2 <- which(age==i) income <- inc[sel2] medel[i-(minage-1)]<-mean(income) return(medel) n<-length(seq(minage,maxage,1)) inkomst<-matrix(na,n,4) #s<-1 ;u<-1 for (s in 1:2){ for (u in 0:1){ sel3<- which (origin==u & sex==s) in1<-utantakinc0[sel3] alder<-age[sel3] lon<-medellon(18,63,in1,alder) if(s==1){ else{ inkomst[,s+u]<-lon inkomst[,s+u+1]<-lon

43 43 #Inkomstbasbelopp år 2001 inkomstbasbelopp< inkomst<-inkomst+inkomstbasbelopp ålder<-seq(18,63,1) # Månadsinkomst minkomst<-inkomst/12 matplot(ålder,cbind(minkomst[,1],minkomst[,2],minkomst[,3], minkomst[,4]),col=c(2,3,4,5),cex=0.2,xlim=c(18,63),ylim=c(0,30000),type=" l",main = paste("medelinkomster per månad, år",y),ylab="kronor") legend(locator(n=2),legend=c("män födda i Sverige","män födda utanför Sverige","kvinnor födda i Sverige","kvinnor födda utanför Sverige"),text.col=c(2,3,4,5)) # RUN minage <- 18 maxage <- 63 average_salary(minage,maxage) Skattningar av parametrar #Estimated the parameters in the new incomemodell # **** THE USER HAS TO SELECT A NAME FOR THE FILE WHERE *** # *** THE ESTIMATION CAN BE SAVED *** # THE USER HAS TO DOWNLOAD PACKAGE BETAREG library("mimesis") imim() library(betareg) # *** GLOBALS *** #Select year, y, minage, maxage and name_file y < minage <- 25 maxage <- 61 #Input in the model cohort <- getv(midas,"birthyear") deathy <- getv(midas,"deathyear") age <- y-cohort #People between 0 and 70 years old are selected sel1 <- which( (age >= as.integer(0)) (age <= as.integer(70)) ((deathy== as.integer(0)) (deathy> y+1))) & &

44 44 cohort <- cohort[sel1] deathy <- deathy[sel1] age <- age [sel1] origin <- getv(midas,"origin")[sel1] #Men( sex=1), women (sex2) sex <- getv(midas,"sex")[sel1] # utantakinc0 = income year y, utantakinc1 = income year y+1 utantakinc0 <- getv(midas,"pgifull","inkomst",y,na=0)[sel1] utantakinc1 <- getv(midas,"pgifull","inkomst",y+1, na=0)[sel1] #beh0 <- getv(midas,"pbh_utb_bel","brev",y+1,na=0)[sel1] #Calculate pgi_long (=pgi during the last 3 years, not counting year y) pgi_minus1y <- getv(midas,"ppgi","accrual",y-1,na=0)[sel1] pgi_minus2y <- getv(midas,"ppgi","accrual",y-2,na=0)[sel1] pgi_minus3y <- getv(midas,"ppgi","accrual",y-3,na=0)[sel1] pgi_short <- pgi_minus1y + pgi_minus2y + pgi_minus3y #Calculate pgi_long (=pgi during the whole life except the last 4 years, #counting year y) year4 <- y-4 pgi_long <- getv(midas,"ppgi","accrual",1960,na=0)[sel1] for (i in 1961:year4){ pgi_1year <- getv(midas,"ppgi","accrual",i,na=0)[sel1] pgi_long <- pgi_long + pgi_1year #Born in Sweden(orgin=0),born outside Sweden(orgin=1) origin[origin==38] <- as.integer(0) origin[origin!=0] <- as.integer(1) #Create an object for the rank, let the value be 0 if the input is zero, #otherwise let is be the rank(between 0 and 1) # R0 - income year 0 # R1 - income year y+1 # PGIS - pgi year (y-3) to (y-1) # PGIL - total pgi up to and including year y-4 R0 <- rep(0, length(sel1)) R1 <- rep(0, length(sel1)) PGIS <- rep(0, length(sel1)) PGIL <- rep(0, length(sel1)) #selection when the obejct is non-zero selr0 <- which(utantakinc0>0) selr1 <- which(utantakinc0>0) #selb0 <- which(beh0>0) selpgis <- which(pgi_short>0) selpgil <- which(pgi_long>0) #Calculate the rank when the object is non-zero R0[selR0] <- MiMaggr(utantakinc0[selR0], list(sex=sex[selr0],age = age[selr0], origin=origin[selr0]),"order/count")[[1]] R1[selR1] <- MiMaggr(utantakinc1[selR1], list(sex=sex[selr1],age = age[selr1], origin =origin[selr1]),"order/count")[[1]]

45 45 PGIL[selPGIL] <- MiMaggr(pgi_long[selPGIL], list(sex=sex[selpgil], age = age[selpgil], origin =origin[selpgil]),"order/count")[[1]] PGIS[selPGIS] <- MiMaggr(pgi_short[selPGIS], list(sex=sex[selpgis],age=age[selpgis], origin =origin[selpgis]),"order/count")[[1]] #To avoid problems that appears when R1=1 R1[R1==1] <- as.double( ) #Function estimation #Fitting a betaregression for each subpopulation (men/women, born in #Sweden/abraod) and age. Repeat that procedure 10 times. #All estimation are saved and read on file. No output estimation <-function(minage,maxage,filename,k_value){ #"Dummy" function to avoid problem hej<-function(){ return("hoppsan") options(error=hej) #test values # s<-1; a<-30; u<-0; #To do the estimation for each age in each subpopulation for(s in 1:2) { for(u in 0:1) { for(a in minage:maxage) { #Create a data-frame for saving the estimation from betaregression tt <- data.frame( sex = numeric(0), age = numeric(0), origin = numeric(0), k = numeric(0), try = numeric(0), intercept = numeric(0), inc0 = numeric(0), pgi_long = numeric(0), pgi_short = numeric(0), phi = numeric(0), stder.intercept = numeric(0), stder.inc0 = numeric(0), stder.pgi_long = numeric(0), stder.pgi_short = numeric(0), stder.phi = numeric(0), zstats.intercept = numeric(0), zstats.inc0 = numeric(0), zstats.pgi_long = numeric(0), zstats.pgi_short = numeric(0), pvalue.intercept = numeric(0), pvalue.inc0 = numeric(0),

