Innan du tittar på svaren och på kommentarerna kolla följande:

Storlek: px
Starta visningen från sidan:

Download "Innan du tittar på svaren och på kommentarerna kolla följande:"

Transkript

1 Kommentarer till Energibalanser på kursen Bioteknik KKKA01 Räkneövningar energibalanser (korrigerad)/ Ingegerd Sjöholm VT Läsvecka 5,6, 7 Obs! Du behöver tillgång till SI Chemical data och naturligtvis räknare. Innan du tittar på svaren och på kommentarerna kolla följande: Definiera systemgräns Skriv upp massbalans Skriv upp energibalans Skriv ut alla samband Kontrollera att antalet obekanta inte är fler än antalet balanser Lös ekvationssystemet Uppgift 1. a) Beräkna H för is -10ºC Beräkna H för is 0ºC Beräkna H för smältning av is Beräkna H för vatten 0ºC Beräkna H för vatten 100ºC Beräkna H för förångning av vatten Rita in H som funktion av temperaturen i diagram. b) Beräkna summa H Uppgift 2. Massbalans: mvatten 20ºC = mvatten 100ºC Energibalans: Energiin = Energiut mvatten 20ºC *Hvatten 20ºC+ Q = mvatten 100ºC *H vatten 100ºC Qteor. = mvatten 100ºC *H vatten 100ºC - mvatten 20ºC *Hvatten 20ºC Qteor = mvatten *(cpvatten100ºc*t100ºc cpvatten20ºc*t20ºc) Detta Q är det teoretiska värdet för hur mycket energi du behöver. Verkningsgraden är 70%. ( Teoretisk mängd /verkligt behov) x= gram EtOH 0,7 Qverk.= Qteor = x * H EtOH förbr = x* (1367 kj/mol) *( 1mol/46,1g) Beräkna Qverk Svar: 16 g etanol eller 21g metanol

2 Uppgift 3. Bestäm beräkningsbas t ex... Räkna på 1 kg tegel och entalpin vid 25 ºC. Energibalans: Här skall du ha samma energiinnehåll för de olika materialen. Jag väljer att jämföra med tegel. Tegel 1kg * 0,84 kj/kg,k * 25ºC = 21 kj X kg kork för att få entalpin 21 kj = x*1,88 kj/kg,k * 25ºC ger x= 0,45 kg Y kg trä för att få entalpin 21 kj = y *2,4 kj/kg,k * 25ºC ger y= 0,35 kg Z kg alminiumbrons för att få entalpin 21 kj = z * 0,410 kj/kg,k * 25ºC ger z = 2,05 kg Svar: 1kg tegel vid 25ºC har samma entalpi som 0,45 kg kork, 0,35 kg trä respektive 2,05 kg alminiumbrons. Uppgift 4. Tekniska data: Benzaldehyd molvikt: 106,12, kokpunkt: 179ºC, förångningsvärme 50 kj/mol Massbalans: mbenzaldehyd,ånga = mbenzaldehyd,flytande Energibalans: Energi in = Energi ut mbenzaldehyd,ånga * HBenzaldehyd,ånga = mbenzaldehyd,flyt * HBenzaldehyd,flyt + + mbenzaldehyd,flyt* Hkond mbenzaldehyd,flyt* Hkond = 50g * (-50 kj/mol) *( 1mol/106,1g) = 23,6kJ Svar: 23,6 kj Uppgift 5. Tekniska data Molvikt NaCL: 58,45 Molvikt vatten: 18,016 Lösningsenergi för NaCl (s l) 28 kj/mol cp för NaCl vid rumstemperatur: 50 J/K, mol cp för vatten vid rumstemperatur: 75 J/K, mol cp för Na + i vattenlösn 46 J/K, mol cp för Cl - i vattenlösn -136 J/K, mol

3 a) Massbalans m Na in = m Na ut m Cl in = m Cl ut m H 2 O in = m H 2 O ut Energibalans: mvatten 20ºC *cpvatten * 20ºC+ mnacl 20ºC *cpnacl * 20ºC + Q = mna + *cpna + * temp? + mcl - *cpcl - * temp? + m vatten *cpvatten *?ºC Här måste vi mäta temperaturen för att kunna räkna ut entalpiförändringen. Ett annat sätt är att beräkna lösningsenergi för NaCl (s l) för 5g NaCl Hsmält= 28 kj/mol H =( 5/58,45) * Svar: 2,4 kj Uppgift 6. vatten start Sjö 100m 3 vatten avdunstn vatten -avdunst Värmen från sol och vind ger Q för avdunstning. Massbalans: m vatten start = m vatten avdunst + m avdunstn Energibalans: m vatten start Cp *15ºC = m vatten avdunst Cp *13 ºC + m avdunstn * H om du vill kalla m avdunstn för x. m vatten start Cp *15ºC = m vatten x Cp *13 ºC + x* H lös ut x Svar: 665 liter vatten. (Observera att detta är ett idealiserat exempel. I verkligheten så kommer omgivande värme från sol och vind hinna att kompensera för större delen av energin som behövs för att förånga vattnet och temperatursänkningen kommer aldrig att bli så stor som 2 grader.)

