Metod för provförbränning av avfall RAPPORT F2008:07 ISSN

Storlek: px
Starta visningen från sidan:

Download "Metod för provförbränning av avfall RAPPORT F2008:07 ISSN"

Transkript

1 Metod för provförbränning av avfall RAPPORT F2008:07 ISSN

2

3 FÖRORD Flera anläggningar har haft relativt stora lager av avfall under senare år. I samband med lagringen har diskussioner kommit upp hur lagringen har påverkat bränslet och en del tendenser har konstaterats på olika anläggningar. För att anläggningarna inte skall jämföra äpplen med päron beslutade Arbetsgruppen avfallsförbränning att ta fram en metodik för provförbränning. Huvudsyftet är framförallt att anläggningarna själva skall ha lättare att jämföra sina provförbränningar man gör på respektive anläggning, men även jämförelser mellan anläggningarna blir enklare om man har ett gemensamt tillvägagångssätt. Uppdraget att ta fram metodiken gick till Tomas Öhrström på Bergström & Öhrström. Malmö juli 2008 Håkan Rylander Ordf. arbetsgruppen Avfallsförbränning Weine Wiqvist VD Avfall Sverige

4 INNEHÅLL SAMMANFATTNING...3 SUMMARY INLEDNING TEORI Provförutsättningar GENOMFÖRANDE AV PROV Provtagning av och mängd slagg och filterstoft UTVÄRDERING KONSEKVENSER - KÄNSLIGHET EXCEL-MALL FÖR UTVÄRDERING ERFARENHETER FRÅN GENOMFÖRDA PROV

5 SAMMANFATTNING Avfall Sverige har gett oss i uppdrag att föreslå en metod för provförbränning av avfall. Den föreslagna metoden är ett fullskaleprov med det primära syftet att fastställa avfallets energiinnehåll baserat på en kombination av en mass- och energibalans. Ett grundläggande antagande är att jämvikt råder. Metoden är utformad för att vara enkel att använda och så att den kan genomföras med anläggningarnas egen personal och mätutrustning. Metoden innebär att förbrukat bränsle och genererade restprodukter vägs under ett definierat tidsintervall då jämvikt råder i anläggningen. Detta kombineras med data som samlas in från anläggningens instrumentering. Med ett enhetligt förfarande för provförbränning skapas förutsättningar att generera reproducerbara resultat i anläggningarna. Resultaten från olika anläggningar blir också mer jämförbara. För att utvärdera resultaten används en enhetlig beräkningsmall som utgör en del av denna rapport. I tre anläggningar har det genomförts fullskaleprov med denna metod. Dessa prov utfördes av anläggningarnas egen personal. Den generella bedömningen från de som ledde proven var att det fungerade väl, att metoden fungerade och att det var möjligt att följa anvisningarna. Detta stöds också av de resultat som genererats. 3

6 SUMMARY Avfall Sverige has given us the assignment to present a method to characterise waste based on an incineration test in plant scale. The primary aim of the suggested method is to determine the heat value of the waste used during the test. The method is based on a combined mass and heat balance. A basic assumption is that the incineration is in a steady state condition. The presented method is designed to be simple to use. Because of this the proposed method only incorporates the operating personal and operational instruments in the plant. Waste feed to the incinerator and the generated residues are weighed during a defined period of time with steady state conditions in the plant. These mass flows are then in the calculations combined with readings from the operational instruments. With a standardized method for such a test results will be easier to reproduce and results from differed plants will be comparable. As a part of this method a template in Excel has been produced. If this template is used the evaluation of the results will be standardized. The method presented has been tested at three Swedish plants burning MSW. These tests were performed by personal from the plants. The responsible persons for the tests considered the method applicable and that the instructions in this report was possible to follow. This is also supported by the results generated during these tests. 4

7 1. INLEDNING Avfall Sverige har gett oss i uppdrag att föreslå och utvärdera en metod för provförbränning av avfall. Metoden är ett fullskaleprov med det primära syftet att fastställa avfallets energiinnehåll baserat på en kombination av en mass- och energibalans. Syftet är att metoden skall vara enkel att använda och att den kan genomföras med anläggningarnas egen personal och mätutrustning. Om proven genomförs på ett likformigt sätt blir resultaten reproducerbara och mer jämförbara mellan olika anläggningar. I tre utvalda anläggningar har fullskaleprov genomförts baserat på den metod som redovisas i denna rapport. De tre anläggningarna är: Gärstad, Linköping Renova, Göteborg Bäckelund, Borlänge Dessa prov utfördes av anläggningarna själva. B&Ö deltog under en dag per anläggning för att observera och samla upp praktiska erfarenheter. Dessa har sedan arbetats in i denna redovisning av projektet. 2. TEORI Metoden baseras på vägning av avfall och restprodukter under en definierad tid med jämvikt i anläggningen. Ett grundläggande antagande vid utvärderingen är därför att det rått jämvikt under provet. Anläggningens utformning har stor betydelse för hur lång tid som krävs för att nå jämvikt, detta behandlas separat i avsnitt 2.1. För det bestämda tidsintervallet beräknas för anläggningen en energi- och en massbalans. Baserat på dessa kan bränslets kvalitet sedan fastställas. Med ett enhetligt förfarande skapas förutsättningar för att göra resultaten reproducerbara och jämförbara mellan olika anläggningar. I figur 1 visas systemet, den systemgräns som ansatts samt in- och utgående strömmar. Samtliga angivna strömmar måste fastställas genom direkta mätningar eller på annat lämpligt sätt. Systemgränsen har satts nära pannan för att vara så generell som möjligt. Alla fläktar och pumpar har placerats utanför systemgränsen. Vi har antagit att anläggningen består av en integrerad eldstad och panna som följs av en stoftavskiljare. De flesta anläggningar har sedan ytterligare reningssteg för att avskilja föroreningar. Dessa reningssteg inverkar inte på de energi- och massbalanser som metoden redovisar. 5

8 5. Nyttig effekt 6. Strålning och konvektion Systemgräns 1. Bränsle Eldstad och Stoftavskiljare 10. Rökgas 2. Luft panna 3. Rökgasåterföring 4. SNCR 7. Slagg 8. Kalk/kol 9. Filterstoft Figur 1 Systemet, systemgräns och strömmar I det följande diskuteras samtliga strömmar. Där det finns alternativa lösningar för att fastställa masseller energiflödet anges det. 1. Bränsle Den mängd bränsle som tillförs eldstaden under provförbränningen måste fastställas genom vägning. Det kan göras på flera sätt beroende på anläggningens utformning. De vågsystem som då utnyttjas tex. band-, kran- eller extern våg måste kontrolleras så de ger tillförlitliga resultat. En korrekt bestämning av den tillförda bränslemängden är helt avgörande för resultatet av provförbränningen. Mängden anges som den totala mängd bränsle som tillförts under den tid provförbränningen pågått. 2. Luft Om inte det totala luftflödet till eldstaden mäts kan det beräknas med tillräcklig precision utifrån producerad energi och uppmätt luftöverskott. Förvärms förbränningsluften externt (utanför systemgränsen) måste temperaturen på luften vid systemgränsen registreras. Resultatet anges som ett medelvärde för den tid provförbränningen pågått. 3. Rökgasåterföring Utnyttjas rökgasåterföring under provförbränningen och rökgasen tas utanför systemgränsen måste flödet och temperaturen bestämmas. Resultaten anges som medelvärden för den tid provförbränningen pågått. 4. SNCR Är anläggningen försedd med ett SNCR-system för NO x reduktion och det är i drift under provet måste doserad mängd vatten och ammoniak bestämmas. Resultaten anges som medelvärden för den tid provförbränningen pågått. Används ånga för atomizering behöver den inte tas med. 6

9 5. Nyttig effekt Med nyttig effekt avses den effekt (MW) som tagits upp i eldstad och panna och levereras ut genom systemgränsen. Den anges som ett medelvärde för den tid provförbränningen pågått. En korrekt bestämning av den nyttiga effekten är helt avgörande för resultatet av provförbränningen. 6. Strålning och konvektion från systemet Strålnings och konvektionsförlusten fastställs baserat på diagram i DIN 1942 från 1994, linjen för brunkol. 7. Slagg Den slagg som genererats under provförbränningen samlas upp och vägs. Under provförbränningen tas prov med jämna intervall. Dessa blandas till ett generalprov som analyseras med avseende på fukt och TOC. Stoft från pannans konvektionsdelar förutsätts matas ut med slaggen eller tillsammans med filterstoftet. 8. Kol/kalk Om aktivt kol eller kalk används måste massflöden av dessa tillsatser fastställas utifrån kalibreringskurvor på doserskruvar eller uppskattas på något annat sätt. 9. Filterstoft Det filterstoft som genererats under provförbränningen samlas upp och vägs. Under provförbränningen tas prov med jämna intervall. Dessa blandas till ett generalprov som analyseras med avseende på fukt och TOC. 10. Rökgas Den mängd rökgas som passerar ut genom systemgränsen måste bestämmas. Antingen genom direkta mätningar med anläggningens instrumentering eller genom att flödet beräknas. Utnyttjas rökgasåterföring under provförbränningen som återförs på ett sådant sätt att den passerar systemgränsen måste den inkluderas i rökgasflödet, se också punkt 3. I systemgränsen bestäms också rökgasens temperatur, innehåll av vattenånga och luftöverskott (O 2-halt). 2.1 Provförutsättningar För att resultaten från förbränningsproven skall vara användbara är en grundförutsättning att jämvikt råder i anläggningen. Tiden för att nå jämvikt beror i huvudsak på anläggningens utformning. Det är viktigare att uppnå jämvikt i anläggningen innan provförbränningen startas än att själva provet omfattar lång tid. Det bränsle som man avser att prova bör finnas framme i en sådan mängd att det räcker för både insvängnings-/stabiliseringstiden och för den tid provtagningen genomförs. Provbränslet bör var så väl blandat som möjligt. Större variationer i provbränslets kvalitet innebär att jämvikt inte kan uppnås. 7