46 46 pvalue.pgi_long = numeric(0), pvalue.pgi_short = numeric(0), PseudoR2 = numeric(0) ) gc() #select people with income year 0 and 1 for each subpopulation for(c in 1:k_value) { # s<-1; a<-40; u<-0; if(k_value==1) { sel3 <- which( age == a & sex == s & origin==u & utantakinc0>0 & utantakinc1>0 ) k <- 0 length(sel3) 0.25 R0 >= 0.75 ) & R0>0 & R1>0) else { if (c==1) { sel3 <- which (age == a & sex == s & origin==u & (R0 >= 0.25 & R0 < 0.75 & R1>0)) k <- 1 else { sel3 <- which (age == a & sex == s & origin==u & (R0 < k <- 2 #number of tries for each subpopulation for(d in 1:10) { ready <- FALSE while(! ready) { sel4 <- sample(sel3,min(2000,length(sel3))) Y <- R1[sel4] inc0 <- R0[sel4] pgi_long <- PGIL[sel4] pgi_short <- PGIS[sel4] fit <- betareg(y ~ inc0 + pgi_long +pgi_short)

47 47 if(max(fit$coefficients)< 20 & min(fit$coefficients)> -20) ready <- TRUE gc() cat("sex=",s,"origin=",u, "age",a, "k",k,"try",d) flush.console() summary(fit) tt < rbind(tt,c(s,a,u,k,d,fit$coefficients, fit$stder,fit$zstats,fit$pvalues,fit$pseudo.r2)) filename1 <- filename filename1 <-paste(filename1,"kv",k_value,"a",a, "s",s,"u",u,".txt", sep="") write.table(tt,file=filename1,sep="\t",row.names=false, col.names=true) #rebind to one file the estimation for each subpopulation tt <- data.frame( sex =numeric(0), age = numeric(0), origin= numeric(0), k=numeric(0), try =numeric(0), intercept = numeric(0), inc0= numeric(0), pgi_long= numeric(0), pgi_short= numeric(0), phi =numeric(0), stder.intercept = numeric(0), stder.inc0=numeric(0), stder.pgi_long=numeric(0), stder.pgi_short=numeric(0), stder.phi =numeric(0), zstats.intercept = numeric(0), zstats.inc0 = numeric(0), zstats.pgi_long = numeric(0), zstats.pgi_short= numeric(0), pvalue.intercept = numeric(0), pvalue.inc0= numeric(0), pvalue.pgi_long= numeric(0), pvalue.pgi_short= numeric(0), PseudoR2 = numeric(0) ) for(s in 1:2) { for(u in 0:1) { for(a in minage:maxage) {

48 48 filename1 <- filename filename1 <- paste(filename1,"kv",k_value,"a",a,"s",s,"u",u,".txt", sep="") dd<-read.table(file=filename1,header = TRUE) tt<-rbind(tt,dd) write.table(tt,file=filename,sep="\t",row.names=false, col.names=true) #end of estimation-function #Function loess smoothing #Read the the file function estimation create and perform a loess smoothing of #the values and return a dataframe with an estimation of the coefficents to #the model loess_smothing <-function(minage,maxage,name_file) { length_age <- length(seq(minage,maxage,1)) df3 <- read.table(file=name_file,header = TRUE) #Seperate the subpopulations sel_mensw <- df3[["sex"]]==1 & df3[["origin"]]==0 sel_menab <- df3[["sex"]]==1 & df3[["origin"]]==1 sel_womensw <- df3[["sex"]]==2 & df3[["origin"]]==0 sel_womenab <- df3[["sex"]]==2 & df3[["origin"]]==1 dfmsw <- df3[sel_mensw,] dfmab <- df3[sel_menab,] dfwsw <- df3[sel_womensw,] dfwab <- df3[sel_womenab,] #To get rid of outliers we do a further selection for each subpopulation #The selection is done empirical #men born in Sweden - msw (sex=men, origin=0) dfsel_msw <- dfmsw[["intercept"]]>-20 & dfmsw[["intercept"]]< -1 & dfmsw[["inc0"]]> 0 & dfmsw[["inc0"]]< 20 & dfmsw[["pgi_long"]]>-2 & dfmsw[["pgi_long"]]<2 & dfmsw[["pgi_short"]]>-20 & dfmsw[["pgi_short"]]< 1.2 & dfmsw[["phi"]]> 0 & dfmsw[["phi"]]< 20 #men born abroad - mab (sex=men, origin=1)

49 49 dfsel_mab <- dfmab[["intercept"]]>-20 & dfmab[["intercept"]]< 20 & dfmab[["inc0"]]> 0 & dfmab[["inc0"]]< 20 & dfmab[["pgi_long"]]>-20 & dfmab[["pgi_long"]]< 2 & dfmab[["pgi_short"]]>-2 & dfmab[["pgi_short"]]< 20 & dfmab[["phi"]]> 0 & dfmab[["phi"]]< 20 #women born in Sweden - wsw (sex=women, origin=0) dfsel_wsw <- dfwsw[["intercept"]]>-20 & dfwsw[["intercept"]]< -0.8 & dfwsw[["inc0"]]> 2.4 & dfwsw[["inc0"]]< 20 & dfwsw[["pgi_long"]]>-0.5 & dfwsw[["pgi_long"]]< 1 & dfwsw[["pgi_short"]]>-1.2 & dfwsw[["pgi_short"]]< 1 & dfwsw[["phi"]]> 0 & dfwsw[["phi"]]< 20 #women born abroad - wab (sex=women, origin=1) dfsel_wab <- & dfwab[["intercept"]]>-20 & dfwab[["intercept"]]< 0 & dfwab[["inc0"]]> 2 & dfwab[["inc0"]]< 5.7 & dfwab[["pgi_long"]]>-0.5 & dfwab[["pgi_long"]]< 20 dfwab[["pgi_short"]]>-2 & dfwab[["pgi_short"]]< 3 & dfwab[["phi"]]> 0 & dfwab[["phi"]]< 20 dfmsw <- dfmsw[dfsel_msw,] dfmab <- dfmab[dfsel_mab,] dfwsw <- dfwsw[dfsel_wsw,] dfwab <- dfwab[dfsel_wab,] # Do the estimation with loess skatt <- data.frame(age=numeric(0), origin=numeric(0), sex=numeric(0), k=numeric(0), intercept = numeric(0), inc0= numeric(0), pgi_long= numeric(0), pgi_short= numeric(0), phi =numeric(0)) #Function loess_estimation #Perform it for one variable and subpopulation #b,d is the min and max on the y-axis, sex=s, orgigin=u loess_est <- function(variable_name,input_matrix,b,d,s,u,k) { number <- seq(minage,maxage,0.25) plot(input_matrix[["age"]],input_matrix[[variable_name]],cex=0.2, ylim=c(b,d),main = paste(variable_name,", sex = ",s,", origin = ",u,"k =",k ), xlab="age",ylab=variable_name) a <-loess(input_matrix[[variable_name]]~input_matrix[["age"]], input_matrix,span=0.5)