4 Uppgift 7. Lösning: Bestäm en sluttemperatur som du siktar på att få vattnet till. Jag har valt 42 C. Man kan göra på olika sätt. Ett sätt är att antaga x kg 10-gradigt vatten, y kg 50-gradigt vatten och z kg 2-gradigt vatten. Energibalanser alternativ 1 blanda bara x kg ( +10 C) och y kg (+50 C) alternativ 2 blanda dina x kg ( +10 C) med (18-x ) (+ 90 C) alternativ 3 blanda dina y kg (+50 C) med z kg (+2 C) Lösning till Alternativ 1. Massbalansen : x+y =18 Energibalansen med insatta siffror 18 * 4,176 *42 = x * 4,203 * 10 + y * 4,178 * 50 Skriv om ekvationerna till: x * 4,203 * 10 + y * 4,178 * 50 = 18 * 4,176 *42 x+y =18 Detta ger matrisena 4,203 * 10 4,178 * och matrisen b 18 * 4,176 *42 18 Sätt in dessa i matlab A\b och du får svaret på ditt x och y. Lösning till Alternativ 2. Energibalansen med insatta siffror x * 4,203 * 10 + (18-x) *4,202* 90 = 18 * 4,176 *42 Här har du endast en obekant och kan lösa ut x. Lösning till Alternativ 3. Massbalansen: y+ z = 18 Energibalansen med insatta siffror 18 * 4,176 *42 = y * 4,178 * 50 + z * 4,203 * 2 som ger matrisen A: 1 1 4,178 * 50 4,203 * 2 och matrisen b: * 4,176 *42

5 Lösning till alternativ 4 blanda x kg ( +10 C) och y kg (+50 C) och z kg (+2 C) och du måste använda lika mycket tvågradigt som 90 gradigt vatten. Jag har lagt till ett extra villkor om mängderna. Massbalans: 2*x + y = 18 Massbalans: x + y + z = 18 Energibalansen med siffror: 4,203 * 10 * x + 4,178 * 50 *y + 4,203 * 2 * z = 18 * 4,176 *42 Skriv om ekvationerna till: som ger matrisen A: ,203 * 10 4,178 * 50 4,203 * 2 och matrisen b: * 4,176 *42 Sätt in dessa i matlab A\b och du får svaret på ditt x och y och z. Uppgift 8. Givet: Cp vatten = 4.18 kj/kg, C, T start = 5 C, T slut = 45 C, mängden m / höjd = ρ Area cirkel / höjd = ρ π r r /höjd välj t ex att räkna per decimeter ( = 0,1 m) för bägare med diametern 5 cm och 0,1 m hög blir m= 1000* π*0,025*0.025 * 0,1= 0,196 kg ~ = 0,2 kg för bägare 10 cm m= 0,7854 kg ~ 0,8 kg för bägare 15 cm m= 1,7671 kg ~ 1,8 kg Massbalans: massan är den samma hela tiden. Energibalansen: Energi in = Energi ut + Q Q= Energi in - Energi ut Q= (m Cp vatten45 C T vatten 45 C - m Cp vatten 5 C T vatten 5 C ) cp var här samma vid 5 C och 45 C. 45 Q = m c p 5 dt förenklat insatt i formeln Q= m Cp vatten ΔT Q 5 cm = 0,2 * 4.18 * (45-5) = 33,44 kj Q 10 cm = 133,76 kj Q 15 cm = 300, 96kJ

6 Vidareutveckling av talet: Om uppvärmningsanordningen skall klara av att värma 0,5 grader /minut dvs att det inte får ta mer än 80 minuter att värma hela mängden så krävs det att värmaren kan ge ifrån sig 33,44 kj, 133,76kJ respektive 300,96 kj. Ofta uttrycker man detta i hur många watt som en utrustning kan ge ifrån sig. I detta fall (W= J/s) för 5 cm bägare (33,44 *1000) / (80*60) = 6,9667 W - alltså allra minst 7 W för 10 cm bägare (133,76 * 1000)/(80*60) = 27,8667 W - alltså allra minst 28 W för 15 cm bägare (300,96 * 1000)/(80*60) = 62,7 W - alltså allra minst 63 W Uppgift 9. 1 kg färska Ä innehåller 750g vatten + 250g TS 1 kg äppelringar innehåller 200g vatten + 800g TS 1 kg frystorkade äppelchips innehåller 3 g vatten g TS A) Till 1 kg äppelringar behöver x kg färska äpplen B) Till 1 kg frystorkade äppelchips y kg färska äpplen TS före TS efter Resultat mängd förångat vatten A) X * 0,250 0,800 3,2 kg 3,2*0,750 0,200 B) Y * 0,250 0,970 3,88 kg 3,88*0,750 0,030 För beräkning av energin se principen i tal 16. Uppgift 10. 1) Bestäm din systemgräns 2) Räkna antingen på 10 kg vatten eller 1 timme 3) Kontrollera sker det några reaktioner? Nej det gör det inte. 4) Ställ upp materialbalansen 5) Ställ upp energibalanssen 4) Massbalans massa in = massa ut 10 = 9 +1 OK - balansen är komplett 5) Energibalansen energi in - energi ut Q = 0 10kg*104,8kJ/kg 9 kg* 368,5kJ/kg 1kg*2656,9 kj/kg Q = 0 Q = ,9kJ Q är negativt och således måste man tillföra energi till systemet. Svar: Värmetillförseln måste vara 4, kj/timmer

7 Uppgift 14. Att frakta 1 ton varor från Stockholm till Lund kräver : med tåg: 9,4 kg plast alternativt 7,3 kg rapsfrö med lastbil: 38,2 kg plast alternativt 30,6 kg rapsfrö Uppgift 15. Antag att du måste dricka x kg Antag att du måste äta totalt y kg kolhydrater och protein 2/3*y kolhydrater och 1/3* y protein Antag att din omsättning är z kg vatten 0,93 x + 0,37y*1/3 + 0,75 *y*2/3 +0,1*2,5 = 2,5 vattentillförsel 0,9* z= 0.6*x + 0,3y vattenomsättningen z=1 dvs 100% omsättning 0,93 0,1233 0, ,6 0,3-0, *x + 0,3y = 0,9* 2,5 0,93 x + 0,37y*1/3 + 0,75 *y*2/3 +0,1*2,5 = 2,5 0,93 x +0,623 y = 2,25 0.6*x + 0,3y = 2,25 Uppgift 16. Q (J) Lufttorkning m Cp 85 T 85 C - m Cp 5 T 5 C + m H förågningsvärme +5 C 85 C