10 I DIN 1942 som är den tyska standarden för leveransprov av ångpannor tas frågan om tid för att nå jämvikt innan provstart upp. Där anges att pannan skall ha varit i kontinuerlig drift ett flertal dygn innan prov startas. I utgåvan från 1979 anges att minst tre timmar vid vald last skall föregå provstart. I utgåvan från 1994 anges dock enbart att alla parter skall vara överens om att jämvikt råder innan prov startas. I DIN 1942 finns också angivet hur stora variationer i last man kan tillåta under själva provet. I figur 2 visas detta. På X-axeln återfinns ångflöde uttryckt som kg/s och på Y-axeln tillåten variation i procent. Figur 2 Tillåten variation i ångflöde som funktion av ångflöde (källa DIN 1942) Baserat på figur 2 är tillåten variation för en panna som producerar 30 MW strax under 10%. 8

11 Ett förbränningsprov som utgör en rimlig kompromiss mellan vad som är praktiskt möjligt och som även tar hänsyn till behovet av stabila förhållanden kan läggas upp enligt följande: Provbränsle för 24 timmar Insvängnings- och stabiliseringstid 18 timmar Förbränningsprov 6 timmar. 18 timmars insvängnings- och stabiliseringstid är för de flesta anläggningar en tillräcklig tid för att omsätta både bränsle, slagg och filterstoft ett flertal gånger. Det finns dock vissa processutformningar där detta inte är tillräckligt. Som exempel kan nämnas Alstoms NID-system som har en genomloppstid för avskiljt stoft som kan uppgå till flera dygn. Även FB pannor kan ha långa omsättningstider för det material som ansamlas i bädden. 3. GENOMFÖRANDE AV PROV För att genomföra förbränningsprovet behöver ett flertal aktiviteter genomföras av anläggningen personal. Dessa redovisas nedan i punktform. Förberedelser Samla upp och blanda provbränsle så att det finns i tillräcklig mängd för minst 24 timmars drift. Kontrollera funktionen av de vågar som skall användas. Kontroller funktionen på de mätare som används för att bestämma den nyttiga effekten. Fastställa rutiner för hur bränsle och askor skall vägas på ett så säkert sätt som möjligt. Fastställa rutiner för hur de data som krävs för utvärderingen enligt bilagt beräkningsschema (bilaga B) skall samlas in. Kontrollera att det inte finns några energiströmmar genom systemgränsen som inte registreras. Det kan t. ex. vara kontinuerlig bottenblåsning som bör vara avstängd under förbränningsprovet. Insvängning och stabilisering (18 timmar) Starta förbränningen av provbränslet och justera in last och driftförhållanden till önskade värden. Under insvängnings- och stabiliseringstiden skall inställda driftförhållanden upprätthållas. Tappa ner slagg och askbehållare så att de är tömda till den tidpunkt själva förbränningsprovet skall starta. Förbränningsprov ( 6 timmar) Väg det bränsle som tillförs under förbränningsprovet. Samla upp den slagg och det filterstoft som genereras under provtiden. Ta ut prov på slagg och filteraska. Prov bör tas cirka var 30:e minut. Säkerställ att de data som behövs för utvärderingen samlas in. 9

12 Efterarbete Blanda uttagna prov på slagg och filteraska till ett generalprov för respektive ström. Sänd dessa två prov för analys av fukt och TOC. Utvärdering Resultaten utvärderas med Excelmallen. Utformningen av den visas i avsnitt Provtagning av och mängd slagg och filterstoft Bestämningen av den mängd slagg och filterstoft som genereras under provet är i allt väsentligt beroende av anläggningens utformning och måste därför anpassas till de lokala förutsättningarna. Detsamma gäller provtagning av dessa två strömmar Skall resultaten användas för att bestämma föroreningar i bränslet krävs en noggrannare bestämning av både massflöde och sammansättning. Avser provet att enbart bestämma avfallets värmevärde räcker det med att flöden och analysvärden uppskattas. I avsnitt 5 visas inverkan på det beräknade värmevärdet. Vid anläggningarna bör det redan finnas fastlagda metoder för provtagning av slagg som kan utnyttjas. Detta då samtliga anläggningar som förbränner hushållsavfall har krav, minst enligt NFS 2002:28, på maximal halt av TOC i slagg. För filterstoft finns inte några sådana krav. I Nordtest rapport NT ENVIR 004 från 1996 beskrivs ett antal metoder för att ta prov på fasta restprodukterna. I rapporten listas fyra sätt att ta prov. För att nå bästa resultat gäller den rangordning som listas nedan: 1. Prov tas från ett stoppat transportband 2. Prov tas i en fallande ström 3. Prov tas från ett transportband i rörelse 4. Prov tas från container, billast eller från en hög. I Nordtests rapport ges detaljerade beskrivningar av hur provtagningarna kan genomföras och också hur olika hjälpmedel kan utformas. Varje prov som tas ut bör för slagg vara minst 10 kg och för filterstoft 1 kg. De uttagna proven blandas sedan väl till samlingsprov. I inget fall bör antalet prov som ingår i samlingsprovet understiga sju (7). Av samlingsproven för slagg och för filterstoft tas ett analysprov vardera som skickas för analys till laboratorium. Samlingsprovet för slagg som sänds till laboratoriet bör vara minst 10 kg och det för filterstoft minst 1 kg. Analys av TOC enligt SS-EN Analys av total fukt enligt CEN/TS Alla prov måste förvaras så att inte fukthalten påverkas innan de analyseras. 10

13 4 UTVÄRDERING För utvärderingen av resultaten används den beräkningsmall som visas i avsnitt 6 och som utgör en del av denna rapport. Här beskrivs de beräkningar som görs i mallen. Beskrivningarna görs utifrån de strömmar som visas i figur Bränsle 5. Nyttig effekt 6. Strålning och konvektion Systemgräns Prim Eldstad och Stoftavskiljare 10. Rökgas 2. Luft Sek panna 3. Rökgasåterföring 4. SNCR 7. Slagg 8. Kalk/kol 9. Filterstoft Figur 3 Systemgräns och strömmar 1. Bränsle Mängden bränsle som tillförts under provet har bestäms med den kontrollerade vägningen. 2. Luft Luftflödet till pannan behövs för att beräkna tillförd effekt från eventuell extern påvärmning av luften. Sker påvärmningen i en krets inom systemgränsen skall luftens temperatur sättas till den temperatur luften har då den passerar systemgränsen. Uppmätt temperatur skall dock alltid avse förhållandena efter luftfläkten. I utvärderingsmallen har primärluften separerats från den resterande luften som tillsätts sekundärt. Skälet är att dessa luftströmmar ofta har olika temperaturer. Finns ingen säker mätning av luftflödena finns det i utvärderingsmallen en möjlighet att sätta det totala luftflödet till samma värde som det torra rökgasflödet. I beräkningen av den med luft tillförda effekten är referenstemperaturen 25 C. Beräkningen är följande: 11

14 Cp för O 2=1.32 kj/m3 C Cp för N 2=1.28 kj/m3 C P=cp flöde (T-25) [kw] 3. Rökgasåterföring Hänsyn till rökgasåterföring behöver endast göras om rökgasåterföringen tas ut efter det att rökgasen passerat systemgränsen. I praktiken innebär det att den mängd rökgas som återförs inte får ingå i den rökgasmängd som mäts eller beräknas i systemgränsen, se figur 4. Systemgräns Mät- peräkningspunkt rökgasflöde Panna Punkt B Punkt A Figur 4 Rökgasåterföring och systemgräns Sammansättningen på rökgasåterföringen antas vara densamma som på rökgasen då den passerar systemgränsen. I beräkningen av den med rökgasåterföring tillförda effekten är referenstemperaturen 25 C. Beräkningen är följande: P=flöde (i T-i 25 C) [kw] De entalpier som används framgår av tabellen nedan. Entalpin för rökgasen interpoleras mellan 25 C och 200 C. Entalpier [kj/m 3 ] Vid 25 C Vid 200 C O2 32,3 264 CO2 40,7 358,4 H2O 36,8 299,6 N2 32,1 257,7 12

15 4. SNCR Om pannans är försedd med ett SNCR-system som är i drift under provet måste hänsyn tas till det vatten som tillsätts. Förångningen av det vattnet är en förlust då det i ångform passerar systemgränsen. Beräkningen är följande: P=flöde r [kw] r=2 260 kj/kg 5. Nyttig effekt Från pannan levererad nyttig effekt under provet tas från det kontrollerade driftinstrumentet. För ångpannor kan effekten om nödvändigt beräknas från ångflöde, ångdata och matarvattendata enligt följande: P=ångflöde (i ånga-i mava) [kw] Ångflödet i kg/s och entalpierna i kj/kg. 13

16 6. Strålnings och konvektionsförlust Strålnings och konvektionsförlusten från systemet bestäms baserat på diagram i DIN Kurvan för brunkol i figur 5 används. Figur 5 Strålnings- och konvektionsförlust (källa DIN 1942) På X-axeln i figur 5 återfinns pannans nominella nyttiga effekt och på Y-axeln förlusten båda uttryckta som MW. Ekvationen för brunkol är: Förlusten = nominell effekt 0.7 [MW] 7. Slagg För att beräkna förlusten kombineras den utvägda mängden slagg med de analyser av fukt och oförbränt som genomförts. Värmevärdet på de oförbrända sätts till Hi=27 MJ/kg (för brunkol enligt DIN 1942). 14