Vad blev det för pension 2014? En jämförelse mellan pension och slutlön för årskullarna 1938 till 1946

Vad blev det för pension 2014? En jämförelse mellan pension och slutlön för årskullarna 1938 till 1946 Vad blev det för pension 2014? En jämförelse mellan pension och slutlön för årskullarna 1938 till 1946 S12260 14-03 Sammanfattning Vad blev det för pension 2014? är den fjärde rapporten i Folksam rapportserie

Läs mer

Beräkning av förlust av allmän pension för personer födda 1938-1953

Beräkning av förlust av allmän pension för personer födda 1938-1953 Cirkulär 4-2005 Beräkning av förlust av allmän pension för personer födda 1938-1953 Rådets beslut Vid möte den 8 december 2004 beslutade Trafikskadenämndens råd att anta Pensionsarbetsgruppens framlagda

Läs mer

Din tjänstepension PFA

Din tjänstepension PFA Din tjänstepension PFA En kort presentation av PFA Den här broschyren vänder sig till dig som är född 1938 eller senare och som är anställd i inom kommun, landsting/region och kommunala bolag. Den ger

Läs mer

Din allmänna pension en del av din totala pension

Din allmänna pension en del av din totala pension 60 + Försäkringskassan och smyndigheten Din allmänna pension en del av din totala pension Det här årsbeskedet handlar om den allmänna pensionen. Utöver den får de flesta löntagare tjänstepension från sin

Läs mer

Vad blev det för pension 2011? En jämförelse mellan pension och slutlön för årskullarna 1938 till 1943

Vad blev det för pension 2011? En jämförelse mellan pension och slutlön för årskullarna 1938 till 1943 Vad blev det för pension 211? En jämförelse mellan pension och slutlön för årskullarna 1938 till 1943 S1197 11-4 Sammanfattning Vad blev det för pension 211? är den tredje rapporten i Folksam rapportserie

Läs mer

Hela livet räknas När du sparar till din allmänna pension

Hela livet räknas När du sparar till din allmänna pension Hela livet räknas När du sparar till din allmänna pension Hela livet räknas Den här broschyren handlar om den allmänna pensionen och tar upp vad som kan vara bra att tänka på när du sparar till din framtida

Läs mer

Din avtalspension KAP-KL

Din avtalspension KAP-KL Din avtalspension KAP-KL För dig som är anställd inom kommun, landsting, region, kommunalförbund och i vissa kommunala företag gäller pensionsavtalet KAP-KL. Din avtalspension är knuten till din anställning.

Läs mer

Nio svar om din pension

Nio svar om din pension Sida 1 av 7 Katrin Westling Palm, generaldirektör för Pensionsmyndigheten där Bo Könberg är ordförande. Bild: Scanpix Förstora bild» Nio svar om din pension Publicerad: 11 juli 2009, 01:15 Senast uppdaterad:

Läs mer

Nytt pensionsavtal för statligt anställda PA 03

Nytt pensionsavtal för statligt anställda PA 03 Nytt pensionsavtal för statligt anställda PA 03 Innehåll Förord 1 Pensionsförmåner 2 Två typer av ålderspension 2 Avgiftsbestämd ålderspension 3 Förmånsbestämd ålderspension 4 Beräkning av förmånsbestämd

Läs mer

Du bestämmer själv. När du vill ta ut pension

Du bestämmer själv. När du vill ta ut pension Du bestämmer själv När du vill ta ut pension Du bestämmer själv Den här broschyren handlar om den allmänna pensionen och vad som kan vara bra att tänka på när du funderar på att ta ut pension. Det finns

Läs mer

För dig som är född 1954 eller senare

För dig som är född 1954 eller senare Så funkar det din ålderspension För dig som är född 1954 eller senare + = Din samlade pension + broschyr_janne.indd 1 privat sparande Allmän pension Vi vill ge dig en bild av hur pensionssystemet fungerar.

Läs mer

Din avtalspension KAP-KL

Din avtalspension KAP-KL Din avtalspension KAP-KL För dig som är anställd inom kommun, landsting, region, kommunalförbund och i vissa kommunala företag gäller pensionsavtalet KAP-KL. Från och med den 1 januari 2014 omfattar KAP-KL

Läs mer

Din tjänstepension PA KFS 09. för dig som är född 1954 eller senare

Din tjänstepension PA KFS 09. för dig som är född 1954 eller senare Din tjänstepension PA KFS 09 för dig som är född 1954 eller senare Kort presentation av broschyren Den här broschyren vänder sig till dig som är anställd inom ett KFS-anslutet företag som avtalat om PA-KFS,

Läs mer

Din allmänna pension en del av din totala pension

Din allmänna pension en del av din totala pension 60+ (65 år) får prognos Inkomst över taket Pensionsmyndigheten Din allmänna pension en del av din totala pension Det här årsbeskedet handlar om den allmänna pensionen. Utöver den får de flesta löntagare

Läs mer

Din pension och andra ersättningar har räknats om vid årsskiftet. De nya beloppen framgår nedan. Premiepension Avdrag för preliminär skatt

Din pension och andra ersättningar har räknats om vid årsskiftet. De nya beloppen framgår nedan. Premiepension Avdrag för preliminär skatt Partiellt uttag av IP (PP-sparare) Pensionsmyndigheten -01-05 451224-1234 Dina belopp för Din pension och andra ersättningar har räknats om vid årsskiftet. De nya beloppen framgår nedan. Belopp per månad

Läs mer

Välkommen till informationsträff med KPA Pension. Åke Andersson

Välkommen till informationsträff med KPA Pension. Åke Andersson Välkommen till informationsträff med KPA Pension Åke Andersson Om KPA Pension KPA Pension är ett serviceorgan för den kommunala sektorn i pensions- och försäkringsfrågor. Vi hjälper till att: räkna fram

Läs mer

Din pension och andra ersättningar har räknats om vid årsskiftet. De nya beloppen framgår nedan. Avdrag för preliminär skatt

Din pension och andra ersättningar har räknats om vid årsskiftet. De nya beloppen framgår nedan. Avdrag för preliminär skatt Tagit ut enbart PP Pensionsmyndigheten -01-05 451224-1234 Dina belopp för Din pension och andra ersättningar har räknats om vid årsskiftet. De nya beloppen framgår nedan. Belopp per månad från och med