8 a) totala entalpiförändringen för 1 kg lufttorkade nypon 1 kg färska nypon innehåller 72% = 0,72 kg vatten och 0,28 kg övrigt (detta kallar man oftast torrsubstans TS) De torkade nyponen innehåller 11 % vatten. Detta innebär att om du har 1kg torr produkt så är vatteninnehållet 0,11 kg vatten och 0,89 kg TS. Detta innebär att 1kg färska nypon innehåller 0,72 kg vatten och 0,28 kg TS. Efter torkningen har du 0,28 kg TS + x kg vatten. Och du vet att x/(x+0,28) = 0,11 Således kan du räkna ut att x = 0,035 kg vatten Nyponen (0,28 kg vatten) värms från +5 C till +85 C och (0,28 0,035) förångas vid 85 C. Entalpiförändringen: m Cp 85 T 85 C - m Cp 5 T 5 C + m H förågningsvärme (0,28 * * 85) (0,28 * * 5) + (0,28 0,035) * 2590 kj = 728,3 kj Frystorkning Q (J) m Cp 20 T 20 C - m Cp 0 T 0 C +20 C 0 C m H förågningsvärme +5 C m Cp 0 T 0 C - m Cp 5 T 5 C 0 C sublimering

9 0 kj vid 0 C m H kristall. m H smältv m Cp 0 T 0 C - m Cp -20 T -20 C -20 C m Cp 0 T 0 C - m Cp -20 T -20 C b) totala entalpiförändringen för 1 kg frystorkade nypon m F = vatten i färska nypon m T = vatten kvar i torkade nypon m F Cp 0 T 0 C - m F Cp 5 T 5 C + (-m F H kristall ) + m F Cp 0 T 0 C - m F Cp -20 T -20 C + m F H smältv +(m F - m T ) H förågningsvärme + m T Cp 20 T 20 C - m T Cp 0 T 0 C = = m F Cp 0 T 0 C - m F Cp 5 T 5 C + (m F - m T) H förågningsvärme + m Cp 20 T 20 C - m Cp 0 T 0 C = = (m F - m T) H förågningsvärme + m T Cp 20 T 20 C - m T Cp 5 T 5 C = (0,28-0,035) * ,035* 4.206* (20-5) = 636,8 kj c) Beräkna hur mycket mera teoretisk energi som behövs för att frystorka i jämförelse med att lufttorka nypon. Lufttorkning: samma svar som i a) 728,3 kj Frystrokning: här måste du addera alla energistegen och betrakta alla steg absolutvärden m F Cp 0 T 0 C - m Cp 5 T 5 C + (-m F H kristall ) + m F Cp 0 T 0 C - m F Cp -20 T -20 C + m F H smältv +(m F - m T ) H förågningsvärme + m T Cp 20 T 20 C - m T Cp 0 T 0 C 0,28 * * 5 + 0,28 * ,28 *2.0 * ,28 *2.0 * ,28 * (0,28-0,035)* * * * *0 = 19, , ,2 + 11, , , = 866,3 kj d) Beräkna energiåtgången/ mg vitamin C för de båda torkningssystemen. Färska nypon har 150 mg/ 100g

10 lufttorkade nypon har 70% kvar dvs 0,7 * 150 = 105 mg/100g = 1050mg/kg frystorkade nypon har 95% kvar dves 0,95 *150 = 142,5 mg/100g = 1425mg/kg lufttorkning: 728,3 kj/1050 mg vitamin C = 0,69 kj/ mg vitamin C frystorkning: 866,3 kj /1425mg vitamin C = 0,61 kj/mg vitamin C Uppgift 17. Uppgift 18. Svar: a) 1,43 GJ/h b) 43.9%, 8.86%, 47.23% Uppgift 19. Koncentrationen uttryckt i vikt/vikt blir 20% Koncentrationen uttryckt i vikt/volym blir 21,4% Molfraktionen blir 0,018 Molkoncentrationen blir 0,63 mol m -3

Kondensation 4) 50 g Benzaldehyd skall kondenseras vid 179ºC. Beräkna enthalpiförändringen för Benzaldehyd före och efter kondensationen.

Kondensation 4) 50 g Benzaldehyd skall kondenseras vid 179ºC. Beräkna enthalpiförändringen för Benzaldehyd före och efter kondensationen. Kurs: Bioteknik KKKA01 Räkneövningar energibalanser / Ingegerd Sjöholm VT2 2008 Läsvecka 5,6, 7 Obs! Du behöver tillgång till SI Chemical data och naturligtvis räknare. Förånga is 1. Kristalliserat vatten,

Läs mer

Kap 4 energianalys av slutna system

Kap 4 energianalys av slutna system Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =

Läs mer

Aggregationstillstånd

Aggregationstillstånd 4. Gaser Aggregationstillstånd 4.1 Förbränning En kemisk reaktion mellan ett ämne och syre. Fullständig förbränning (om syre finns i överskott), t.ex. etanol + syre C2H6OH (l) +3O2 (g) 3H2O (g) + 2CO2

Läs mer

Föreläsning 2.3. Fysikaliska reaktioner. Kemi och biokemi för K, Kf och Bt S = k lnw

Föreläsning 2.3. Fysikaliska reaktioner. Kemi och biokemi för K, Kf och Bt S = k lnw Kemi och biokemi för K, Kf och Bt 2012 N molekyler V Repetition Fö2.2 Entropi är ett mått på sannolikhet W i = 1 N S = k lnw Föreläsning 2.3 Fysikaliska reaktioner 2V DS = S f S i = Nkln2 Björn Åkerman

Läs mer

Prov Fysik 1 Värme, kraft och rörelse

Prov Fysik 1 Värme, kraft och rörelse Prov Fysik 1 Värme, kraft och rörelse För samtliga uppgifter krävs om inte annat står antingen en tydlig och klar motivering eller fullständig lösning och att det går att följa lösningsgången. Fråga 1:

Läs mer

Energibalans och temperatur. Oorganisk Kemi I Föreläsning

Energibalans och temperatur. Oorganisk Kemi I Föreläsning Energibalans och temperatur Oorganisk Kemi I Föreläsning 5 20.4.2010 Innehåll Värme i förbränning Energibalans Värmeöverföring Temperaturer Termer och begrepp Standardbildningsentalpi Värmevärde Effektivt

Läs mer

Tentamen i KFK080 Termodynamik kl 08-13

Tentamen i KFK080 Termodynamik kl 08-13 Tentamen i KFK080 Termodynamik 091020 kl 08-13 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För

Läs mer

Dagens föreläsning. Tema 3 Indunstning

Dagens föreläsning. Tema 3 Indunstning Dagens föreläsning ema 3 Indunstning Kap 1-2 Allmänt indunstning Repetition enkeleffektsindunstare Kokpunktsförhöjning Avluftning Generella balanser för flerstegsindunstare Vad är indunstning? Indunstning

Läs mer

Lite kinetisk gasteori

Lite kinetisk gasteori Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl

Läs mer

Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F7 Intermolekylär växelverkan kortväga repulsion elektrostatisk växelverkan (attraktion och repulsion): jon-jon (långväga), jon-dipol, dipol-dipol medelvärdad attraktion (van der Waals): roterande

Läs mer

Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 6 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Kapitel 6. Termokemi. Kapaciteten att utföra arbete eller producera värme. Storhet: E = F s (kraft sträcka) = P t (effekt tid) Enhet: J = Nm = Ws

Kapitel 6. Termokemi. Kapaciteten att utföra arbete eller producera värme. Storhet: E = F s (kraft sträcka) = P t (effekt tid) Enhet: J = Nm = Ws Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 6.2 6.3 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage Learning. All rights reserved 2 Energi Kapaciteten att

Läs mer

Kapitel 6. Termokemi

Kapitel 6. Termokemi Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 Energi och omvandling 6.2 Entalpi och kalorimetri 6.3 Hess lag 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage

Läs mer

Innehåll. Energibalans och temperatur. Termer och begrepp. Mål. Hur mycket energi. Förbränning av fasta bränslen

Innehåll. Energibalans och temperatur. Termer och begrepp. Mål. Hur mycket energi. Förbränning av fasta bränslen Innehåll balans och temperatur Oorganisk Kemi I Föreläsning 4 14.4.2011 Förbränningsvärme balans Värmeöverföring Temperaturer Termer och begrepp Standardbildningsentalpi Värmevärde Effektivt och kalorimetriskt

Läs mer

Termodynamik FL3. Fasomvandlingsprocesser. FASER hos ENHETLIGA ÄMNEN. FASEGENSKAPER hos ENHETLIGA ÄMNEN. Exempel: Koka vatten under konstant tryck:

Termodynamik FL3. Fasomvandlingsprocesser. FASER hos ENHETLIGA ÄMNEN. FASEGENSKAPER hos ENHETLIGA ÄMNEN. Exempel: Koka vatten under konstant tryck: Termodynamik FL3 FASEGENSKAPER hos ENHETLIGA ÄMNEN FASER hos ENHETLIGA ÄMNEN Enhetligt ämne: ämne med välbestämd och enhetlig kemisk sammansättning. (även luft och vätske-gasblandningar kan betraktas som

Läs mer

PTG 2015 övning 1. Problem 1

PTG 2015 övning 1. Problem 1 PTG 2015 övning 1 1 Problem 1 Enligt mätningar i fortfarighetstillstånd producerar en destillationsanläggning 12,5 /s destillat innehållande 87 vikt % alkohol och 19,2 /s bottenprodukt innehållande 7 vikt

Läs mer

Innehåll. Energibalans och temperatur. Termer och begrepp. Mål. Squad task 1. Förbränning av fasta bränslen

Innehåll. Energibalans och temperatur. Termer och begrepp. Mål. Squad task 1. Förbränning av fasta bränslen Innehåll balans och temperatur Oorganisk Kemi I Föreläsning 5 20.4.2010 Värme i förbränning balans Värmeöverföring Temperaturer Termer och begrepp Standardbildningsentalpi Värmevärde Effektivt och kalorimetriskt

Läs mer

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 7 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Kapitel 6. Termokemi. Kapaciteten att utföra arbete eller producera värme. Storhet: E = F s (kraft sträcka) = P t (effekt tid) Enhet: J = Nm = Ws

Kapitel 6. Termokemi. Kapaciteten att utföra arbete eller producera värme. Storhet: E = F s (kraft sträcka) = P t (effekt tid) Enhet: J = Nm = Ws Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 6.2 6.3 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage Learning. All rights reserved 2 Energi Kapaciteten att

Läs mer

Övningstentamen i KFK080 för B

Övningstentamen i KFK080 för B Övningstentamen i KFK080 för B 100922 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För godkänt

Läs mer

Kapitel 6. Termokemi

Kapitel 6. Termokemi Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 Energi och omvandling 6.2 Entalpi och kalorimetri 6.3 Hess lag 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage

Läs mer

Om-Tentamen Inledande kurs i energiteknik 7,5hp. Lösningsförslag. Tid: , Kl Plats: Östra paviljongerna

Om-Tentamen Inledande kurs i energiteknik 7,5hp. Lösningsförslag. Tid: , Kl Plats: Östra paviljongerna UMEÅ UNIVERSITET Tillämpad Fysik & Elektronik A Åstrand Mohsen Soleimani-Mohseni 2014-11-15 Om-Tentamen Inledande kurs i energiteknik 7,5hp Lösningsförslag Tid: 141115, Kl. 09.00-15.00 Plats: Östra paviljongerna

Läs mer

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära Tentamen Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära, miniräknare.