17 P=flöde TOC Hi [MW] 8. Kalk och kol Mängden kalk och kol används enbart för korrektioner av det stoft som skiljs av i stoftavskiljaren. 9. Filterstoft För att beräkna förlusten kombineras den utvägda mängden filterstoft med de analyser av fukt och oförbränt som genomförts. Värmevärdet på de oförbrända sätts till Hi=27 MJ/kg. Innan effekten beräknas dras den mängd kol som doserats bort från den mängd TOC som avskiljts med stoftet. P=flöde TOC Hi [MW] Den avskiljda mängden inert material i filterstoftet minskas med den doserad mängden kalk för att möjliggöra en beräkning av bränslets askhalt. 10. Rökgas Innan förlusten med rökgasen kan beräknas måste mängden rökgas som passerar genom systemgränsen bestämmas, antingen via direkta mätningar eller genom en beräkning. Utnyttjas den möjlighet att beräkna rökgasflödet i systemgränsen som finns i Excelmallen sker beräkningen enligt följande: 10.1 Beräkning av rökgasflödet De från ett antaget avfall specifika rökgasmängderna uppgår till följande: g o H i = m 3 n/mj g ot H i = m 3 n/mj Beräkningsschemat för att fastställa det torra teoretiska rökgasflödet från anläggningen kräver mätning av: Nyttig effekt [MW] Rökgastemperatur efter sista värmeöverföringsyta [ o C] O 2-halt efter sista värmeöverföringsyta [vol-% våt gas] Beräkningar (1) Vid effektjämvikt i systemet är P br = P N+P S+P rg Tillförd effekt = P br (= bränsleeffekt) Bortförd effekt = P N (= nyttig effekt, summa av avgaspanna, eko1och eko2) P S P rg (= strålnings- och konvektionsförlust) (= rökgasförlust) Askförluster ingår inte då det oförbrända ej har bildat rökgaser och inte heller förbrukar luft. 15

18 P N från pannan, mäts och registeras P S antages vara nominell effekt0.7 [MW] 2) P rg beräknas enligt följande: P rg = Q rg (h t - h 25) [MW] Q rg = totala rökgasflödet [m 3 n /s] h t = rökgasentalpi [MJ/m 3 n] (3) (h t-h 25)= C p (t - 25) C p = värmekapacitet för rökgasen [MJ/m 3 n, C] För beräkningarna används ett C p om MJ/m 3 n t = uppmätt rökgastemperatur [ C] (4) Q rg = q br g q br = bränsleflöde [kg/s] g = verkligt specifikt rökgasflöde [m 3 n/kg] g = g o (O2) g o = teoretiskt specifikt rökgasflöde [m 3 n /kg] (O2) = uppmätt O2 halt i våt gas efter pannan [%] (5) P br = q br H u [MW] H i = undre värmevärde för bränslet [MJ/kg] Efter omskrivning av ekv 1-5 erhålles (6) Q rgot = got Hi Ps + Pn 1 g 3600 Hi Cp (t 25) Q rgot är det torra teoretiska rökgasflödet ut från pannan i m 3 n/h torr gas. För att bestämma det verkliga gasflödet krävs kännedom om ytterligare två storheter nämligen: O 2-halten i vol-% våt eller torr gas. Den bestäms med befintligt driftsinstrument. Rökgasens fukthalt i vol-%. Den bestäms med befintligt driftsinstrument eller via uppskattning i Excelmallen. Det verkliga torra rökgasflödet kan sedan beräknas enligt ekvation 7, 1 (7) Q rgt = Q rgot (O2) [m 3 vg 100 n/h torr gas] 1 21 (100 Fukthalt) och verkliga våta rökgasflödet enligt ekvation 8. 16

19 Q rgt (8) Q rg = [m 3 n/h våt gas] 1 Fukthalt Rökgasförlust I beräkningen av rökgasförlusten är referenstemperaturen 25 C. Beräkningen är följande: P=flöde (i T-i 25 C) [kw] De entalpier som används framgår av tabellen nedan. Entalpin för rökgasen interpoleras mellan 25 C och 200 C. Entalpier [kj/m 3 ] Vid 25 C Vid 200 C O2 32,3 264 CO2 40,7 358,4 H2O 36,8 299,6 N2 32,1 257,7 17

20 5. KONSEKVENSER - KÄNSLIGHET För att bedöma var resurserna vid provförbränningen skall läggas görs i detta avsnitt en genomgång av hur känsligt resultatet är för osäkerheter i de storheter som behöver fastställas. För detta utnyttjas utvärderingsmallen i Excel. Som indata används de värden som anges i tabell 1. Tabell 1 Indata till mall i Excel Storhet Enhet Värde Provtid minuter 230 Bränslemängd ton 60 Flöde totalluft m 3 n/h Temperatur totalluft C 55 Flöde rökgasåterföring m 3 n/h Temperatur rökgasåterföring C 120 Nyttig effekt MW 44 Nominell effekt MW 50 Slaggmängd ton 11 Fukt i slagg vikts-% 22 TOC i slagg vikts-% TS 4,2 Flöde vatten till SNCR kg/h 375 Mängd avskiljt stoft ton 1,5 Fukt i avskiljt stoft vikts-% 1 TOC i avskiljt stoft vikts-% TS 15 Mängd aktivt kol kg 16 Mängd kalk kg 275 Flöde rökgas m 3 n/h Temperatur rökgas C 125 O2-halt vol-% vg 5,6 H2O-halt vol-% 18 För att visa hur de olika storheterna påverkar de beräknade värmevärdet varieras en storhet i taget med 10%. Övriga hålls konstanta enligt tabell 1, vilket ger ett beräknat värmevärde Hi om 11,09 MJ/kg. Hur detta påverkar de beräknade vämevärdet noteras och redovisas i tabell 2. I tabellen har resultaten sorterats i en ordning så att de storheter som har störst påverkan kommer först. 18

21 Tabell 2 Känslighet för 10% osäkerhet i enskild storhet Storhet Enhet Värde enligt tabell 1 Testat värde (+10%) Påverkan på beräknat Hi i % Provtid minuter ,7 Bränslemängd ton ,1 Nyttig effekt MW 44 48,4 9,1 Flöde rökgas m 3 n/h ,7 Temperatur rökgas C ,5 0,7 Temperatur totalluft C 55 60,5-0,3 Flöde totalluft m 3 n/h ,2 Slaggmängd ton 11 12,1 0,1 TOC i slagg vikts-% TS 4,2 4,62 0,1 Mängd avskiljt stoft ton 1,5 1,65 0,1 TOC i avskiljt stoft vikts-% TS 15 16,5 0,1 Fukt i slagg vikts-% 22 24,2-0,1 Flöde rökgasåterföring m 3 n/h ,1 O2-halt vol-% vg 5,6 6,16-0,1 Flöde vatten till SNCR kg/h Temperatur rökgasåterföring C Nominell effekt MW Fukt i avskiljt stoft vikts-% 1 1,1 0 Mängd aktivt kol kg 16 17,6 0 Mängd kalk kg ,5 0 H2O-halt vol-% 18 19,8 0 Som framgår av tabell 2 är det några enstaka storheter som kräver extra uppmärksamhet för att resultaten skall bli tillförlitliga. Att bestämma provtiden bör inte vara något problem. De storheter som sannolikt blir helt avgörande för resultatet är kvalitén på mätningen av bränsleflödet och den nyttiga effekten. I de fall massbalansen, kompletterad med ytterligare analyser av metaller i slagg och aska, också skall användas för att beräkna innehållet av föroreningar i bränslet krävs extra uppmärksamhet vid bestämningen av slagg- och askflöden. 6. EXCEL-MALL FÖR UTVÄRDERING I figurerna 6 till 8 visas hur den utvärderingsmall i Excel som tagits fram är utformad. 19

22 MALL FÖR för FÖRBRÄNNINGSPROV Panna och provbeteckning: Panna 5, prov med balat avfall från dec 2006 Datum för provet: Rost (För FB beräknas ingen askhalt) Provtid: Start 12:30 Stopp 16:20 Mallen har producerats av Bergström & Öhrström på uppdrag av Avfall Sveriges arbetsgrupp f och utgör en del av rapporten TÖh Version Tomas Öhrström, Bergström & Öhrström, Repslagaregatan 16, Tel , Fax Nyköping Figur 6 Startmeny INDATA Panna 5, prov med balat avfall från dec 2006 Provtid 03:50 t:m Bränsle Tillfört under provet 60 ton Bränsleflöde 15,65 t/h Luft Flöde primärluft m3n/h Temperatur primärluft 110 C Flöde sekundärluft m3n/h Temperatur sekundärluft 45 C Totalluft (används i ber ) m3n/h Använd beräknad totalluft (sätts till torrt rökgasflöde ) Rökgasåterföring Flöde m3n/h Temperatur 120 C Nyttig Effekt Medel under provet 44 MW Strålning och konvektionsförlust Nominell effekt panna 50 MW Förlust 0,49 MW Slagg/bottenaska Utvägt under provet 11 ton Flöde 2,87 t/h Fuktinnehåll 22 vikts-% TOC-halt 4,2 vits-% av TS SNCR 25-ig NH 3 lösning 100 kg/h Vatten 300 kg/h Vatten 375 kg/h Kalk/kol Kalk tillsatt under provet 275 kg 71,7 kg/h Kol tilsatt under provet 16 kg 4,2 kg/h Filterstoft Utvägt under provet 1,5 ton Flöde 0,39 t/h Fuktinnehåll 1 vikts-% TOC-halt 15 vits-% av TS Rökgas Uppmätt flöde m3n/h Använd beräknat rökgasflöde ( från nyttig effekt ) Temperatur 125 C Uppmätt O 2-halt 5,6 vol-% våt gas Uppmätt H 2O-halt 18 vol-% Flöde (används i ber ) m3n/h H2O-halt (används i ber ) 18,0 vol-% Använd uppskattad fukthalt Figur 7 Inmatning av mätdata 20