Läs mer

Pensionen minskar med 100 kronor efter skatt 2014

Pensionen minskar med 100 kronor efter skatt 2014 Pensionen minskar med 100 kronor efter skatt 2014 Den totala pensionen minskar med cirka 100 kronor efter skatt i snitt nästa år för landets två miljoner pensionärer. Garantipensionen och tjänstepensionen

Läs mer

Hur påverkas pensionssystemets finansiella ställning av ett längre arbetsliv

Hur påverkas pensionssystemets finansiella ställning av ett längre arbetsliv 1 (6) PM Analysavdelningen Erik Granseth 010-454 23 02 Hur påverkas pensionssystemets finansiella ställning av ett längre arbetsliv Effekter av höjd pensionsålder i Pensionsmyndighetens pensionsmodell

Läs mer

Förmånliga kollektivavtal. försäkrar akademiker. Kollektivavtal Sjukdom Arbetsskada Ålderspension

Förmånliga kollektivavtal. försäkrar akademiker. Kollektivavtal Sjukdom Arbetsskada Ålderspension Förmånliga kollektivavtal försäkrar akademiker 1 Sjukdom Arbetsskada Ålderspension Sjukpension Föräldraledighet Arbetslöshet Efterlevandeskydd Innehåll: Sjukdom 4 Arbetsskada 5 Sjukpension 6 Föräldraledighet

Läs mer

Din allmänna pension en del av din totala pension

Din allmänna pension en del av din totala pension Yngre än 28 år utan prognos Pensionsmyndigheten Din allmänna pension en del av din totala pension Det här årsbeskedet handlar om den allmänna pensionen. Utöver den får de flesta löntagare tjänstepension

Läs mer

k Individuella Kollektivavtal Lagar

k Individuella Kollektivavtal Lagar Försäkringsskydd k Individuella Gruppförsäkringar Kollektivavtal Lagar 2012-03-06 2 Medlemmarnas försäkringsskydd k Försäkrad enligt lag Sjukförsäkring Arbetsskadeförsäkring Föräldraförsäkring Ålderspensioner

Läs mer

Pensionsskolan. Pensionsinformation kring vårens omval av tjänstepension ITP (privatanställda tjänstemän)

Pensionsskolan. Pensionsinformation kring vårens omval av tjänstepension ITP (privatanställda tjänstemän) Pensionsskolan Pensionsinformation kring vårens omval av tjänstepension ITP (privatanställda tjänstemän) Pensionsskolan Introduktion I vår är det dags för de privatanställda tjänstemännen att göra ett

Läs mer

Din tjänstepension. pensionsavtalet kap-kl för dig som är kommun- eller landstingsanställd

Din tjänstepension. pensionsavtalet kap-kl för dig som är kommun- eller landstingsanställd Din tjänstepension pensionsavtalet kap-kl för dig som är kommun- eller landstingsanställd Silverviol Viola alba besser Silverviol är en flerårig ört. Vid blomningen och under sommaren är bladen ljusgröna

Läs mer

Din tjänstepension. pensionsavtalet kap-kl för dig som är kommun- eller landstingsanställd

Din tjänstepension. pensionsavtalet kap-kl för dig som är kommun- eller landstingsanställd Din tjänstepension pensionsavtalet kap-kl för dig som är kommun- eller landstingsanställd Silverviol Viola alba besser Silverviol är en flerårig ört. Vid blomningen och under sommaren är bladen ljusgröna

Läs mer

Din framtida pension Född 1954 eller senare 60 sidor grundkunskap

Din framtida pension Född 1954 eller senare 60 sidor grundkunskap Din framtida pension Född 1954 eller senare 60 sidor grundkunskap 1 Författare: Olle Vejde Förlag: Olle Vejde Förlag Milsbo 214, 781 94 Borlänge 0243-610 62 olle.vejde@swipnet.se ollevejde.se Fackgranskning:

Läs mer

Invandrare och pensioner

Invandrare och pensioner Invandrare och pensioner Ålderpension för invandrare från länder utanför OECD-området, Lennart Flood & Andrea Mitrut, SOU 2010:105 http://www.sou.gov.se/socialaradet/rapporter.htm Umeå 19 januari 2012

Läs mer

Mer om slumpvariabler

Mer om slumpvariabler 1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde

Läs mer

Sara, 32 år informatör. Adam, 41 år undersköterska. Louise, 52 år avdelningschef

Sara, 32 år informatör. Adam, 41 år undersköterska. Louise, 52 år avdelningschef Sara, 32 år informatör Adam, 41 år undersköterska Louise, 52 år avdelningschef Fotograf: Mehrdad Modiri. Vi tackar Thomas och Annika (Adam, Louise) för medverkan på bild i arbetet med broschyren Om du

Läs mer

Valet för din tjänstepension KAP-KL

Valet för din tjänstepension KAP-KL Valet för din tjänstepension KAP-KL Tjänstepensionen en viktig del av din ekonomi i framtiden Du som är anställd i kommun eller landsting får tjänstepension från din arbetsgivare. Tjänstepensionen kommer

Läs mer

Det handlar om din pension. pensionsavtalet kap-kl för dig som är kommun- eller landstingsanställd

Det handlar om din pension. pensionsavtalet kap-kl för dig som är kommun- eller landstingsanställd Det handlar om din pension pensionsavtalet kap-kl för dig som är kommun- eller landstingsanställd Fjällräven Fjällräven förekommer i Skandinavien, Sibirien, Kanada, Alaska och på Grönland. I Sverige finns

Läs mer

Verksamhetsplan för pensioner

Verksamhetsplan för pensioner Diarienummer: Ks 2013/0489,024 Verksamhetsplan för pensioner Gäller från: 2014-01-01 Gäller för: Medarbetare Fastställd av: Kommunstyrelsen Utarbetad av: Pensionsstrateg Reviderad senast: Version: 2 Dokumentansvarig

Läs mer

PA 03. 2012-10-24 Hans Norin, OFR

PA 03. 2012-10-24 Hans Norin, OFR PA 03 2012-10-24 Hans Norin, OFR Vad är OFR? En uppdragsstyrd förhandlings- och serviceorganisation för fjorton fackliga organisationer med cirka 555 000 medlemmar inom den offentliga sektorn. Statlig

Läs mer

Tips! Bra att löpande genom presentationen tala om var ni är i pyramiden.