Läs mer

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt Lösningsförslag till tentamen Energiteknik 060213 Uppg 1. BA Trycket i en luftfylld pistong-cylinder är från början 100 kpa och temperaturen är 27C. Volymen är 125 l. Pistongen, som har diametern 3 dm,

Läs mer

Uppvärmning, avsvalning och fasövergångar

Uppvärmning, avsvalning och fasövergångar Läs detta först: [version 141008] Denna text innehåller teori och korta instuderingsuppgifter som du ska lösa. Under varje uppgift finns ett horisontellt streck, och direkt nedanför strecket finns facit

Läs mer

Sammanfattningar Matematikboken Y

Sammanfattningar Matematikboken Y Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2 Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.

Läs mer

Bestäm brombutans normala kokpunkt samt beräkna förångningsentalpin H vap och förångningsentropin

Bestäm brombutans normala kokpunkt samt beräkna förångningsentalpin H vap och förångningsentropin Tentamen i kemisk termodynamik den 7 januari 2013 kl. 8.00 till 13.00 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer

Läs mer

Densitet Tabellen nedan visar massan och volymen för olika mängder kopparnubb.

Densitet Tabellen nedan visar massan och volymen för olika mängder kopparnubb. Tid Vi har inte en entydig definition av tid. Tid knytas ofta till förändringar och rörelse. Vi koncentrerar på hur vi mäter tiden. Vi brukar använda enheten sekund för att mäta tiden. Enheten för tid

Läs mer

2-52: Blodtrycket är övertryck (gage pressure).

2-52: Blodtrycket är övertryck (gage pressure). Kortfattad ledning till vissa lektionsuppgifter Termodynamik, 4:e upplagan av kursboken 2-37: - - Kolvarna har cirkulära ytor i kontakt med vätskan. Kraftjämvikt måste råda 2-52: Blodtrycket är övertryck

Läs mer

Kemi och energi. Exoterma och endoterma reaktioner

Kemi och energi. Exoterma och endoterma reaktioner Kemi och energi Exoterma och endoterma reaktioner Energiprincipen Energi kan inte skapas eller förstöras bara omvandlas mellan olika energiformer (energiprincipen) Ex på energiformer: strålningsenergi

Läs mer

Tentamen, Termodynamik och ytkemi, KFKA01,

Tentamen, Termodynamik och ytkemi, KFKA01, Tentamen, Termodynamik och ytkemi, KFKA01, 2016-10-26 Lösningar 1. a Mängden vatten är n m M 1000 55,5 mol 18,02 Förångningen utförs vid konstant tryck ex 2 bar och konstant temeratur T 394 K. Vi har alltså

Läs mer

Tentamen i Kemisk Termodynamik kl 14-19

Tentamen i Kemisk Termodynamik kl 14-19 Tentamen i Kemisk Termodynamik 2010-12-14 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Räkneövning 5 hösten 2014

Räkneövning 5 hösten 2014 ermofysikens Grunder Räkneövning 5 hösten 2014 Assistent: Christoffer Fridlund 13.10.2014 1 1. Entalin och Maxwell-relation. Entalin H definieras som H U +. isa genom att anvnäda entalins defintion samt

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 3/9 2009 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

Tentamen i teknisk termodynamik (1FA527)

Tentamen i teknisk termodynamik (1FA527) Tentamen i teknisk termodynamik (1FA527) 2016-08-24 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook, miniräknare

Läs mer

Godkänt-del. Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10

Godkänt-del. Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10 Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del För uppgift 1 9 krävs endast svar. För övriga uppgifter ska slutsatser

Läs mer

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 5 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Räkneövning/Exempel på tentafrågor

Räkneövning/Exempel på tentafrågor Räkneövning/Exempel på tentafrågor Att lösa problem Ni får en formelsamling Huvudsaken är inte att ni kan komma ihåg en viss den utan att ni kan använda den. Det finns vissa frågor som inte kräver att

Läs mer

Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.

Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln

Läs mer

Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90

Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90 2 VOLYM OCH SKALA / REP 1 FACIT TILL ELEVBOKEN 125 a dl b ml c cl d l 126 5 st 127 200 cm 3 (2 dl = 0,2 l = 0,2 dm 3 = 200 cm 3 ) Sidan 85 128 A B C D Vas tom 235 g 528 g 0,85 kg 1,250 kg Vas med vatten

Läs mer

Tentamen i Kemisk Termodynamik kl 14-19

Tentamen i Kemisk Termodynamik kl 14-19 Tentamen i Kemisk Termodynamik 2011-06-09 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Tentamen i kemisk termodynamik den 17 januari 2014, kl

Tentamen i kemisk termodynamik den 17 januari 2014, kl entamen i kemisk termodynamik den 7 januari 04, kl. 8.00 3.00 Hjälpmedel: Räknedosa, BEA och Formelsamlin för kurserna i kemi vid KH. Endast en uppift per blad! Skriv namn och personnummer på varje blad!.

Läs mer

Se på när färg torkar

Se på när färg torkar Kostnadsoptimering vid torkning av målarfärg Handledare: Lars Bäckström Sammanfattning Projektet syftar till att simulera färg som torkar. Torkningsförloppet kan påskyndas med hjälp av att luften värms

Läs mer

MATEMATIK KURS A Våren 2005

MATEMATIK KURS A Våren 2005 MATEMATIK KURS A Våren 2005 1. Vilket tal pekar pilen på? 51 52 53 Svar: (1/0) 2. Skugga 8 3 av figuren. (1/0) 3. Vad är 20 % av 50 kr? Svar: kr (1/0) 4. Hur mycket vatten ryms ungefär i ett dricksglas?

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats

Läs mer

Vad är vatten? Ytspänning

Vad är vatten? Ytspänning Vad är vatten? Vatten är livsviktigt för att det ska finnas liv på jorden. I vatten finns något som kallas molekyler. Dessa molekyler går inte att se med ögat, utan måste ses med mikroskop. Molekylerna

Läs mer

EXPERIMENTELLT PROV ONSDAG Provet omfattar en uppgift som redovisas enligt anvisningarna. Provtid: 180 minuter. Hjälpmedel: Miniräknare.