23 Resultat Provbeteckning: Datum: Starttid: Stopptid: Panna 5, prov med balat avfall från dec :30 16:20 Massflöden Bränsle Kalk/kol Slagg/bottenaska Filterstoft 15,65 0,08 2,24 0,39 t/h t/h t/h TS t/h TS Energibalans Bortfört Tillfört Nyttigt 44,00 MW Med bränsle 47,64 MW Strålning och konvektion 0,49 MW Med Förbränningsluft 1,28 MW Med slagg/bottenaska 0,71 MW Med Rökgasåterföring 0,39 MW Med H 2O från SNCR 0,24 MW Summa tillfört 49,31 MW Med filterstoft 0,40 MW Med rökgas 3,48 MW Summa tillfört 49,31 MW Beräknat för bränslet Värmevärde Hi Askhalt 10,96 15,34 MJ/kg vikts-% Figur 8 Resultat 7. ERFARENHETER FRÅN GENOMFÖRDA PROV I tre anläggningar har fullskaleprov genomförts baserat på den metod som redovisas i denna rapport. De tre anläggningarna är: P3 Gärstad, Linköping, provet genomfördes den 14 november 2007 P5 Renova, Göteborg, provet genomfördes den 5 december 2007 P6 Bäckelund, Borlänge, provet genomfördes den 19 januari 2008 Dessa prov utfördes av personalen vid anläggningarna. B&Ö deltog enbart för att observera och samla upp praktiska erfarenheter. Den generella bedömningen från personerna som ledde proven vid anläggningarna var att det fungerade väl och att metoden var möjlig att följa. Detta stöds också av de resultat som genererats vid anläggningarna Det som vid alla tre anläggningar skapade mest arbete med planering och logistik var som väntat bestämningen av bränsle-, slagg- och askflöde. Det är också storheter som normalt inte mäts vid anläggningarna och som därför krävde en del speciella arrangemang. Samtliga anläggningar hade förberett sig väl inför proven och upprättat provprogram för hur provförbränningarna skulle genomföras. I bilaga A återfinns som exempel det provprogram som TVAB upprättade inför provförbränningarna vid Gärstad. En viktig del i detta arbete är att identifiera alla de signaler från den fasta instrumenteringen som sedan skall användas vid utvärderingen. För vissa storheter som t. ex. temperaturer finns flera givare i 21

24 anläggningarna som mäter i näraliggande punkter. I anläggningen måste lämpligaste givarna väljas ut i förväg baserat på den systemgräns som fastställts. I provprogrammet anges sedan en tydlig identifiering av givaren till exempel ett tagnummer eller motsvarande, se bilaga A. Om det vid denna genomgång visar sig att det finns mätvärden som inte lagras i ett datasystem så att de kan tas fram i efterhand måste de protokollföras under själva provet. I två av de anläggningar där prov genomfördes matades bränslet från bunker till bränsletratt med en traversskopa. Provbränslet förvarades i bunkern tillsammans med övrigt bränsle. För resultatet är det viktigt att den bränslemängd som tillförs under provet kan bestämmas på bästa sätt. Under de genomförda proveldningarna identifierades några punkter som kräver extra uppmärksamhet. Kontroll av vågen till traversskopan Hur provbränslet isoleras från övrigt bränsle i bunkern Hur bränslet läggs i tratten så att spill minimeras Nivå i bränsletratt vid start/stopp av prov För att kontrollera kranvågen kan till exempel en betongklump med en känd vikt användas. Kontrollen bör genomföras i direkt anslutning till provet och det bör även kontrolleras att kranvågen inte ger olika resultat beroende på sin position. För att isolera provbränslet i bunkern kan till exempel den yta i bunkern som används för lagring först täckas med ett lager flis/bark eller motsvarande så att gränsen mellan provbränsle och övrigt bränsle blir tydlig för kranoperatören. Under proveldningen (inte insvängningstiden) måste kranoperatören lägga extra uppmärksamhet på att allt det bränsle som registerats med kranvågen verkligen hamnar i bränsletratten. Spill av provbränsle tillbaka ner i bunkern måste minimeras. För att på ett så korrekt sätt som möjligt bestämma den mängd bränsle som förbrukats under provtiden bör kranoperatören se till att nivån i bränsletratten är den samma då provet avslutas som då provet startades. Hantering och provtagning av slagg och aska är det som under proven orsakat de största praktiska problemen i anläggningarna och också medfört de största extraarbetet. För de större anläggningarna är ofta systemen från flera ugnslinjer så integrerade att det är svårt att på ett praktiskt sätt separera ut strömmarna från en enskild ugnslinje. Då det gäller slagg har samtliga tre anläggningar hittat lösningar för att på ett kontrollerat sätt samla upp och bestämma den mängd slagg som genererats under provet. Det har skett genom att den yta eller behållare där slaggen samlas upp inför borttransport tömts vid provstart. Den under provet genererade mängden har samlats upp och vägts. Provtagningen har beroende på vad som varit mest praktiskt utförts direkt i utmatningen från ugnens slaggpusher eller från den hög av slagg som under provet genererats på uppsamlingsytan. 22

25 I två av anläggningarna var det inte praktiskt möjligt att samla upp och väga den rökgasreningsprodukt som genererades under provet. En anläggning löste detta genom att ta prov för analys och baserat på egen statistik uppskatta den mängd som genererats under provet. Den andra anläggningen anlitade ett externt mätföretag som tog prov på stoftet direkt ur rökgaskanalen efter pannan. Dessa prov analyserades och stoftmängden efter pannan beräknades baserat på den uppmätta stoftkoncentrationen. Nackdelen med detta förfarande, som är tekniskt bra, är att det krävs extern personal. I tabell 3 finns en översiktlig sammanställning av resultaten från de tre proven som genomförts. Samtliga tre prov har utvärderats med Excelmallen. De bränslen som provats var vid Gärstad balat avfall från 2006, vid Renova den för anläggningen normala blandningen 65% hushållsavfall och 35% verksamhetsavfall och vid Bäckelund färskt utsorterat brännbart hushållsavfall. Tabell 3 Resultat från de tre förbränningsproven Storhet Enhet Gärstad Renova Bäckelund Bränsleflöde t/h Nyttig effekt MW Beräknat Hi MJ/kg Beräknad askhalt vikts-%

26 Bilaga A

27 Bilaga A

28 Bilaga A

29 Bilaga A

30 Bilaga A

31 Bilaga B INDATA Panna 3, prov med 2006 balat avfall Provtid 06:00 t:m Bränsle Tillfört under provet 70,312 ton Bränsleflöde 11,72 t/h Totaluft Flöde m3n/h Använd beräknad totalluft (sätts till torrt rökgasflöde) Temperatur 99,7 C Totalluft (används i ber) m3n/h Rökgasåterföring Flöde m3n/h Temperatur C Nyttig Effekt Medel under provet 26,7 MW Strålning och konvektionsförlust Nominell effekt panna 30 MW Förlust 0,34 MW Slagg/bottenaska Utvägt under provet 14,8 ton Flöde 2,47 t/h Fuktinnehåll 18,9 vikts-% TOC-halt 1 vits-% av TS SNCR 25-ig NH3 lösning 71,9 kg/h Vatten 393 kg/h Vatten 446,925 kg/h Kalk/kol Kalk tillsatt under provet 805,2 kg 134,2 kg/h Kol tilsatt under provet 33 kg 5,5 kg/h Filterstoft Utvägt under provet 1,8 ton Flöde 0,30 t/h Fuktinnehåll 0,8 vikts-% TOC-halt 1 vits-% av TS Rökgas Uppmätt flöde m3n/h Använd beräknat rökgasflöde (från nyttig effekt) Temperatur 140 C Uppmätt O2-halt 4,3 vol-% i våt gas Uppmätt H2O-halt 16,5 vol-% Använd uppskattad fukthalt Flöde (används i ber) m3n/h H2O-halt (används i ber) 16,5 vol-%

32 Bilaga B Resultat Provbeteckning: Datum: Starttid: Stopptid: Panna 3, prov med 2006 balat avfall :00 15:00 Massflöden Bränsle Kal/kol Slagg/bottenaska Filterstoft 11,72 0,14 2,00 0,30 t/h t/h t/h TS t/h TS Energibalans Bortfört Tillfört Nyttigt 26,70 MW Med bränsle 28,86 MW Strålning och konvektion 0,34 MW Med Förbränningsluft 1,07 MW Med slagg/bottenaska 0,15 MW Med Rökgasåterföring MW Med H2O från SNCR 0,28 MW Summa tillfört 29,94 MW Med filterstoft -0,02 MW Med rökgas 2,48 MW Summa tillfört 29,94 MW Beräknat för bränslet Värmevärde Hi Askhalt 8,87 18,27 MJ/kg vikts-%

33 Rapporter från Avfall sveriges förbränningssatsning 2008 F 2008:01 F 2008:02 Högre elutbyte ur avfallation Bästa tillgängliga tekniker för avfallsförbränning. Översättning av kapitel 5 BREF Waste Incineration F 2008:03 Checklista för egenkontroll vid avfallsanläggningar baserat på FVE (SFS 1998:901) F 2008:04 F 2008:05 F 2008:06 F 2008:07 Miljökonsekvensanalys av Naturvårdsverkets förslag till kriterier för återvinning av avfall i anläggningsarbetenation Karakterisering av fasta inhomogena avfallsbränslen - inverkan av metoder för provtagning och provberedning Energy Report (Status 2006). Results of Specific Data for Energy, Efficiency Rates, Plant Efficiency Factors, NCV and Determination of the Main Energy results of 20 Investigated Swedish W-t-E Plants Metod för provförbränning av avfall

34 Avfall Sverige Utveckling F2008:07 ISSN Avfall Sverige AB Adress Telefon Fax E-post Hemsida Prostgatan 2, Malmö

Beräkning av rökgasflöde

Beräkning av rökgasflöde Beräkning av rökgasflöde Informationsblad Uppdaterad i december 2006 NATURVÅRDSVERKET Innehåll Inledning 3 Definitioner, beteckningar och termer 4 Metoder för beräkning av rökgasflöde 7 Indirekt metod:

Läs mer

Eassist Combustion Light

Eassist Combustion Light MILJÖLABORATORIET Eassist Combustion Light Miljölaboratoriet i Trelleborg AB Telefon 0410-36 61 54 Fax 0410-36 61 94 Internet www.mlab.se Innehållsförteckning Eassist Combustion Light Inledning...3 Installation...5

Läs mer

Energibalans och temperatur. Oorganisk Kemi I Föreläsning

Energibalans och temperatur. Oorganisk Kemi I Föreläsning Energibalans och temperatur Oorganisk Kemi I Föreläsning 5 20.4.2010 Innehåll Värme i förbränning Energibalans Värmeöverföring Temperaturer Termer och begrepp Standardbildningsentalpi Värmevärde Effektivt