Tips! Bra att löpande genom presentationen tala om var ni är i pyramiden. Bild 1 Syftet med denna bild är att förklara vilka Alecta är. Alecta har blivit valda att hantera vissa delar av tjänstepensionen för privatanställda tjänstemän. Detta enligt ett kollektivavtal mellan

Läs mer

Sveriges pensioner. Premier. Förvaltat kapital. Utbetalningar Allmän pension. Tjänstepension. Privat pension. Summa

Sveriges pensioner. Premier. Förvaltat kapital. Utbetalningar Allmän pension. Tjänstepension. Privat pension. Summa 1 Sveriges pensioner Premier Förvaltat kapital Utbetalningar Allmän pension 237 1 309 222 Tjänstepension 128 1 509 65 15 423 16 380 3 240 303 Privat pension Summa 2 1 En utgångspunkt och ett förslag i

Läs mer

Kommunal avtalspension KAP-KL

Kommunal avtalspension KAP-KL Kommunal avtalspension KAP-KL tjänstepensionen för dig som arbetar i kommun, landsting, region, kommunalt företag eller inom svenska kyrkan i samarbete med I den här broschyren kan du läsa om din tjänstepension.

Läs mer

ditt pensionsavtal GAMLA PA KFS

ditt pensionsavtal GAMLA PA KFS ditt pensionsavtal GAMLA PA KFS Ett pensionsavtal för anställda vid KFS medlemsföretag Den här informationen är utformad för dig som omfattas av avtalspension Gamla PA-KFS. Ett avtal som träffats mellan

Läs mer

Pensionsriktlinjer för förtroendevalda

Pensionsriktlinjer för förtroendevalda Pensionsriktlinjer för förtroendevalda Antagna av kommunfullmäktige 2008-xx-xx Lunds kommun Innehållsförteckning ALLMÄNT...3 BESLUTSORDNING...3 FÖRTROENDEVALDA PÅ HEL- OCH DELTID...3 ÖVRIGA FÖRTROENDEVALDA...3

Läs mer

PTK Rådgivningstjänst funktion och hur råden tas fram

PTK Rådgivningstjänst funktion och hur råden tas fram Datum 2010-04-08 PTK Rådgivningstjänst funktion och hur råden tas fram 1. Bakgrund PTK Rådgivningstjänst hjälper dig att säkerställa att du har ett pensionssparande och ett försäkringsskydd som motsvarar

Läs mer

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6): EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer

Läs mer

Din tjänstepension i Alecta

Din tjänstepension i Alecta premiebestämd tjänstepension, itp1 Din tjänstepension i Alecta I den här broschyren kan du läsa om hur det fungerar att ha en premiebestämd tjänstepension itp 1 i Alecta. Innehåll Din tjänstepension är

Läs mer

Pensionär ett guldkantat liv eller en evig kamp för att få pengarna att räcka till? Lena Lundkvist Prognosinstitutet SCB

Pensionär ett guldkantat liv eller en evig kamp för att få pengarna att räcka till? Lena Lundkvist Prognosinstitutet SCB Pensionär ett guldkantat liv eller en evig kamp för att få pengarna att räcka till? Lena Lundkvist Prognosinstitutet SCB Pension från många håll Allmän pension Inkomstpension Garantipension PPM Tilläggspension

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Försäkringsbranschens tjänstepensionsplan FTP

Försäkringsbranschens tjänstepensionsplan FTP Välkommen till FTP 2 Försäkringsbranschens tjänstepensionsplan FTP Information för dig som är född 1971 eller tidigare Genom din anställning omfattas du av Försäkringsbranschens tjänstepensionsplan, FTP

Läs mer

Din tjänstepension heter ITP 1

Din tjänstepension heter ITP 1 Talarstöd Din tjänstepension heter ITP 1 Bild 2 Alecta - Tjänstepensionsförvaltaren Syftet med denna bild är att berätta varför tjänstepensionen finns hos Alecta. Alecta har blivit utvalt att hantera vissa

Läs mer

I genomsnitt är vi pensionärer en femtedel av våra liv. Vi lever längre än tidigare generationer och medellivslängden har ökat med omkring 25 år i

I genomsnitt är vi pensionärer en femtedel av våra liv. Vi lever längre än tidigare generationer och medellivslängden har ökat med omkring 25 år i I genomsnitt är vi pensionärer en femtedel av våra liv. Vi lever längre än tidigare generationer och medellivslängden har ökat med omkring 25 år i Sverige på bara 100 år. Mycket tyder på att våra barn

Läs mer

KAP-KL. Information om tjänste pensions- avtalet. För dig som är född 1985 eller tidigare och är anställd i kommun och landsting

KAP-KL. Information om tjänste pensions- avtalet. För dig som är född 1985 eller tidigare och är anställd i kommun och landsting KAP-KL Information om tjänste pensions- avtalet För dig som är född 1985 eller tidigare och är anställd i kommun och landsting Bra och trygga arbetsvillkor för dig som arbetar inom offentlig sektor Offentliganställdas

Läs mer

Avtalsjuridik för privatpersoner och företagare

Avtalsjuridik för privatpersoner och företagare v 3 Avtalsjuridik för privatpersoner och företagare avtal24 erbjuder Juridisk rådgivning och avtalsskrivning via telefon och internet Fasta priser på alla avtal 14 dagars kostnadsfri ändringsrätt av alla

Läs mer

Din tjänstepension i Alecta

Din tjänstepension i Alecta förmånsbestämd pension, itp 2 Din tjänstepension i Alecta Informationen i den här broschyren vänder sig till dig som har förmånsbestämd pension itp 2 i Alecta. Din tjänstepension i Alecta förmånsbestämd

Läs mer

Välkommen till Din Trygghet i två kuvert. Fredrik Asplund Tel 0520-49 41 63 fredrik.asplund@unionen.se

Välkommen till Din Trygghet i två kuvert. Fredrik Asplund Tel 0520-49 41 63 fredrik.asplund@unionen.se Välkommen till Din Trygghet i två kuvert Fredrik Asplund Tel 0520-49 41 63 fredrik.asplund@unionen.se Vad ingår i din medlemsavgift? Karriärcoachning CV-granskning Facklig Rådgivning Studiestöd Möjlighet

Läs mer

Inkomstpensionen, premiepension och garantipension - den allmänna pensionen

Inkomstpensionen, premiepension och garantipension - den allmänna pensionen Inkomstpensionen, premiepension och garantipension - den allmänna pensionen I januari 2001 gjordes de första beräkningarna och utbetalningarna av ålderspension enligt Sveriges nya pensionssystem för födda