EXPERIMENTELLT PROV ONSDAG Provet omfattar en uppgift som redovisas enligt anvisningarna. Provtid: 180 minuter. Hjälpmedel: Miniräknare. EXPERIMENTELLT PROV ONSDAG 2011-03-16 Provet omfattar en uppgift som redovisas enligt anvisningarna. Provtid: 180 minuter. Hjälpmedel: Miniräknare. OBS! Tabell- och formelsamling får EJ användas. Skriv

Läs mer

Godkänt-del A (uppgift 1 10) Endast svar krävs, svara direkt på provbladet.

Godkänt-del A (uppgift 1 10) Endast svar krävs, svara direkt på provbladet. Tentamen för Termodynamik och ytkemi, KFKA10, 2018-01-08 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del A (endast svar): Max 14 poäng Godkänt-del B (motiveringar krävs):

Läs mer

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2 Exempeltentamen 2 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

Grundläggande energibegrepp

Grundläggande energibegrepp Grundläggande energibegrepp 1 Behov 2 Tillförsel 3 Distribution 4 Vad är energi? Försök att göra en illustration av Energi. Hur skulle den se ut? Kanske solen eller. 5 Vad är energi? Energi används som

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 203-0-9. Sambandet mellan tryck och temperatur för jämvikt mellan fast och gasformig HCN är givet enligt: ln(p/kpa) = 9, 489 4252, 4 medan kokpunktskurvan

Läs mer

+ 1 R 2.. Lös ut a och beräkna sidlängden hos en liksidig triangel med arean 35 cm 2

+ 1 R 2.. Lös ut a och beräkna sidlängden hos en liksidig triangel med arean 35 cm 2 . Lös ut m ur F = mv r. Lös ut r ur F = π mr T. Lös ut v o ur s = v o t + at. Lös ut v o ur v = vo v 5. Lös ut R ur R = R + R. Arean hos ett klot ges av formeln A = πr. Lös ut r och beräkna radien hos

Läs mer

4 Sätt in punkternas koordinater i linjens ekvation och se om V.L. = H.L. 5 Räkna först ut nya längden och bredden.

4 Sätt in punkternas koordinater i linjens ekvation och se om V.L. = H.L. 5 Räkna först ut nya längden och bredden. Läxor Läxa 7 En sådan timme skulle ha 00 00 s = 0 000 s. 8 a) O = π d och A = π r r. 0 Beräkna differensen mellan hela triangelns area och arean av den vita triangeln i toppen. Läxa 9 Hur stor andel målar

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2 Kapitel.1 101, 102 Exempel som löses i boken 10 a) x= 1 11+ x= 11+ 1 = 2 c) x= 11 7 x= 7 11 = 77 b) x= 5 x 29 = 5 29 = 6 d) x= 2 26 x= 26 2= 1 10 a) x= 6 5+ 9 x= 5+ 9 6= 5+ 5= 59 b) a = 8a 6= 8 6= 2 6=

Läs mer

Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002

Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 UPPSALA UNIVERSITET Fysiska institutionen Sveinn Bjarman Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 Skrivtid: 9-14 Hjälpmedel: Räknedosa, Physics Handbook

Läs mer

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1:

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1: Som en inledning till begreppet derivata, ska vi här diskutera genomsnittlig förändingshastighet. Utan att veta vad som hänt mellan två givna tider t 1 och t 2 kan vi läsa av temperaturen, beloppet, hastigheten,

Läs mer

PTG 2015 övning 3. Problem 1

PTG 2015 övning 3. Problem 1 PTG 2015 övning 1 Problem 1 Vid vilket tryck (i kpa) kokar vatten ifall T = 170? Tillvägagångssätt : Använd tabellerna för mättad vattenånga 2 1 Åbo Akademi University - TkF Heat Engineering - 20500 Turku

Läs mer

Figur 1: Två torksteg. För att kunna bestämma specifik luftförbrukning, måste vi veta luftens fuktkvotsändring, l = Y Y = Y 5 Y 1 (2)

Figur 1: Två torksteg. För att kunna bestämma specifik luftförbrukning, måste vi veta luftens fuktkvotsändring, l = Y Y = Y 5 Y 1 (2) Figur 1: Två torksteg Givna data X in = 2,5 kg fukt/kg torrt gods T max = 50 C X ut = 0,8 kg fukt/kg torrt gods T 3 = 20 C V in = 13500 m 3 /h φ 3 = 0,50 T 1 = 10 C T 5 = 24 C T w,1 = 5 C φ 5 = 0,60 Sökt

Läs mer

Termodynamik FL4. 1:a HS ENERGIBALANS VÄRMEKAPACITET IDEALA GASER ENERGIBALANS FÖR SLUTNA SYSTEM

Termodynamik FL4. 1:a HS ENERGIBALANS VÄRMEKAPACITET IDEALA GASER ENERGIBALANS FÖR SLUTNA SYSTEM Termodynamik FL4 VÄRMEKAPACITET IDEALA GASER 1:a HS ENERGIBALANS ENERGIBALANS FÖR SLUTNA SYSTEM Energibalans när teckenkonventionen används: d.v.s. värme in och arbete ut är positiva; värme ut och arbete

Läs mer

Alla papper, även kladdpapper lämnas tillbaka.

Alla papper, även kladdpapper lämnas tillbaka. Maxpoäng 66 g 13 vg 28 varav 4 p av uppg. 18,19,20,21 mvg 40 varav 9 p av uppg. 18,19,20,21 Alla papper, även kladdpapper lämnas tillbaka. 1 (2p) En oladdad atom innehåller 121 neutroner och 80 elektroner.

Läs mer

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x.