Läs mer

Innehåll. Energibalans och temperatur. Termer och begrepp. Mål. Squad task 1. Förbränning av fasta bränslen

Innehåll. Energibalans och temperatur. Termer och begrepp. Mål. Squad task 1. Förbränning av fasta bränslen Innehåll balans och temperatur Oorganisk Kemi I Föreläsning 5 20.4.2010 Värme i förbränning balans Värmeöverföring Temperaturer Termer och begrepp Standardbildningsentalpi Värmevärde Effektivt och kalorimetriskt

Läs mer

Innehåll. Energibalans och temperatur. Termer och begrepp. Mål. Hur mycket energi. Förbränning av fasta bränslen

Innehåll. Energibalans och temperatur. Termer och begrepp. Mål. Hur mycket energi. Förbränning av fasta bränslen Innehåll balans och temperatur Oorganisk Kemi I Föreläsning 4 14.4.2011 Förbränningsvärme balans Värmeöverföring Temperaturer Termer och begrepp Standardbildningsentalpi Värmevärde Effektivt och kalorimetriskt

Läs mer

MILJÖLABORATORIET RAPPORT 1 (6)

MILJÖLABORATORIET RAPPORT 1 (6) MILJÖLABORATORIET RAPPORT 1 (6) utfärdad av ackrediterat laboratorium REPORT issued by an Accredited Laboratory Bestämning av emissioner från pyrolysugn Projektnr: Utgåva. nr: 1 Uppdragsgivare: PUMP &

Läs mer

Sammanställning av bränsledata

Sammanställning av bränsledata Sammanställning av bränsledata Halter och bränslenyckeltal RAPPORT DECEMBER 38 3 3 3 3,8,,,,8,,, Sammanställning av bränsledata Halter och bränslenyckeltal NATURVÅRDSVERKET BESTÄLLNINGAR Ordertelefon:

Läs mer

En bedömning av askvolymer

En bedömning av askvolymer PM 1(6) Handläggare Datum Utgåva Ordernr Henrik Bjurström 2002-01-30 1 472384 Tel 08-657 1028 Fax 08-653 3193 henrik.bjurstrom@ene.af.se En bedömning av askvolymer Volymen askor som produceras i Sverige

Läs mer

Instuderingsfrågor Lösningar Wester kap 3-5

Instuderingsfrågor Lösningar Wester kap 3-5 Instuderingsfrågor Lösningar Wester kap 3-5 FÖRBRÄNNINGSTEKNIK WESTER KAP 3-5 (Typ Repetition FFP, Förbränningskemi) 1. Vilken fuktkvot har ett bränsle om torrhalten är 60%? (U = 0,4/0.6 = 67%). Vad skiljer

Läs mer

Bränsleanalys och rökgaskalkyl. Oorganisk Kemi I Föreläsning

Bränsleanalys och rökgaskalkyl. Oorganisk Kemi I Föreläsning Bränsleanalys och rökgaskalkyl Oorganisk Kemi I Föreläsning 3 12.4.2011 Mål Att tillämpa det första trappsteget i processkemistens verktygslåda: Definiera stökiometriska samband mellan reaktant och produkt

Läs mer

1. Identifikation Baxi Bonus Light

1. Identifikation Baxi Bonus Light 2014-04-22 3P03880-01 1 (6) 1. Identifikation Baxi Bonus Light Leverantör av panna : HS Perifal AB Provobjekt: Panna Baxi Bonus Light Serie nr: BNLT0113021 Provobjektet ankom SP 2013-05-31. Pannan var

Läs mer

Siktning av avfall. Centrum för optimal resurshantering av avfall www.wasterefinery.se

Siktning av avfall. Centrum för optimal resurshantering av avfall www.wasterefinery.se Siktning av avfall Andreas Johansson (SP/HB) Anders Johnsson (Borås Energi och miljö) Hitomi Yoshiguchi (Stena Metall) Sara Boström (Renova) Britt-Marie Stenaari (Chalmers) Hans Andersson (Metso) Mattias

Läs mer

Bränsleanalys och rökgaskalkyl. Oorganisk Kemi I Föreläsning

Bränsleanalys och rökgaskalkyl. Oorganisk Kemi I Föreläsning Bränsleanalys och rökgaskalkyl Oorganisk Kemi I Föreläsning 4 15.4.2010 Innehåll Rökgassammansättning Bränslesammansättning Förbränningsreaktioner Lufttillförsel Askan Termer och begrepp Fasta bränslen

Läs mer

Beräkning av rökgasflöde. Provningsjämförelse 2009. Gunnar Nyquist. Institutionen för tillämpad miljövetenskap

Beräkning av rökgasflöde. Provningsjämförelse 2009. Gunnar Nyquist. Institutionen för tillämpad miljövetenskap ITM-rapport 184 Beräkning av rökgasflöde Provningsjämförelse 2009 Gunnar Nyquist Institutionen för tillämpad miljövetenskap Department of Applied Environmental Science Beräkning av rökgasflöde Provningsjämförelse

Läs mer

SKRIVELSE: Förslag till författningsändringar - 40, 43 och 45 förordning (2013:253) om förbränning av avfall

SKRIVELSE: Förslag till författningsändringar - 40, 43 och 45 förordning (2013:253) om förbränning av avfall Miljö- och energidepartementet 103 33 Stockholm Naturvårdsverket 106 48 Stockholm Malmö den 31 augusti 2017 SKRIVELSE: Förslag till författningsändringar - 40, 43 och 45 förordning (2013:253) om förbränning

Läs mer

Framtidens avfallsbränslen. Inge Johansson SP Energiteknik

Framtidens avfallsbränslen. Inge Johansson SP Energiteknik Framtidens avfallsbränslen Inge Johansson SP Energiteknik OM SP SP-koncernen ägs till 100% RISE Dotterbolag 10 Anställda 1300 Omsättning 1 335 MSEK Kunder Fler än 10 000 FORSKNING OCH VETENSKAP Forskarutbildade

Läs mer

Biofuel Analyser

Biofuel Analyser Biofuel Analyser 2017-2018 Produkten Mantex BioFuel Analyzer Mäter energivärde, fukthalt och askhalt Mätvärden tillgängligt för alla behöriga via Mantex Cloud Provstorlek 3 liter Mättid 1 min Plug-and-play

Läs mer

ITM-rapport 115. Flödesmätningar med pitotrör. Provningsjämförelse 2002. Gunnar Nyquist. Institutet för tillämpad miljöforskning

ITM-rapport 115. Flödesmätningar med pitotrör. Provningsjämförelse 2002. Gunnar Nyquist. Institutet för tillämpad miljöforskning ITM-rapport 115 Flödesmätningar med pitotrör Provningsjämförelse 2002 Gunnar Nyquist Institutet för tillämpad miljöforskning Institute of Applied Environmental Research Flödesmätningar med pitotrör Provningsjämförelse

Läs mer

Önskemål om ändring av 32 förordning (2013:253) om förbränning av avfall

Önskemål om ändring av 32 förordning (2013:253) om förbränning av avfall Stockholm 2017-05-30 Raziyeh Khodayari Raziyeh.khodayari@energiföretagen.se Jakob Sahlén jakob.sahlen@avfallsverige.se Miljö- och energidepartementet m.registrator@regeringskansliet.se Naturvårdsverket

Läs mer

Vägledning om nyttiggjord energi för Kväveoxidavgiften

Vägledning om nyttiggjord energi för Kväveoxidavgiften VÄGLEDNING OM NYTTIGGJORD ENERGI FÖR KVÄVEOXIDAVGIFTEN Vägledning om nyttiggjord energi för Kväveoxidavgiften Följande vägledning beskriver vad Naturvårdsverket anser vara nyttiggjord energi i lag om miljöavgift

Läs mer

Svåra bränslen sänk temperaturen!

Svåra bränslen sänk temperaturen! Svåra bränslen sänk temperaturen! Fredrik Niklasson SP Sveriges Tekniska Forskningsinstitut Varför vill man undvika alkali i rökgasen? Vid förbränning och förgasning är icke organiska föreningar oftast

Läs mer

Avfallsförbränning. Ett bränsle som ger fjärrvärme, fjärrkyla, ånga och el. Vattenfall Värme Uppsala

Avfallsförbränning. Ett bränsle som ger fjärrvärme, fjärrkyla, ånga och el. Vattenfall Värme Uppsala Avfallsförbränning Ett bränsle som ger fjärrvärme, fjärrkyla, ånga och el. Vattenfall Värme Uppsala Vattenfall Värme Uppsala Vattenfall Värme Uppsala är ett av Sveriges största fjärrvärmebolag. Våra huvudprodukter

Läs mer

Kyltekniska Föreningen

Kyltekniska Föreningen Kyltekniska Föreningen Samling: Kl. 17.00 KTH Energiteknik, Brinellvägen 64, Stockholm Måltid: Mat serveras från kl 17.00 Program: Preliminärt program - Ordförande välkomnar (Peter Rohlin) - Fuktig luft

Läs mer

FAKTA OM AVFALLSIMPORT. Miljö och importen från Italien. Fakta om avfallsimport 1 (5) 2012-04-17

FAKTA OM AVFALLSIMPORT. Miljö och importen från Italien. Fakta om avfallsimport 1 (5) 2012-04-17 1 (5) FAKTA OM AVFALLSIMPORT Fortum genomför test med import av en mindre mängd avfall från Italien. Det handlar om drygt 3000 ton sorterat avfall som omvandlas till el och värme i Högdalenverket. Import

Läs mer

MILJÖLABORATORIET Nyttig energi vid ångproduktion

MILJÖLABORATORIET Nyttig energi vid ångproduktion MILJÖLABORATORIT Nyttig energi vid ångproduktion 008 Miljölaboratoriet i Trelleborg AB Innehållsförteckning Inledning... System... 4 System... System... 7 System 4... 9 System... Inledning Denna handledning

Läs mer

NFS 2004:X. Förslag till Naturvårdsverkets allmänna råd om hantering av brännbart avfall och organiskt avfall;