Läs mer

Collectums Pensionsindex 2012 för tjänstemän i det privata näringslivet

Collectums Pensionsindex 2012 för tjänstemän i det privata näringslivet Collectums Pensionsindex 2012 för tjänstemän i det privata näringslivet En rapport från tjänstepensionsföretaget Collectum som visar hur ingångslön och löneutveckling i olika yrken påverkar den framtida

Läs mer

Din tjänstepension i Alecta

Din tjänstepension i Alecta förmånsbestämd pension, itp 2 Din tjänstepension i Alecta Informationen i den här broschyren vänder sig till dig som har förmånsbestämd pension itp 2 i Alecta. Din tjänstepension i Alecta förmånsbestämd

Läs mer

Bilaga till pensionspolicy

Bilaga till pensionspolicy Bilaga till pensionspolicy 2012 Innehållsförteckning 1 BESKRIVNING AV DET SVENSKA PENSIONSSYSTEMET... 3 1.2 ALLMÄN PENSION... 3 1.3 TJÄNSTEPENSION... 3 1.4 PRIVAT PENSIONSSPARANDE... 3 2 BESKRIVNING AV

Läs mer

Sjukhusläkarens lilla pensionsskola KAP-KL. Hur mycket vet du om ditt nuvarande avtal?

Sjukhusläkarens lilla pensionsskola KAP-KL. Hur mycket vet du om ditt nuvarande avtal? Sjukhusläkarens lilla pensionsskola KAP-KL Hur mycket vet du om ditt nuvarande avtal? Sjukhusläkaren 4/2011 www.sjukhuslakaren.se Se upp, så du inte åker Att arbeta åt flera arbetsgivare samtidigt kan

Läs mer

Bilaga till Pensionsriktlinjer

Bilaga till Pensionsriktlinjer Bilaga till Pensionsriktlinjer Innehållsförteckning BESKRIVNING AV DET SVENSKA PENSIONSSYSTEMET... 3 SJUK- OCH AKTIVITETSERSÄTTNING OCH ALLMÄN PENSION... 4 TJÄNSTEPENSION KAP-KL... 7 BESKRIVNING AV PBF

Läs mer

Din tjänstepension i Alecta

Din tjänstepension i Alecta förmånsbestämd pension, itp 2 Din tjänstepension i Alecta Informationen i den här broschyren vänder sig till dig som har förmånsbestämd pension itp 2 i Alecta. Din tjänstepension i Alecta förmånsbestämd

Läs mer

Din tjänstepension heter ITP 2

Din tjänstepension heter ITP 2 Talarstöd Din tjänstepension heter ITP 2 Aktuella basbelopp se sista sidan Bra att veta. Bild 2 Alecta - Tjänstepensionsförvaltaren Syftet med denna bild är att berätta varför tjänstepensionen finns hos

Läs mer

Mata in data i Excel och bearbeta i SPSS

Mata in data i Excel och bearbeta i SPSS Mata in data i Excel och bearbeta i SPSS I filen enkät.pdf finns svar från fyra män taget från en stor undersökning som gjordes i början av 70- talet. Ni skall mata in dessa uppgifter på att sätt som är

Läs mer

Din tjänstepension heter ITP 1

Din tjänstepension heter ITP 1 Talarstöd Din tjänstepension heter ITP 1 Aktuella basbelopp se sista sidan Bra att veta. Bild 2 Alecta - Tjänstepensionsförvaltaren Syftet med denna bild är att berätta varför tjänstepensionen finns hos

Läs mer

Tänker du på din pension? Allt du behöver veta om FTP 12!

Tänker du på din pension? Allt du behöver veta om FTP 12! Tänker du på din pension? Allt du behöver veta om FTP 12! Tjänstepension är uppskjuten lön För alla Är du intresserad av din lön och din löneutveckling? Om svaret är ja, så borde du också vara intresserad

Läs mer

tillämpning Pensionstillämpning för Hudiksvalls kommun

tillämpning Pensionstillämpning för Hudiksvalls kommun tillämpning Pensionstillämpning för Hudiksvalls kommun Pensionstillämpning Tillämpningen beskriver hur Hudiksvalls kommun hanterar pensionsfrågor för medarbetare och förtroendevalda. De pensionsavtal som

Läs mer

KAP-KL DITT NYA PENSIONSAVTAL VIKTIG INFORMATION FÖR DIG SOM ÄR ANSTÄLLD I KOMMUN, LANDSTING ELLER REGION.

KAP-KL DITT NYA PENSIONSAVTAL VIKTIG INFORMATION FÖR DIG SOM ÄR ANSTÄLLD I KOMMUN, LANDSTING ELLER REGION. K A P-KL D IT T NYA PE N SI O N SAVTA L VI KTI G I N F O R M ATI O N F Ö R D I G SO M Ä R A N STÄ L L D I KO M MUN, L A N D STI N G E L L E R R E G I O N. Din framtida pension Anställda i kommun, landsting

Läs mer

Inspektionen för socialförsäkringen

Inspektionen för socialförsäkringen Inspektionen för socialförsäkringen Kunskapsmätning Kartläggning av pensionsspararnas kunskaper om det allmänna pensionssystemet -- Johan Orbe Caroline Theorell Projektnummer: Sammanfattning Bara knappt

Läs mer

och pensionärerna Rapport 1: 2008

och pensionärerna Rapport 1: 2008 RPensionsspararna och pensionärerna 2007 Rapport 1: 2008 Pensionsspararna och pensionärerna 2007 Fond- och Finansavdelningen, Inger Johannisson och Daniel Ramse Datum: 2008-05-23 Innehåll 1 Ordlista..................................5

Läs mer

Din tjänstepension heter ITP 2

Din tjänstepension heter ITP 2 Talarstöd Din tjänstepension heter ITP 2 Bild 2 Alecta - Tjänstepensionsförvaltaren Syftet med denna bild är att berätta varför tjänstepensionen finns hos Alecta. Alecta har blivit utvalt att hantera vissa

Läs mer

2007:3. Ålderspension. In- och utflöden i pensionssystemet ISSN 1652-9863

2007:3. Ålderspension. In- och utflöden i pensionssystemet ISSN 1652-9863 2007:3 Ålderspension In- och utflöden i pensionssystemet ISSN 1652-9863 Statistikinformation försäkringsstatistik Ålderspension In- och utflöden i pensionssystemet Utgivare: Upplysningar: Försäkringskassan

Läs mer

Alecta Optimal Pension

Alecta Optimal Pension 6105 2011.04 Illustration Agnes Miski Török Foto Björn Keller Produktion Alecta p r e m i e b e s t ä m d t j ä n s t e p e n s i o n Alecta Optimal Pension Tjänstepensionen med hög förväntad avkastning

Läs mer

Genomsnittlig allmän pension 2013

Genomsnittlig allmän pension 2013 Genomsnittlig allmän pension 2013 Kronor/månad 95e percentil 75e percentil 50e percentil 25e percentil 5e percentil 1 Vad är genomsnittlig pension och hur förändras den 2014? Katrin Westling Palm, generaldirektör

Läs mer

Sjunde AP-fonden förvaltar ickevalsalternativet i Premiepensionssystemet.

Sjunde AP-fonden förvaltar ickevalsalternativet i Premiepensionssystemet. Populärordlista 1 2 Administrationsavgift Administrationsavgiften dras från premien och/eller ditt pensionskapital och ska täcka kostnaderna för drift och förvaltning av pensionen. Avgiften tas ut av den

Läs mer

KAP-KL. Information om tjänste pensions- avtalet. För dig som är född 1985 eller tidigare och är anställd i kommun och landsting

KAP-KL. Information om tjänste pensions- avtalet. För dig som är född 1985 eller tidigare och är anställd i kommun och landsting KAP-KL Information om tjänste pensions- avtalet För dig som är född 1985 eller tidigare och är anställd i kommun och landsting Bra och trygga arbetsvillkor för dig som arbetar inom offentlig sektor Offentliganställdas

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Din pension och framtida ekonomi. pensionsavtalet pa-kl för dig som är eller har varit kommun- eller landstingsanställd

Din pension och framtida ekonomi. pensionsavtalet pa-kl för dig som är eller har varit kommun- eller landstingsanställd Din pension och framtida ekonomi pensionsavtalet pa-kl för dig som är eller har varit kommun- eller landstingsanställd Innehåll Välkommen till KPA Pension 3 Tjänstepension och allmän pension 3 Din allmänna

Läs mer

Inkomstfördelningen bland pensionärer. Gabriella Sjögren Lindquist och Eskil Wadensjö Institutet för social forskning, Stockholms universitet

Inkomstfördelningen bland pensionärer. Gabriella Sjögren Lindquist och Eskil Wadensjö Institutet för social forskning, Stockholms universitet Inkomstfördelningen bland pensionärer Gabriella Sjögren Lindquist och Eskil Wadensjö Institutet för social forskning, Stockholms universitet Hur är inkomsterna för pensionärerna? Andelen fattiga pensionärer

Läs mer

Belopp för tjänstepension, privat pension och inkomstgrundad allmän ålderspension

Belopp för tjänstepension, privat pension och inkomstgrundad allmän ålderspension 1 (6) PM 215-3-27 Analysavdelningen Hans Karlsson Belopp för tjänstepension, privat pension och inkomstgrundad allmän ålderspension I denna promemoria visas några diagram med totala belopp för inkomstgrundad

Läs mer

2009-04. Välj din pension själv

2009-04. Välj din pension själv 6 2009-04 Välj din pension själv Välj din pension själv När du så småningom går i pension kommer den ålderspension som betalas ut till dig att komma från två håll: Allmän pension och avtals-/tjänstepension.

Läs mer

DET HÄR ÄR ITP 2 OCH ITPK

DET HÄR ÄR ITP 2 OCH ITPK 2015 DITT ITPK-VAL Genom ditt arbete har du tjänstepensionen ITP 2. Du har möjlighet att välja hur en del av pengarna ska förvaltas och om din familj ska kunna få pengar efter dig. Oavsett om du gör ett

Läs mer

Välfärdstendens 2014. Delrapport 4: Tryggheten som pensionär

Välfärdstendens 2014. Delrapport 4: Tryggheten som pensionär Välfärdstendens 2014 Delrapport 4: Tryggheten som pensionär Inledning Folksam har sedan år 2007 publicerat en årlig uppdatering av rapporten Välfärdstendens. Syftet med Välfärdstendens är att beskriva

Läs mer

Vad händer när någon i aktiv ålder dör?

Vad händer när någon i aktiv ålder dör? 2007:2 Vad händer när någon i aktiv ålder dör? En empirisk analys av förändringen i ekonomisk standard efter ett dödsfall 2003 ISSN 1653-3259 Sammanfattning Denna Redovisar bygger på de registerdata som

Läs mer

Avgiftsbestämd ålderspension

Avgiftsbestämd ålderspension PA 03 Avgiftsbestämd ålderspension på inkomst upp till 30 ibb Förmånsbestämd ålderspension på inkomst mellan 7,5 ibb och 30 ibb Förmånsbestämd ålderspension på inkomst upp tilll 7,5 ibb för anställda födda

Läs mer

Pensionsprognoser -utfall i orange pensionsbrev 2000

Pensionsprognoser -utfall i orange pensionsbrev 2000 Pensionsprognoser -utfall i orange pensionsbrev 2 Anna Westerberg Sammanfattning I det följande redovisas utfallet av pensionsprognosen i det orange pensionsbeskedet, för åldersklasser, kvinnor och män

Läs mer

Om erbjudandet för din pensionsförsäkring med traditionell förvaltning.

Om erbjudandet för din pensionsförsäkring med traditionell förvaltning. Om erbjudandet för din pensionsförsäkring med traditionell förvaltning. Avtalspension Kompletterande pension Fakta om erbjudandet att ändra villkor till vår nya traditionella förvaltning Nya Trad Du har

Läs mer

Ditt nya pensionsavtal Viktig information för dig som är statligt anställd

Ditt nya pensionsavtal Viktig information för dig som är statligt anställd Ditt nya pensionsavtal Viktig information för dig som är statligt anställd Din framtida pension Statligt anställda har fått ett nytt pensionsavtal! Den 1 februari 2002 blev ett nytt pensionsavtal för statligt

Läs mer

Lika lön ger olika pension! En pensionsprognos för kvinnor som är födda på 70-talet

Lika lön ger olika pension! En pensionsprognos för kvinnor som är födda på 70-talet Lika lön ger olika pension! En pensionsprognos för kvinnor som är födda på 70-talet Sammanfattning Kvinnor som är födda på 70-talet kan inte räkna med att få samma pension som sina manliga kollegor trots

Läs mer

Din pension enligt det nya ITP-avtalet

Din pension enligt det nya ITP-avtalet Din pension enligt det nya ITP-avtalet För dig som är född 1978 eller tidigare. 008/mars Reviderad 6:e upplaga! PTK (Förhandlings- och samverkansrådet PTK) består av 6 tjänstemannaförbund med cirka 700

Läs mer

En snabblektion om pension

En snabblektion om pension 2013 Ditt ITPK-val Du har tjänstepensionen ITP 2. Det är din arbetsgivare som betalar, men du kan själv välja hur en del av de här pengarna ska förvaltas. Collectum är valcentral, det är hos oss du gör

Läs mer

Pensionen kommer från flera håll. Källa: Pensionsmyndigheten

Pensionen kommer från flera håll. Källa: Pensionsmyndigheten Pensionen kommer från flera håll Källa: Pensionsmyndigheten Vilka statliga tjänstepensionsavtal finns det? PA-91 Född 1942 och tidigare Sjukersättning eller sjukpension beviljad före 1 januari 2003 (minst

Läs mer

P E N S I O N S F A K T A

P E N S I O N S F A K T A P E N S I O N S F A K T A PA-91 Tjänstepension PA-91 Tjänstepension P A-91 är en pensionsplan för arbetstagare hos staten med flera. Om du är född före 1943 och har pensionsåldern 65 år, vilket de flesta

Läs mer

Tjänstepensionens delar Tjänstepensionens delar är ålderspension, efterlevandeskyddet och sjukförsäkringen. Hur stor din tjänstepension blir beror på

Tjänstepensionens delar Tjänstepensionens delar är ålderspension, efterlevandeskyddet och sjukförsäkringen. Hur stor din tjänstepension blir beror på 1 Tjänstepensionens delar Tjänstepensionens delar är ålderspension, efterlevandeskyddet och sjukförsäkringen. Hur stor din tjänstepension blir beror på vilket avtalsområde du tillhör. Har du jobbat inom

Läs mer

Som privatanställd tjänsteman har du tjänstepensionen ITP 1. Varje månad betalar din arbetsgivare in pengar till din tjänstepension.

Som privatanställd tjänsteman har du tjänstepensionen ITP 1. Varje månad betalar din arbetsgivare in pengar till din tjänstepension. 2015 DITT ITP 1-VAL Genom ditt arbete har du tjänstepensionen ITP 1. Du har möjlighet att välja hur pengarna ska förvaltas och om din familj ska kunna få pengar efter dig. Oavsett om du gör ett aktivt

Läs mer

Din pension enligt det nya ITP-avtalet.

Din pension enligt det nya ITP-avtalet. Din pension enligt det nya ITP-avtalet. För dig som är född 979 eller senare. 2008/mars Reviderad 6:e upplaga! PTK (Förhandlings- och samverkansrådet PTK) består av 26 tjänstemannaförbund med cirka 700

Läs mer

Alla som bor och/eller arbetar i Sverige omfattas.

Alla som bor och/eller arbetar i Sverige omfattas. Allmän pension Fem fakta om allmän pension Alla som bor och/eller arbetar i Sverige omfattas. De flesta av oss både bor och arbetar här, men det är viktigt att komma ihåg att också den som inte är bosatt

Läs mer

PM Dok.bet. PID124950 2013-11-19

PM Dok.bet. PID124950 2013-11-19 1 (12) PM Pensionsutvecklingsavdelningen Stefan Granbom Gunilla Larsson Skatt före och från och med 66-årsåret Kunskaperna om de ekonomiska konsekvenserna i valet mellan att fortsätta att arbeta eller

Läs mer

KAP-KL. Förmåner i KAP-KL KAP-KL innehåller både premiebestämd och förmånsbestämda förmåner

KAP-KL. Förmåner i KAP-KL KAP-KL innehåller både premiebestämd och förmånsbestämda förmåner KAP-KL KAP-KL - Kollektiv Avtalad Pension Kommuner och Landsting gäller för anställda som är födda 1938 eller senare. KAP-KL gäller från 1 januari 2006 och ersatte pensionsavtalet PFA. Även anställda i

Läs mer

Pensionspolicy. Antagen av kommunstyrelsen 2011-11-28. I samarbete med

Pensionspolicy. Antagen av kommunstyrelsen 2011-11-28. I samarbete med Pensionspolicy Antagen av kommunstyrelsen 2011-11-28 I samarbete med Innehållsförteckning INLEDNING...3 KOLLEKTIVAVTALET...3 UPPDATERING...3 BESLUTSORDNING...3 A UNDER ANSTÄLLNINGSTID...4 A.1 LÖNEVÄXLING

Läs mer

Hur löser vi finansieringen av välfärden för en åldrande befolkning?

Hur löser vi finansieringen av välfärden för en åldrande befolkning? IEI NEK1 Ekonomisk Politik Grupparbete VT12 Hur löser vi finansieringen av välfärden för en åldrande befolkning? Bernt Eklund, Mårten Ambjönsson, William Nilsonne, Fredrik Hellner, Anton Eriksson, Max

Läs mer

Avtalspension SAF-LO ett viktigt tillägg

Avtalspension SAF-LO ett viktigt tillägg Avtalspension SAF-LO ett viktigt tillägg 2013 Din avtalspension ett viktigt tillägg När du så småningom går i pension kommer du att få pension från två håll: Allmän pension och avtalspension. Den allmänna

Läs mer

Pensionerna efter pensioneringen

Pensionerna efter pensioneringen Pensionerna efter pensioneringen Kristian Örnelius Institutet för Privatekonomi September 2010 INNEHÅLLSFÖRTECKNING Hur utvecklas pensionerna efter pensioneringen? 3 Hur fungerar systemet? 3 Pension med

Läs mer

Kunskapsmätning 2012. Kartläggning av pensionsspararnas kunskaper om det allmänna pensionssystemet. Arbetsrapport 2013-1. Marcela Cohen Birman

Kunskapsmätning 2012. Kartläggning av pensionsspararnas kunskaper om det allmänna pensionssystemet. Arbetsrapport 2013-1. Marcela Cohen Birman Kunskapsmätning 2012 Kartläggning av pensionsspararnas kunskaper om det allmänna pensionssystemet Marcela Cohen Birman Arbetsrapport 2013-1 2(7) 3(7) Innehåll 1 Kunskaper om det allmänna pensionssystemet...

Läs mer

Avräkningen av garantipension mot premiepension

Avräkningen av garantipension mot premiepension 1 (22) Socialdepartementet 103 33 Stockholm Avräkningen av garantipension mot premiepension Regeringen har i regleringsbrevet för år 2008 uppdragit åt Försäkringskassan att i samråd med Premiepensionsmyndigheten

Läs mer