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8 Figur : Vi konstaterar följande: Då

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag CALMERS 1 (3) Kemi- och bioteknik/fysikalk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag jälpmedel: Kursböckerna

Läs mer

Galenisk och Fysikalisk kemi för Receptarieprogrammet. Övningsexempel i Fysikalisk kemi

Galenisk och Fysikalisk kemi för Receptarieprogrammet. Övningsexempel i Fysikalisk kemi Galenisk och Fysikalisk kemi för Receptarieprogrammet Övningsexempel i Fysikalisk kemi 2017 1 Materians tillstånd 1. Bestäm från egenskaperna i nedanstående tabell vilken typ av kristall (kovalent, jonisk,

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V CHLMERS 1 (3) TENTMEN I TERMODYNMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V Hjälpmedel: Kursböckerna Elliott-Lira: Introductory Chemical Engineering Thermodynamics och P. tkins, L. Jones:

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Ten01 TT051A Årskurs 1 Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2012-06-01 9.00-13.00

Läs mer

Räkneövning 2 hösten 2014

Räkneövning 2 hösten 2014 Termofysikens Grunder Räkneövning 2 hösten 2014 Assistent: Christoffer Fridlund 22.9.2014 1 1. Brinnande processer. Moderna datorers funktion baserar sig på kiselprocessorer. Anta att en modern processor

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

Det material Du lämnar in för rättning ska vara väl läsligt och förståeligt.

Det material Du lämnar in för rättning ska vara väl läsligt och förståeligt. Industriell energihushållning Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N11C TGENE13h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2016-03-16 Tid: 9:00-13:00 Hjälpmedel: Alvarez. Formler och

Läs mer

ARBETSBLAD FACIT. 1 Skriv med siffror Träna huvudräkning. 10 Multiplikation med uppställning De fyra räknesätten 1.

ARBETSBLAD FACIT. 1 Skriv med siffror Träna huvudräkning. 10 Multiplikation med uppställning De fyra räknesätten 1. Skriv med siffror 0 0 0 0 0 0 0 0 0 00 0 00 0 00 0 000 00 000 0 000 00 00 0 000 0 000 000 0 00 000 00 Addition med uppställning 0 0 0 0 0 0 0 0 Subtraktion med uppställning 0 0 0 0 0 Multiplikation med

Läs mer

Repetitionsuppgifter i Fysik 1

Repetitionsuppgifter i Fysik 1 Repetitionsuppgifter i Fysik 1 Uppgifterna i detta häfte syftar till att kort repetera några begrepp från fysiklektionerna i höstas. Det är inte på något sätt ett komplett repetionsmaterial, utan tanken

Läs mer

TENTAMEN. Rättande lärare: Sara Sebelius & Håkan Strömberg Examinator: Niclas Hjelm Datum:

TENTAMEN. Rättande lärare: Sara Sebelius & Håkan Strömberg Examinator: Niclas Hjelm Datum: TENTAMEN Kursnummer: HF0021 Matematik för basår I Moment: TEN1 Program: Tekniskt basår Rättande lärare: Sara Sebelius & Håkan Strömberg Examinator: Niclas Hjelm Datum: 2015-03-10 Tid: 13:15-17:15 Hjälpmedel:

Läs mer

PROV 3, A-DELEN Agroteknologi Vid inträdesprovet till agroteknologi får man använda en formelsamling.

PROV 3, A-DELEN Agroteknologi Vid inträdesprovet till agroteknologi får man använda en formelsamling. PROV 3, A-DELEN Agroteknologi Vid inträdesprovet till agroteknologi får man använda en formelsamling. Man bör få minst 10 poäng i både A- och B-delen. Om poängtalet i A-delen är mindre än 10 bedöms inte

Läs mer

T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på?

T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på? TENTAMEN I FYSIK FÖR V1, 11 JANUARI 2011 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Intromatte för optikerstudenter 2018

Intromatte för optikerstudenter 2018 Intromatte för optikerstudenter 018 Rabia Akan rabiaa@kth.se Av Robert Rosén (01). Ändringar av Daniel Larsson, Jakob Larsson, Emelie Fogelqvist, Simon Winter och Rabia Akan (01-017). Kursmål Efter intromatten

Läs mer

BERÄKNINGSANALYS AV TORRSUBSTANS- HÖJNING

BERÄKNINGSANALYS AV TORRSUBSTANS- HÖJNING Södra Cell Värö 2016 09 08 BERÄKNINGSANALYS AV TORRSUBSTANS- HÖJNING Södra Skogsägarnas Ekonomiska Förening Olof Bengtsson Oskar Koivuniemi SAMMANFATTNING Södra Cell Värö står inför en omfattande investering,

Läs mer

Temperatur T 1K (Kelvin)

Temperatur T 1K (Kelvin) Temperatur T 1K (Kelvin) Makroskopiskt: mäts med termometer (t.ex. volymutvidgning av vätska) Mikroskopiskt: molekylers genomsnittliga kinetiska energi Temperaturskalor Celsius 1 o C: vattens fryspunkt

Läs mer

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd.

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Övningsuppgifter termodynamik 1 1. 10,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Svar: Q = 2512 2516 kj beroende på metod 2. 5,0 kg H 2 O av 40 C skall värmas till 200

Läs mer

TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM034 och KVM033) 2012-05-21 08.30-12.30 i V-huset

TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM034 och KVM033) 2012-05-21 08.30-12.30 i V-huset CHALMERS 2012-05-21 1 (4) Energi och miljö/ Värmeteknik och maskinlära TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM034 och KVM033) 2012-05-21 08.30-12.30 i V-huset Tentamen omfattar: Avdelning A: Avdelning B:

Läs mer

Övningsuppgifter i matematik. Del 1 Grunderna i matematik Del 2 Uppgifter i läkemedelsberäkning

Övningsuppgifter i matematik. Del 1 Grunderna i matematik Del 2 Uppgifter i läkemedelsberäkning Övningsuppgifter i matematik. Del Grunderna i matematik Del Uppgifter i läkemedelsberäkning Del Grunderna i matematik. Hur många centimeter är en meter?. Vilken enhet saknas? a) Bilen är bred. b) Kastrullen