NFS 2004:X. Förslag till Naturvårdsverkets allmänna råd om hantering av brännbart avfall och organiskt avfall; 2003-09-16 NFS 2004:X Förslag till Naturvårdsverkets allmänna råd om hantering av brännbart avfall och organiskt avfall; beslutade den XX 2004. Dessa allmänna råd ersätter tidigare allmänna råd (NFS 2001:22)

Läs mer

PR-Slamsugning AB Utgåva 1, 2007-12-17

PR-Slamsugning AB Utgåva 1, 2007-12-17 BLANKETT FÖR GRUNDLÄGGANDE KARAKTERISERING AV AVFALL SOM SKA DEPONERAS Datum. Avfallsproducent Namn Adress Organisationsnummer Postnummer Kontaktperson Postort Telefonnummer Beskrivning av avfall Karakteriseringen

Läs mer

Fältutvärdering av pannor och brännare för rörflenseldning. Susanne Paulrud, SP Sveriges Tekniska Forskningsinstitut

Fältutvärdering av pannor och brännare för rörflenseldning. Susanne Paulrud, SP Sveriges Tekniska Forskningsinstitut Fältutvärdering av pannor och brännare för rörflenseldning Susanne Paulrud, SP Sveriges Tekniska Forskningsinstitut Syfte och mål Syftet med projektet är att verksamt bidra till att ett flertal förbränningsutrustningar

Läs mer

Nr 362 1809. Ekvivalensfaktorer för dibenso-p-dioxiner och dibensofuraner

Nr 362 1809. Ekvivalensfaktorer för dibenso-p-dioxiner och dibensofuraner Nr 362 1809 Ekvivalensfaktorer för dibenso-p-dioxiner och dibensofuraner Bilaga I Vid bestämningen av totalkoncentrationen (den toxiska ekvivalensen) i fråga om dioxiner och furaner skall koncentrationerna

Läs mer

ERMATHERM CT värmeåtervinning från kammar- och kanaltorkar för förvärmning av uteluft till STELA bandtork. Patent SE 532 586.

ERMATHERM CT värmeåtervinning från kammar- och kanaltorkar för förvärmning av uteluft till STELA bandtork. Patent SE 532 586. 2012-08-23 S. 1/4 ERMATHERM AB Solbacksvägen 20, S-147 41 Tumba, Sweden, Tel. +46(0)8-530 68 950, +46(0)70-770 65 72 eero.erma@ermatherm.se, www.ermatherm.com Org.nr. 556539-9945 Bankgiro: 5258-9884 ERMATHERM

Läs mer

Fossilandel i Brännbart avfall

Fossilandel i Brännbart avfall Fossilandel i Brännbart avfall de första preliminära resultaten Lia Detterfelt, Renova 2011-04-15/1 Bakgrund Om projektet Några första preliminära resultat Pågår och återstår Andra bidrag och koldioxidsänkor

Läs mer

TENTAMEN I KRAFTVÄRMESYSTEM, 5 p RÄKNEDEL

TENTAMEN I KRAFTVÄRMESYSTEM, 5 p RÄKNEDEL UMEÅ UNIVERSITET Tillämpad Fysik och Elektronik Robert Eklund Umeå den 20/1 2005 TENTAMEN I KRAFTVÄRMESYSTEM, 5 p RÄKNEDEL Tid: TORSDAGEN DEN 20/1-2005 kl 9-15 Hjälpmedel: 1. Kurslitteratur Pärm: Thermal

Läs mer

Karaktärisering av fasta inhomogen avfallsbränslen -

Karaktärisering av fasta inhomogen avfallsbränslen - Karaktärisering av fasta inhomogen avfallsbränslen - inverkan av metoder för provtagning och provberedning SP Sveriges Tekniska Forskningsinstitut Evalena Wikström-Blomqvist, Lennart Gustavsson, Jolanta

Läs mer

SVENSK STANDARD SS-ISO 8756

SVENSK STANDARD SS-ISO 8756 Handläggande organ Fastställd Utgåva Sida Allmänna Standardiseringsgruppen, STG 1997-12-30 1 1 (9) SIS FASTSTÄLLER OCH UTGER SVENSK STANDARD SAMT SÄLJER NATIONELLA, EUROPEISKA OCH INTERNATIONELLA STANDARDPUBLIKATIONER

Läs mer

Naturvårdsverkets författningssamling

Naturvårdsverkets författningssamling Naturvårdsverkets författningssamling ISSN 1403-8234 Naturvårdsverkets allmänna råd till Naturvårdsverkets föreskrifter (NFS 2004:10) om deponering, kriterier och förfaranden för mottagning av avfall vid

Läs mer

------------------------------------------------------------------------------------------------------- Personnummer:

------------------------------------------------------------------------------------------------------- Personnummer: ENERGITEKNIK II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 Namn: -------------------------------------------------------------------------------------------------------

Läs mer

PM om hur växthusgasberäkning och uppdelning på partier vid samrötning

PM om hur växthusgasberäkning och uppdelning på partier vid samrötning 2011-12-12 1 (5) Analysavdelningen Enheten för hållbara bränslen Linus Hagberg 016-544 20 42 linus.hagberg@energimyndigheten.se PM om hur växthusgasberäkning och uppdelning på partier vid samrötning Inledning

Läs mer

SKRIVELSE: Förslag till ändringar i förordning (2013:253) om förbränning av avfall

SKRIVELSE: Förslag till ändringar i förordning (2013:253) om förbränning av avfall Naturvårdsverket 106 48 Stockholm Malmö den 28 oktober 2015 SKRIVELSE: Förslag till ändringar i förordning (2013:253) om förbränning av avfall Avfall Sverige är expertorganisationen inom avfallshantering

Läs mer

ALTERNATIVA TEKNIKER FÖR FÖRBRÄNNING OCH RÖKGASRENING

ALTERNATIVA TEKNIKER FÖR FÖRBRÄNNING OCH RÖKGASRENING Bilaga A1 ALTERNATIVA TEKNIKER FÖR FÖRBRÄNNING OCH RÖKGASRENING 1. ALTERNATIVA PANNTEKNIKER 1.1 Allmänt om förbränning Förbränning av fasta bränslen sker vanligtvis med pulverbrännare, på rost eller i

Läs mer

Kartaktärisering av biobränslen

Kartaktärisering av biobränslen Skogsteknologi 2010 Magnus Matisons Kartaktärisering av biobränslen Sveriges lantbruksuniversitet Inst för skoglig resurshushållning och geomatik Analysgång vid karaktärisering A. Provtagning Stickprov

Läs mer

Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14.

Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14. Tentamen i termisk energiteknik 5HP för ES3, 2009, 2009-10-19, kl 9-14. Namn:. Personnr: Markera vilka uppgifter som du gjort: ( ) Uppgift 1a (2p). ( ) Uppgift 1b (2p). ( ) Uppgift 2a (1p). ( ) Uppgift

Läs mer

Färdig bränslemix: halm från terminal till kraftvärmeverk SEBRA Bränslebaserad el- och värmeproduktion Stockholm juni 2016 Anders Hjörnhede SP

Färdig bränslemix: halm från terminal till kraftvärmeverk SEBRA Bränslebaserad el- och värmeproduktion Stockholm juni 2016 Anders Hjörnhede SP Färdig bränslemix: halm från terminal till kraftvärmeverk SEBRA Bränslebaserad el- och värmeproduktion Stockholm 15-16 juni 2016 Anders Hjörnhede SP Sveriges Tekniska Forskningsinstitut Bekväm och riskfri

Läs mer

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära Tentamen Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära, miniräknare.

Läs mer

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 7 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

SP Metod 1937 Långtidstest av luftfilter för ventilationsanläggningar

SP Metod 1937 Långtidstest av luftfilter för ventilationsanläggningar Sida 1 av 5 SP Metod 1937 Långtidstest av luftfilter för ventilationsanläggningar Datum: 2000-05-11 Utgåva: 5 Revideringsdatum: 2011-01-13 Författare: Anders Flyckt och Tobias Eriksson 1. Syfte och omfattning

Läs mer

Naturvårdsverkets författningssamling

Naturvårdsverkets författningssamling Naturvårdsverkets författningssamling ISSN 1403-8234 Naturvårdsverkets föreskrifter om mätutrustning för bestämmande av miljöavgift på utsläpp av kväveoxider vid energiproduktion; beslutade den XX månad

Läs mer

Naturvårdsverkets vägledning till avfallsenergianläggningar inom EU ETS i Sverige

Naturvårdsverkets vägledning till avfallsenergianläggningar inom EU ETS i Sverige Naturvårdsverkets vägledning till avfallsenergianläggningar inom EU ETS i Sverige Definition av A-, B- och C-anläggning Olika stora anläggningar klassificeras i kategorierna A, B och C enligt artikel 19

Läs mer

Projektarbete MTM456 Energiteknik

Projektarbete MTM456 Energiteknik Projektarbete MTM456 Energiteknik Projektet syftar till att ge kännedom om något energislag Sverige använder samt detaljerat utreda hur varje steg mellan råvara och restprodukt (se figur 1) påverkar vår

Läs mer

Alingsås Kyrkogårds- och fastighetsförvaltning Nolby krematorium Mätning av kvicksilver maj 2011

Alingsås Kyrkogårds- och fastighetsförvaltning Nolby krematorium Mätning av kvicksilver maj 2011 Alingsås Kyrkogårds- och fastighetsförvaltning Nolby krematorium Mätning av kvicksilver maj 2011 Mikael Kronström FORCE TECHNOLOGY SWEDEN AB Dokumenttyp Dokumentnummer Rev Rev.datum Uppdragsnummer RAPPORT

Läs mer

Erfarenheter från fjärrövervakning av matarvattenkemin på Öresundsverket. Eva Fransson, Karlshamn Kraft AB, Eon värmekraft Sverige AB.

Erfarenheter från fjärrövervakning av matarvattenkemin på Öresundsverket. Eva Fransson, Karlshamn Kraft AB, Eon värmekraft Sverige AB. Erfarenheter från fjärrövervakning av matarvattenkemin på Öresundsverket. Eva Fransson, Karlshamn Kraft AB, Eon värmekraft Sverige AB. 1 Öresundsverket CHP (Combined Heat and Power) HRSG (Heat Recovery

Läs mer

Integrerad torkning av biobränsle i kraftvärmeanläggningar och skogsindustri

Integrerad torkning av biobränsle i kraftvärmeanläggningar och skogsindustri Integrerad torkning av biobränsle i kraftvärmeanläggningar och skogsindustri Föredrag vid Panndagarna 2011 av Ola Thorson (VD) S.E.P. Torkning av biobränsle har flera fördelar Torkning ökar bränslets effektiva

Läs mer

Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller (S O Elovsson och H Alvarez, Studentlitteratur)

Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller (S O Elovsson och H Alvarez, Studentlitteratur) Förbränningsteknik Provmoment: Ladokkod: Tentamen ges för: Tentamen A117TG En2 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2017-05-30 Tid: 9:00-13:00 Hjälpmedel: Valfri miniräknare, Formelsamling:

Läs mer

Statens naturvårdsverks författningssamling

Statens naturvårdsverks författningssamling Statens naturvårdsverks författningssamling Miljöskydd ISSN 0347-5301 Kungörelse med föreskrifter om kontroll av utsläpp av kväveoxider och svaveloxider till luft från förbränning i fasta anordningar;

Läs mer

Panndagarna 2009. Erfarenheter från kvalitetssäkringsprogram för returbränslen

Panndagarna 2009. Erfarenheter från kvalitetssäkringsprogram för returbränslen Erfarenheter från kvalitetssäkringsprogram för returbränslen Sylwe Wedholm Avdelningschef Bränslehantering 2009-02-04 Söderenergi Samägt av kommunerna: Botkyrka 25 Huddinge 25% Södertälje 50% Kunder: Södertörns

Läs mer

Lite kinetisk gasteori

Lite kinetisk gasteori Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl

Läs mer

Additivs inverkan på lågtemperaturkorrosion SEBRA Bränslebaserad el- och värmeproduktion Stockholm juni 2016 SP Sveriges Tekniska

Additivs inverkan på lågtemperaturkorrosion SEBRA Bränslebaserad el- och värmeproduktion Stockholm juni 2016 SP Sveriges Tekniska Additivs inverkan på lågtemperaturkorrosion SEBRA Bränslebaserad el- och värmeproduktion Stockholm 15-16 juni 2016 SP Sveriges Tekniska Forskningsinstitut Anders Hjörnhede Mål Genom dosering av svavel

Läs mer

TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM034 och KVM033) 2012-05-21 08.30-12.30 i V-huset

TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM034 och KVM033) 2012-05-21 08.30-12.30 i V-huset CHALMERS 2012-05-21 1 (4) Energi och miljö/ Värmeteknik och maskinlära TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM034 och KVM033) 2012-05-21 08.30-12.30 i V-huset Tentamen omfattar: Avdelning A: Avdelning B:

Läs mer

Prislista. Fasta bränslen och askor

Prislista. Fasta bränslen och askor Prislista Fasta bränslen och askor 0 I dagens energi- och miljömedvetna samhälle blir det allt viktigare att använda effektiva biobränslen i väl fungerande pannor. Likväl finns det stora miljövinster om

Läs mer

miljövärdering 2012 guide för beräkning av fjärrvärmens miljövärden

miljövärdering 2012 guide för beräkning av fjärrvärmens miljövärden miljövärdering 2012 guide för beräkning av fjärrvärmens miljövärden 1 Inledning Det här är en vägledning för hur fjärrvärmebranschen ska beräkna lokala miljövärden för resursanvändning, klimatpåverkan

Läs mer

Naturvårdsverkets författningssamling

Naturvårdsverkets författningssamling Naturvårdsverkets författningssamling ISSN 1403-8234 Naturvårdsverkets föreskrifter om mätutrustning för bestämmande av miljöavgift på utsläpp av kväveoxider vid energiproduktion; NFS 2016:13 Utkom från

Läs mer

Funktionsprovning av luftvärmepumpen Argo AWI25AHL+AEI25AH vid låga utomhustemperaturer och med en värmefaktor som inkluderar avfrostningsperioderna

Funktionsprovning av luftvärmepumpen Argo AWI25AHL+AEI25AH vid låga utomhustemperaturer och med en värmefaktor som inkluderar avfrostningsperioderna PROVNINGSRAPPORT Nr. VTT S 1466 6/SE 3.11.26 Funktionsprovning av luftvärmepumpen Argo AWI25AHL+AEI25AH vid låga utomhustemperaturer och med en värmefaktor som inkluderar avfrostningsperioderna Beställare:

Läs mer

7,5 högskolepoäng. Industriell energihushållning Provmoment: Ladokkod: Tentamen ges för: 41N11C En3. TentamensKod:

7,5 högskolepoäng. Industriell energihushållning Provmoment: Ladokkod: Tentamen ges för: 41N11C En3. TentamensKod: Industriell energihushållning Provmoment: Ladokkod: Tentamen ges för: 41N11C En3 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2017-10-24 Tid: 9 13 Hjälpmedel: Alvarez. Formler och Tabeller Räknare och

Läs mer

HUVUDFÖR- HANDLING VATTENFALL BOLÄNDERNA

HUVUDFÖR- HANDLING VATTENFALL BOLÄNDERNA HUVUDFÖR- HANDLING VATTENFALL BOLÄNDERNA Uppsala 17-18 januari 2018 Anders Törngren Ingrid Backudd Naturvårdsverket Swedish Environmental Protection Agency 2018-01-17 1 Naturvårdsverkets roll Naturvårdsverket

Läs mer

Svensk författningssamling

Svensk författningssamling Svensk författningssamling Förordning om avfallsförbränning; SFS 2002:1060 Utkom från trycket den 20 december 2002 utfärdad den 12 december 2002. Regeringen föreskriver 1 följande. 1 Syftet med denna förordning

Läs mer

Kraftvärmeverket För en bättre miljö

Kraftvärmeverket För en bättre miljö Kraftvärmeverket För en bättre miljö EFFEKTIV OCH MILJÖVÄNLIG ENERGIPRODUKTION Eskilstuna använder stora mängder el för att fungera. Under många år har vi i avsaknad av egen produktion köpt vår elenergi

Läs mer

rökgaskondensat Matarvattenkonferensen Roger Lundberg Mälarenergi AB

rökgaskondensat Matarvattenkonferensen Roger Lundberg Mälarenergi AB Dolda utsläpp från rening av rökgaskondensat Matarvattenkonferensen 2013-11-13 Roger Lundberg Mälarenergi AB Mälarenergi, KVV Panna 5 Block 1+2 Kol,olja 75 80 MWe 200 220 MWv C o Block 3 Block 4 Olja Kol

Läs mer

Naturvårdsverkets författningssamling

Naturvårdsverkets författningssamling Naturvårdsverkets författningssamling ISSN 1403-8234 Naturvårdsverkets föreskrifter om ändring av Naturvårdsverkets föreskrifter (NFS 2002:28) om avfallsförbränning; NFS 2010:3 Utkom från trycket den 3

Läs mer

Effektiv användning av olika bränslen för maximering av lönsamheten och minimering av koldioxidutsläppet.

Effektiv användning av olika bränslen för maximering av lönsamheten och minimering av koldioxidutsläppet. 2008-04-23 S. 1/5 ERMATHERM AB Solbacksvägen 20, S-147 41 Tumba, Sweden, Tel. +46(0)8-530 68 950, +46(0)70-770 65 72 eero.erma@ermatherm.se, www.ermatherm.com Org.nr. 556539-9945 ERMATHERM AB/ Eero Erma

Läs mer

Kraftvärme i Katrineholm. En satsning för framtiden

Kraftvärme i Katrineholm. En satsning för framtiden Kraftvärme i Katrineholm En satsning för framtiden Hållbar utveckling Katrineholm Energi tror på framtiden Vi bedömer att Katrineholm som ort står inför en fortsatt positiv utveckling. Energi- och miljöfrågor

Läs mer

Inverkan på kraftpannor vid bränsleförändringar

Inverkan på kraftpannor vid bränsleförändringar Inverkan på kraftpannor vid bränsleförändringar Värme- och kraftföreningen Panndagarna 2018 Örebro Steve Andersson Valmet AB 4412 MW th Nytt från Valmet 2017 2020 120 MW, Borås, bio, 2018 194 MW, Oulu,

Läs mer

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt Lösningsförslag till tentamen Energiteknik 060213 Uppg 1. BA Trycket i en luftfylld pistong-cylinder är från början 100 kpa och temperaturen är 27C. Volymen är 125 l. Pistongen, som har diametern 3 dm,

Läs mer

Mätning och utvärdering av PM brännaren. Tomas Persson

Mätning och utvärdering av PM brännaren. Tomas Persson Mätning och utvärdering av PM brännaren Tomas Persson ISSN 1401-7555 ISRN DU-SERC- -93- -SE Maj 2007 Abstract The PM-brännaren (pellets burner) have on commission by the company been measured and evaluated

Läs mer

Namn: Mikael Kronström Johan Sidenberg Tel: E-post:

Namn: Mikael Kronström Johan Sidenberg Tel: E-post: RAPPORT utfärdat av ackrediterat laboratorium REPORT issued by an Accredited Laboratory DGE Mark och Miljö RAPPORT Emissionsmätningar juni 2018 2018-07-04 upprättad av Kvalitetsgranskare Namn: Mikael Kronström

Läs mer

Jämförande mätning Hovhultsverket

Jämförande mätning Hovhultsverket utfärdat av ackrediterat laboratorium Uppdragsnr: Dokumentnr: REPORT issued by an Accredited Laboratory Jämförande mätning 2011 - Hovhultsverket Uddevalla Energi AB, Uddevalla Upprättad av: Daniel Nilsson

Läs mer

PROVNINGSRAPPORT Nr. VTT-S-03573-09/SE 14.5.2009 ÖVERSÄTTNING

PROVNINGSRAPPORT Nr. VTT-S-03573-09/SE 14.5.2009 ÖVERSÄTTNING PROVNINGSRAPPORT Nr. VTT-S-3573-9/SE 14.5.29 Funktionsprovning av luftvärmepumpen Argo AWI8826HLB + AEI826SH med inomhustemperaturens inställningsläge +1 C vid låga utomhustemperaturer och med en värmefaktor

Läs mer

Instruktion för analys av fraktionen Aromater >C16-C35

Instruktion för analys av fraktionen Aromater >C16-C35 RAPPORT 1(5) Lorena Olivares, Patrick Lindén, lorena.oilivares@sis.se, patrick.linden@sis.se Instruktion för analys av fraktionen Aromater >C16-C35 T:\TK 535\02 SIS TK N-dokument\SIS TK 535 N 012 SIS-instruktion

Läs mer

SWEBO BIOTHERM. - Gårdagens restprodukter är dagens bränsle.

SWEBO BIOTHERM. - Gårdagens restprodukter är dagens bränsle. SWEBO BIOTHERM - Gårdagens restprodukter är dagens bränsle. Flygbild över anläggningen i Boden. 30 ÅR AV ERFARENHET VÄRMER VÄRLDEN! Med 30 års erfarenhet och med fokus på forskning är vi med och utvecklar

Läs mer

DOM meddelad i Vänersborg

DOM meddelad i Vänersborg VÄNERSBORGSTfcNGSRÄTT Milj ödomstolen DOM 2005-06-28 meddelad i Vänersborg Mål nr Sid l (44) SÖKANDE Renova AB, 556108-3337 Box 156, 411 25 Göteborg, Ombud: Advokaterna Rudolf Laurin och Matilda Afzelius,

Läs mer

Kontroll av pannverkningsgrad Dåva kraftvärmeverk

Kontroll av pannverkningsgrad Dåva kraftvärmeverk Kontroll av pannverkningsgrad Dåva kraftvärmeverk Evaluation of boiler efficiency Dåva CHP plant Mathias Rönnberg EN1420 Examensarbete för civilingenjörsexamen i energiteknik, 30hp Sammanfattning Umeå

Läs mer

20 04-11-17 /120 02-0 9-05 /1

20 04-11-17 /120 02-0 9-05 /1 20 04-11-17 /120 02-0 9-05 /1 Optimalt system för energi ur avfall i Göteborg Utbyggnad av Jonas Axner, Renova AB Renovas avfallskraft- värmeverk i Sävenäs Sävenäs AKVV Omvärld Teknik / begränsningar Åtgärder

Läs mer

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Hjälpmedel för rapportering av levererad hållbar biogas enligt Hållbarhetskriterierna ISSN 1103-4092

Hjälpmedel för rapportering av levererad hållbar biogas enligt Hållbarhetskriterierna ISSN 1103-4092 Hjälpmedel för rapportering av levererad hållbar biogas enligt Hållbarhetskriterierna RAPPORT U2012:16 ISSN 1103-4092 Förord Implementeringen av ett EU-direktiv om förnybar energi ställer krav på leverantörerna

Läs mer

Miljörapport - Textdel

Miljörapport - Textdel Miljörapport - Textdel Anläggningsnamn Anläggningsnummer Panncentral Söder 1485-1146 Rapporteringsår 2010 1. Verksamhetsbeskrivning 4 1. Kortfattad beskrivning av verksamheten samt en översiktlig beskrivning

Läs mer

Avfall från verksamheter. Hörby 2009. Sortering av brännbart avfall från annat avfall samt karakterisering av avfall till deponi HÖRBY KOMMUN

Avfall från verksamheter. Hörby 2009. Sortering av brännbart avfall från annat avfall samt karakterisering av avfall till deponi HÖRBY KOMMUN Avfall från verksamheter Hörby 2009 Sortering av brännbart avfall från annat avfall samt karakterisering av avfall till deponi RAPPORT 2010-2 Sid 2 Inledning Under 2008-2009 har Miljösamverkan Skåne bedrivit

Läs mer

Gärstadanläggningen Energi ur avfall för miljöns skull

Gärstadanläggningen Energi ur avfall för miljöns skull Gärstadanläggningen Energi ur avfall för miljöns skull 1 Så gick det till 1954 Den första fjärrvärmeleveransen skedde i Linköpings kommun. Så här fungerar det Anslutningen till fjärrvärmenätet ökade i

Läs mer

Mall för textdelen till miljörapporten för energianläggningar

Mall för textdelen till miljörapporten för energianläggningar MALL MILJÖRAPPORT 1 (6) Mall för textdelen till miljörapporten för energianläggningar Förflytta dig i dokumentet med TAB-tangenten Miljörapport för år Verksamhetsutövare Namn Anläggningens namn Organisationsnummer

Läs mer

Stora förbränningsanläggningar

Stora förbränningsanläggningar MILJÖRAPPORTING VÄGLEDNING STORA FÖRBRÄNNINGSANLÄGGNINGAR Stora förbränningsanläggningar I denna vägledning finns en instruktion för hur uppgifter enligt 5 sjunde stycket, bilaga 2 del I och 4 punkt 15

Läs mer

Förnyelsebar energi, 7,5 högskolepoäng

Förnyelsebar energi, 7,5 högskolepoäng 1 (5) Förnyelsebar energi, 7,5 högskolepoäng Provmoment: Tentamen Ladokkod: 41N15A Tentamen ges för: En14, Htep13 Tentamensdatum: 2015-01-13 Hjälpmedel: Miniräknare Tentamen består av två delar om 30 p

Läs mer

Vad innebär nya bränslefraktioner? Björn Zethræus Professor, Bioenergiteknik

Vad innebär nya bränslefraktioner? Björn Zethræus Professor, Bioenergiteknik Vad innebär nya bränslefraktioner? Björn Zethræus Professor, Bioenergiteknik Bränslekvalitet allmänt: Fotosyntes: CO 2 + H 2 O + Sol = Bränsle + O 2 Förbränning: Bränsle + O 2 = CO 2 + H 2 O + Energi Kvalitet

Läs mer

Årsrapport-Miljö för Forsbacka Biobränslepanna år 2014

Årsrapport-Miljö för Forsbacka Biobränslepanna år 2014 Årsrapport-Miljö för Forsbacka Biobränslepanna år 2014 Gävle den 27/3 2015 Underskrift: Roger Belin VD Bionär Närvärme AB Års /Miljörapporten är utformad med stöd av Naturvårdsverkets föreskrifter om miljörapport

Läs mer

Årsrapport-Miljö för Forsbacka Biobränslepanna år 2009

Årsrapport-Miljö för Forsbacka Biobränslepanna år 2009 Årsrapport-Miljö för Forsbacka Biobränslepanna år 2009 Gävle den 29/3 2009 Underskrift: Conny Malmkvist VD Bionär Närvärme AB Års /Miljörapporten är utformad med stöd av Naturvårdsverkets föreskrifter

Läs mer

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 5 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Erfarenheter av förbud mot deponering av organiskt och brännbart avfall. Thomas Rihm

Erfarenheter av förbud mot deponering av organiskt och brännbart avfall. Thomas Rihm Erfarenheter av förbud mot deponering av organiskt och brännbart avfall Thomas Rihm EU Strategi skall säkerställa att det nedbrytbara kommunala avfall som går till deponier senast 2016 skall ha nedbringats

Läs mer

Dioxin ut ut kretsloppet. rapport. Förbränning av avfall binder giftet. RVF Rapport 01:14 ISSN 1103-4092 ISRN RVF-R--01/14--SE

Dioxin ut ut kretsloppet. rapport. Förbränning av avfall binder giftet. RVF Rapport 01:14 ISSN 1103-4092 ISRN RVF-R--01/14--SE Dioxin ut ut kretsloppet Förbränning av avfall binder giftet RVF Rapport 01:14 ISSN 1103-4092 ISRN RVF-R--01/14--SE rapport RVF Rapport 01:14 ISSN 1103-4092 ISRN RVF-R--01/14--SE RVF Service AB Tryck:

Läs mer

TOPLING SASP. Hög kvalitet till RÄTT PRIS!

TOPLING SASP. Hög kvalitet till RÄTT PRIS! TOPLING SASP Hög kvalitet till RÄTT PRIS! SASP Topling är både miljö och kvalitet certifierad Flygbild över anläggningen i Boden. 35 ÅR AV ERFARENHET VÄRMER VÄRLDEN! Med över 35 års erfarenhet och med

Läs mer

Årsrapport-Miljö för Forsbacka Biobränslepanna år 2012

Årsrapport-Miljö för Forsbacka Biobränslepanna år 2012 Årsrapport-Miljö för Forsbacka Biobränslepanna år 2012 Gävle den 27/3 2013 Underskrift: Roger Belin VD Bionär Närvärme AB Års /Miljörapporten är utformad med stöd av Naturvårdsverkets föreskrifter om miljörapport

Läs mer

Årsverkningsgrad för värmeåtervinning med luftluftvärmeväxlare. Riktlinjer för redovisning av produktdata.

Årsverkningsgrad för värmeåtervinning med luftluftvärmeväxlare. Riktlinjer för redovisning av produktdata. Sida 1(6) 1. Förord Syftet med detta dokument är att beräkna och redovisa årsbaserade verkningsgrader för värmeåtervinnare med samma förutsättningar, så att man kan jämföra data från olika tillverkare.

Läs mer

Mätning av effekt och beräkning av energiförbrukning hos ett ute spa.

Mätning av effekt och beräkning av energiförbrukning hos ett ute spa. Kontaktperson Mathias Johansson 2015-06-16 5P03129-02 rev. 1 1 (4) Energi och bioekonomi 010-516 56 61 mathias.johansson.et@sp.se Nordiska Kvalitetspooler AB Box 22 818 03 FORSBACKA Energimätning på utespa

Läs mer

Rapport Energideklarering

Rapport Energideklarering -. I ' Sida 1 av 7 Rapport Energideklarering Namn:!Adress: lpostnr: Ort: Datum: Brr Malmöhus 52 Östra Stations gatan 19 21236 Malmö 2010-03-25 Thommie HahmolTorgn Pettersson Sida 2 av 7 Nu är er energideklaration

Läs mer