Läs mer

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner. Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

a. b. 8.

a. b. 8. 1. Monica ställer ut en kastrull med 2 liter soppa på balkongen för att den ska svalna. Hur mycket energi har soppan avgett när dess temperatur sjunkit med 9 C. 2. Klimatet i närheten av en sjö ändras

Läs mer

Kapitel 11. Egenskaper hos lösningar. Koncentrationer Ångtryck Kolligativa egenskaper. mol av upplöst ämne liter lösning

Kapitel 11. Egenskaper hos lösningar. Koncentrationer Ångtryck Kolligativa egenskaper. mol av upplöst ämne liter lösning Kapitel 11 Innehåll Kapitel 11 Egenskaper hos lösningar 11.1 11.2 Energiomsättning för lösningar 11.3 Faktorer som påverkar lösligheten 11.4 11.5 Kokpunktshöjning och fryspunktssäkning 11.6 11.7 Kolligativa

Läs mer

Reglerteknik 3. Kapitel 7. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist

Reglerteknik 3. Kapitel 7. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist eglerteknik 3 Kapitel 7 Köp bok och övningshäfte på kårbokhandeln Lektion 3 kap 7 Modellering Identifiering Teoretisk modellering Man använder grundläggande fysikaliska naturlagar och deras ekvationer

Läs mer

2 Materia. 2.1 OH1 Atomer och molekyler. 2.2 10 Kan du gissa rätt vikt?

2 Materia. 2.1 OH1 Atomer och molekyler. 2.2 10 Kan du gissa rätt vikt? 2 Materia 2.1 OH1 Atomer och molekyler 1 Vid vilken temperatur kokar vatten? 2 Att rita diagram 3 Vid vilken temperatur kokar T-sprit? 4 Varför fryser man ofta efter ett bad? 5 Olika ämnen har olika smält-

Läs mer

Tentamen i KEMI del A för basåret GU (NBAK10) kl Institutionen för kemi, Göteborgs universitet

Tentamen i KEMI del A för basåret GU (NBAK10) kl Institutionen för kemi, Göteborgs universitet Tentamen i KEMI del A för basåret GU (NBAK10) 2007-02-15 kl. 08.30-13.30 Institutionen för kemi, Göteborgs universitet Lokal: Väg och Vatten-huset Hjälpmedel: Räknare Ansvarig lärare: Leif Holmlid 772

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 2012-05-23 1. a Molekylerna i en ideal gas påverkar ej varandra, medan vi har ungefär samma växelverkningar mellan de olika molekylerna i en ideal blandning.

Läs mer

ARBETSBLAD FACIT. 1 Skriv med siffror Träna huvudräkning. 10 Multiplikation med uppställning De fyra räknesätten 1.

ARBETSBLAD FACIT. 1 Skriv med siffror Träna huvudräkning. 10 Multiplikation med uppställning De fyra räknesätten 1. FACIT Skriv med siffror 0 0 0 0 0 8 0 8 0 0 0 008 0 00 8 0 00 0 000 00 000 08 000 00 00 8 0 000 0 000 000 0 00 000 00 8 Addition med uppställning 08 88 8 8 0 0 80 0 8 88 0 0 0 Subtraktion med uppställning

Läs mer

Stökiometri IV Blandade Övningar

Stökiometri IV Blandade Övningar Stökiometri IV Blandade Övningar 1) 1 Man blandar 25,0 cm 3 silvernitratlösning, c = 0,100 M, med 50,0 cm 3 bariumkloridlösning c = 0,0240 M. Hur stor är: [Ag + ] i blandningen? [NO 3- ] i blandningen?

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

Kapitel 11. Egenskaper hos lösningar

Kapitel 11. Egenskaper hos lösningar Kapitel 11 Egenskaper hos lösningar Kapitel 11 Innehåll 11.1 Lösningssammansättning 11.2 Energiomsättning för lösningar 11.3 Faktorer som påverkar lösligheten 11.4 Ångtryck över lösningar 11.5 Kokpunktshöjning

Läs mer

KVÄVETS ÅNGBILDNINGSVÄRME

KVÄVETS ÅNGBILDNINGSVÄRME LABORATION (2B1111) KVÄVETS ÅNGBILDNINGSVÄRME Thomas Claesson KTH, IMIT, Materialfysik E-post: tcl@kth.se 060321/tc MÅLSÄTTNING 1. att bestämma ångbildningsvärmet, ångbildningsentalpin, experimentellt

Läs mer

a = a a a a a a ± ± ± ±500

a = a a a a a a ± ± ± ±500 4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att

Läs mer

13 Potensfunktioner. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till

13 Potensfunktioner. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till 3 Potensfunktioner 3. Dagens teori Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8

Läs mer

ɛ r m n/m e 0,43 0,60 0,065 m p/m e 0,54 0,28 0,5 µ n (m 2 /Vs) 0,13 0,38 0,85 µ p (m 2 /Vs) 0,05 0,18 0,04

ɛ r m n/m e 0,43 0,60 0,065 m p/m e 0,54 0,28 0,5 µ n (m 2 /Vs) 0,13 0,38 0,85 µ p (m 2 /Vs) 0,05 0,18 0,04 Tabell 1: Några utvalda naturkonstanter: Namn Symbol Värde Enhet Ljushastighet c 2,998.10 8 m/s Elementarladdning e 1,602.10 19 C Plancks konstant h 6,626.10 34 Js h 1,055.10 34 Js Finstrukturkonstanten

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Sidor i boken KB 7-15 Linjära ekvationssystem Exempel 1. Kalle och Pelle har tillsammans 00 kulor. Pelle har dubbelt så många som Kalle. Hur många kulor har var och en? Lösning: Antag att Kalle har x kulor.

Läs mer

Tentamen i Kemisk termodynamik kl 14-19

Tentamen i Kemisk termodynamik kl 14-19 Tentamen i Kemisk termodynamik 2005-11-07 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer