Kinetik. Föreläsning 1

Storlek: px
Starta visningen från sidan:

Download "Kinetik. Föreläsning 1"

Transkript

1 Kinetik Föreläsning 1

2 Varför kunna kinetik? För att till exempel kunna besvara: Hur lång tid tar reaktionen till viss omsättningsgrad eller hur mycket produkt bildas på viss tid? Hur ser reaktionens temperaturberoende ut? Enligt vilken mekanism eller delreaktioner sker reaktionen? Hur påverkar katalys reaktionen och reaktionshastigheten?

3 Definition av reaktionshastighet (21.2a) Baseras på reaktionens summaformel (Jämför r H i termodynamiken) Exempel på reaktion: 2A + B 3C Reaktionshastigheten, v, definieras som: v = 1 2 d A dd d B = dd = 1 3 d C dd Enheten är koncentration per tidsenhet, till exempel mol dm -3 s -1.

4 Partialtryck kan användas i stället för koncentrationer för reaktioner i gasfas I gasreaktioner kan partialtryck användas analogt med koncentrationer eftersom partialtrycken vid en viss temperatur är proportionella mot koncentrationerna. p i = RR n i V = RR c i Reaktionshastigheten kan alltså även beskrivas som v = 1 2 och enheten blir då till exempel atm s -1. dp A dd = dp B dd = 1 dp C 3 dd

5 Grafisk illustration av en reaktions tidsberoende 2A + B 3C (Under förutsättning att reaktionen går fullständigt åt höger.)

6 Hastighetskonstant och reaktionsordning (21.2b + c) Hastigheten kan ofta skrivas på formen v = k A m B n k = hastighetskonstanten för reaktionen (beroende av temperatur) m och n = reaktionsordning för A respektive B m + n = total reaktionsordning Vad får k för enhet? Ibland saknas total reaktionsordning för en eller flera reaktanter: Ex. v = k 1 A B 1+k 2 B Första ordningen m.a.p. A, inte entydigt bestämd för B

7 Hur ta reda på reaktionsordningen? 1) Metoden att isolera ett ämne (Ostwalds metod) Gör försöket så att [A] 0 << [B] 0 Då förbrukas bara en liten del av ämne B innan A tar slut, dvs. [B] [B] 0 under hela försöket. v = k A m B n = k A m B 0 n = k A m k = k B 0 n Reaktionen är nu av pseudo-m:te ordningen och kan matematiskt behandlas som en m:te ordningens reaktion (se nästa avsnitt). Gör sedan om samma sak men med [B] 0 << [A] 0 för att bestämma n.

8 Hur ta reda på reaktionsordningen? 2) Initialhastighetsmetoden Vi mäter reaktionshastigheten vid eller nära tiden 0. (inom tidsintervall långt under halveringstiden) v 0 = k A 0 m B 0 n Gör en försöksserie där [A] 0 varieras medan [B] 0 hålls konstant. Mät v 0 för alla. Logaritmera: ln v 0 = m ln A 0 + ln k B 0 n = m ln A 0 + kkkkkkkk (Fortsättning på nästa sida)

9 Hur ta reda på reaktionsordningen? (Fortsättning från förra sidan) Upprepa men variera [B] 0 för att även bestämma n.

10 Integrerade hastighetsekvationer Med en integrerad hastighetsekvation menas en ekvation som beskriver koncentrationernas tidsberoende. Vi vill bestämma [A] = f(t) och gör det genom att lösa differentialekvationen d A dd = g A, B, Till exempel: d A dd d A = k[a], dd = k A 2, d A dd = k A [B] etc.

11 Första ordningens reaktioner (Sönderfall, omlagringar, pseudo-första ordningen, t.ex. reaktioner med lösningsmedlet m.m.) d A dd = k A Separation av variabler, integration och randvillkoret att vid t = 0 är [A] = [A] 0 ger (Se Just. 21.1) A = A 0 e kk eller: ln A = ln A 0 k t

12 Hur testa om en reaktion är av första ordningen? Avsätt ln[a] mot t. Rät linje bekräftar 1:a ordningens reaktion.

13 Halveringstid och tidskonstant Halveringstid (t 1/2 ) är när hälften av A reagerat. t ½ = ln 2 k Tidskonstant (τ) är den tid när endast bråkdelen 1/e av [A] finns kvar. Insatt i den integrerade hastighetekvationen erhålls τ = 1/k Enhet på k är (tid) 1, till exempel s 1 och alltså får τ enheten s (tid) Obs! Dessa ekvationer gäller bara för första ordningens reaktioner! För andra typer av reaktioner gäller andra samband.

14 Andra ordningens reaktioner. En enda reaktant* 1. En enda reaktant eller lika startkoncentrationer av de två reaktanterna. d A dd = k A 2 Samma procedurer som i fallet första ordningen ger den integrerade hastighetsekvationen (Se Just. 21.2): 1 A 1 A 0 = k t *En enda reaktant eller lika startkoncentrationer av två reaktanter.

15 Hur testa om andra ordningens reaktion för ett ämne eller två ämnen med lika startkoncentrationer? Avsätt 1/[A] mot t.rät linje bekräftar 2:a ordningens reaktion. Halveringstid t ½ = 1 k A 0 Här beror halveringstiden av startkoncentrationen (i motsats till 1:a ordningens reaktioner). Enhet på k: (konc) 1 (tid) 1, ex. mol 1 dm 3 s 1 Enheten på halveringstiden blir därför till exempel sekunder.

16 Andra ordningens reaktioner 2) Olika startkoncentrationer Här behövs hjälpvariabel och koncentrationsschema: A + B P tid [A] [B] [P] t = 0 [A] 0 [B] 0 0 t = var. [A] 0 x [B] 0 x x t = [A] 0 [B] 0 * 0* [B] 0 * *Om [A] 0 > [B] 0 och reaktionen går fullständigt åt höger.

17 Andra ordningens reaktioner. Olika startkoncentrationer av två ämnen Variabelseparation, integrering genom partialbråksuppdelning och randvillkoret t = 0 x = 0 ger: (se Just. 21.3) ln A 0 x B 0 B 0 x A 0 = A 0 B 0 k t eller med [A] 0 x = [A] osv. ln [A] B = A 0 B 0 k t + ln A 0 B 0 Grafiskt test: Avsätt ln([a]/[b]) mot t. Rät linje bekräftar 2:a ordningen av detta slag. Lutningen = ([A] 0 - [B] 0 ) k. Skärningen med y-axeln = ln A 0 B 0.

18 Hur testa om andra ordningens reaktion för två ämnen med olika startkoncentrationer? Avsätt ln([a]/[b]) mot t. Rät linje bekräftar 2:a ordningen av detta slag.

19 Hur integrera hastighetsuttryck för mer komplicerade reaktionsordningar? Om det går (hyfsat) lätt att lösa differentialekvationerna: i) Integrera själv. Exemplen i tabell 21.3 behöver ej läras. Mjukvara som MATEMATICA kan ibland användas. Om det är omöjligt eller mycket svårt att lösa differentialekvationerna: ii) Numerisk simulering.

KEM A02 Allmän- och oorganisk kemi. KINETIK 1(2) A: Kap

KEM A02 Allmän- och oorganisk kemi. KINETIK 1(2) A: Kap KEM A02 Allmän- och oorganisk kemi KINETIK 1(2) A: Kap 14.1 14.5 Vad är kinetik? REAKTIONSKINETIK: ger information om på vilket sätt och hur snabbt kemiska reaktioner sker mekanism hastighetslag FÖLJDFRÅGA:

Läs mer

KINETIK 1(2) A: Kap Vad är kinetik? 14.1 Koncentration och reaktionshastighet. KEM A02 Allmän- och oorganisk kemi

KINETIK 1(2) A: Kap Vad är kinetik? 14.1 Koncentration och reaktionshastighet. KEM A02 Allmän- och oorganisk kemi KEM A02 Allmän och oorganisk kemi KINETIK 1(2) A: Kap 14.1 14.5 Vad är kinetik? REAKTIONSKINETIK: ger information om på vilket sätt mekanism och hur snabbt hastighetslag kemiska reaktioner sker FÖLJDFRÅGA:

Läs mer

Kemisk Dynamik för K2, I och Bio2

Kemisk Dynamik för K2, I och Bio2 Kemisk Dynamik för K2, I och Bio2 Fredagen den 11 mars 2005 kl 8-13 Uppgifterna märkta (GKII) efter uppgiftens nummer är avsedda både för tentan i Kemisk Dynamik och för dem som deltenterar den utgångna

Läs mer

Kinetik. Föreläsning 2

Kinetik. Föreläsning 2 Kinetik Föreläsning 2 Reaktioner som går mot ett jämviktsläge ALLA reaktioner går mot jämvikt, här avses att vid jämvikt finns mätbara mängder av alla i summaformeln ingående ämnen. Exempel: Reaktion i

Läs mer

Reaktionskinetik...hur fort går kemiska reaktioner

Reaktionskinetik...hur fort går kemiska reaktioner Reaktionskinetik..hur fort går kemiska reaktioner Några begrepp Jämvikt Reaktionerna går lika snabbt i båda riktingarna ingen ändring i koncentrationer A + B C + D Miljoner år Långsamma reaktioner Ex:

Läs mer

Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon

Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon Jesper Hagberg Simon Pedersen 28 november 2011 Chalmers Tekniska Högskola Institutionen för Kemi och Bioteknik Fysikalisk

Läs mer

Kinetik. Föreläsning 3

Kinetik. Föreläsning 3 Kinetik Föreläsning 3 Reaktioner som går mot ett jämviktsläge ALLA reaktioner går mot jämvikt, här avses att vid jämvikt finns mätbara mängder av alla i summaformeln ingående ämnen. Ibland kan dock hastigheten

Läs mer

EXPERIMENTELLT PROV ONSDAG Provet omfattar en uppgift som redovisas enligt anvisningarna. Provtid: 180 minuter. Hjälpmedel: Miniräknare.

EXPERIMENTELLT PROV ONSDAG Provet omfattar en uppgift som redovisas enligt anvisningarna. Provtid: 180 minuter. Hjälpmedel: Miniräknare. EXPERIMENTELLT PROV ONSDAG 2011-03-16 Provet omfattar en uppgift som redovisas enligt anvisningarna. Provtid: 180 minuter. Hjälpmedel: Miniräknare. OBS! Tabell- och formelsamling får EJ användas. Skriv

Läs mer

Bestämning av hastighetskonstant och aktiveringsenergi för reaktionen mellan väteperoxid och jodidjon i sur lösning Jodklockan

Bestämning av hastighetskonstant och aktiveringsenergi för reaktionen mellan väteperoxid och jodidjon i sur lösning Jodklockan 1 K 1 070703/SEF Bestämning av hastighetskonstant och aktiveringsenergi för reaktionen mellan väteperoxid och jodidjon i sur lösning Jodklockan Inledning Avsikten med detta försök är att bestämma hastighetskonstanten

Läs mer

KEMA02 Oorganisk kemi grundkurs F12

KEMA02 Oorganisk kemi grundkurs F12 KEMA02 Organisk kemi grundkurs F12 Kinetik Kinetik Atkins & Jnes kap 14.1 14.5 Översikt Reaktinshastigheter Kncentratin ch reaktinshastighet Mmentan hastighetsekvatin Hastighetsekvatiner ch reaktinsrdning

Läs mer

Kinetik. Föreläsning 4

Kinetik. Föreläsning 4 Kinetik Föreläsning 4 Fotokemi Med fotoreaktioner avses reaktioner som initieras av ljus. Exempel: Cl 2 + h ν Cl 2 * 2Cl Ljus = små odelbara energipaket med frekvens ν (Hz = s -1 ) є = h ν h = Plancks

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Onsdag den 22 augusti 2012 kl 8:30-13:30 i V. Examinator: Bitr. Prof.

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Onsdag den 22 augusti 2012 kl 8:30-13:30 i V. Examinator: Bitr. Prof. Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Onsdag den 22 augusti 2012 kl 8:30-13:30 i V Examinator: Bitr. Prof. Louise Olsson Louise Olsson (031-722 4390) kommer att besöka tentamenslokalen

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

Energi, katalys och biosyntes (Alberts kap. 3)

Energi, katalys och biosyntes (Alberts kap. 3) Energi, katalys och biosyntes (Alberts kap. 3) Introduktion En cell eller en organism måste syntetisera beståndsdelar, hålla koll på vilka signaler som kommer utifrån, och reparera skador som uppkommit.

Läs mer

530117 Materialfysik vt 2007. 5. Kinetik 5.1 Allmänt om kinetik. [Mitchell 3.0; lite ur Porter-Easterling 5.4]

530117 Materialfysik vt 2007. 5. Kinetik 5.1 Allmänt om kinetik. [Mitchell 3.0; lite ur Porter-Easterling 5.4] 530117 Materialfysik vt 2007 5. Kinetik 5.1 Allmänt om kinetik [Mitchell 3.0; lite ur Porter-Easterling 5.4] Definition Med kinetik avses tidsberoendet av processer, hur snabbt de sker Avgörande storhet

Läs mer

Laboration Enzymer. Labföreläsning. Introduktion, enzymer. Kinetik. Första ordningens kinetik. Michaelis-Menten-kinetik

Laboration Enzymer. Labföreläsning. Introduktion, enzymer. Kinetik. Första ordningens kinetik. Michaelis-Menten-kinetik Labföreläsning Maria Svärd maria.svard@ki.se Molekylär Strukturbiologi, MBB, KI Introduktion, er och kinetik Första ordningens kinetik Michaelis-Menten-kinetik K M, v max och k cat Lineweaver-Burk-plot

Läs mer

TENTAMEN I KEMI TFKE

TENTAMEN I KEMI TFKE Linköpings Universitet IFM-Kemi. Kemi för Y, M. m. fl. (TFKE09) TENTAMEN I KEMI TFKE09. 2005-10-17 Lokal: TER2. Skrivtid: 14.00 18.00 Ansvariga lärare: Nils-la Persson, tel. 1387, alt 070-517 1088. Stefan

Läs mer

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas

Läs mer

NpMa4 Muntligt delprov Del A vt 2013

NpMa4 Muntligt delprov Del A vt 2013 Till eleven - Information inför det muntliga delprovet Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater

Läs mer

Kap 6: Termokemi. Energi:

Kap 6: Termokemi. Energi: Kap 6: Termokemi Energi: Definition: Kapacitet att utföra arbete eller producera värme Termodynamikens första huvudsats: Energi är oförstörbar kan omvandlas från en form till en annan men kan ej förstöras.

Läs mer

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Fredagen den 22 december 2006 kl 8:30-12:30 i V. Man får svara på svenska eller engelska!

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Fredagen den 22 december 2006 kl 8:30-12:30 i V. Man får svara på svenska eller engelska! 2006-12-22 Sid 2(5) Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Fredagen den 22 december 2006 kl 8:30-12:30 i V Examinator: Derek Creaser Derek Creaser (0702-283943) kommer att besöka tentamenslokalen

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V CHALMERS 1 () ermodynamik (KVM090) LÖSNINFÖRSLA ENAMEN I ERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V 1. I den här ugiften studerar vi en standard kylcykel, som är en del av en luftkonditioneringsanläggning.

Läs mer

= x 2 y, med y(e) = e/2. Ange även existens-

= x 2 y, med y(e) = e/2. Ange även existens- MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA0 Differentialekvationer för lärare Datum:

Läs mer

17.10 Hydrodynamik: vattenflöden

17.10 Hydrodynamik: vattenflöden 824 17. MATEMATISK MODELLERING: DIFFERENTIALEKVATIONER 20 15 10 5 0-5 10 20 40 50 60 70 80-10 Innetemperaturen för a =1, 2och3. Om vi har yttertemperatur Y och startinnetemperatur I kan vi med samma kalkyl

Läs mer

2. För vilka värden på parametrarna α och β har det linjära systemet. som satisfierar differensekvationen

2. För vilka värden på parametrarna α och β har det linjära systemet. som satisfierar differensekvationen MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Differentialekvationer och transformmetoder

Läs mer

Tentamen i Kemi för miljö- och hälsoskyddsområdet: Allmän kemi och jämviktslära

Tentamen i Kemi för miljö- och hälsoskyddsområdet: Allmän kemi och jämviktslära Umeå Universitet Kodnummer... Allmän kemi för miljö- och hälsoskyddsområdet Lärare: Olle Nygren och Roger Lindahl Tentamen i Kemi för miljö- och hälsoskyddsområdet: Allmän kemi och jämviktslära 29 november

Läs mer

Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F7 Intermolekylär växelverkan kortväga repulsion elektrostatisk växelverkan (attraktion och repulsion): jon-jon (långväga), jon-dipol, dipol-dipol medelvärdad attraktion (van der Waals): roterande

Läs mer

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna. Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.

Läs mer

SF1513 NumProg för Bio3 HT2013 LABORATION 4. Ekvationslösning, interpolation och numerisk integration. Enkel Tredimensionell Design

SF1513 NumProg för Bio3 HT2013 LABORATION 4. Ekvationslösning, interpolation och numerisk integration. Enkel Tredimensionell Design 1 Beatrice Frock KTH Matematik 4 juli 2013 SF1513 NumProg för Bio3 HT2013 LABORATION 4 Ekvationslösning, interpolation och numerisk integration Enkel Tredimensionell Design Efter den här laborationen skall

Läs mer

9-2 Grafer och kurvor Namn:.

9-2 Grafer och kurvor Namn:. 9-2 Grafer och kurvor Namn:. Inledning I föregående kapitel lärde du dig vad som menas med koordinatsystem och hur man kan visa hur matematiska funktioner kan visas i ett koordinatsystem. Det är i och

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16

CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16 CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg TME055 Strömningsmekanik 2015-01-16 Tentamen fredagen den 16 januari 2015 kl 14:00-18:00 Ansvarig lärare: Henrik Ström Ansvarig lärare besöker

Läs mer

Repetition F11. Molär Gibbs fri energi, G m, som funktion av P o Vätska/fasta ämne G m G m (oberoende av P) o Ideal gas: P P. G m. + RT ln.

Repetition F11. Molär Gibbs fri energi, G m, som funktion av P o Vätska/fasta ämne G m G m (oberoende av P) o Ideal gas: P P. G m. + RT ln. Repetition F11 Molär Gibbs fri energi, G m, som funktion av P o Vätska/fasta ämne G m G m (oberoende av P) o Ideal gas: G m = G m + RT ln P P Repetition F11 forts. Ångbildning o ΔG vap = ΔG P vap + RT

Läs mer

Lite basalt om enzymer

Lite basalt om enzymer Enzymer: reaktioner, kinetik och inhibering Biokatalysatorer Reaktion: substrat omvandlas till produkt(er) Påverkar reaktionen så att jämvikten ställer in sig snabbare, dvs hastigheten ökar Reaktionen

Läs mer

NATIONELLT PROV I MATEMATIK KURS E HÖSTEN 1996

NATIONELLT PROV I MATEMATIK KURS E HÖSTEN 1996 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av mars 1997. NATIONELLT PROV

Läs mer

Differentialekvationer av första ordningen

Differentialekvationer av första ordningen Föreläsning 1 Differentialekvationer av första ordningen 1.1 Aktuella avsnitt i läroboken 1.1) Differential Equations and Mathematical Models. Speciellt exemplen 3, 4 och 5.) 1.2) Integrals as General

Läs mer

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer

Läs mer

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Lördagen den 20 december 2008 kl 8:30-13:30 i V. Examinator: Docent Louise Olsson

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Lördagen den 20 december 2008 kl 8:30-13:30 i V. Examinator: Docent Louise Olsson Kommentar [PM1]: Här fyller du i ev. diarienummer. Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Lördagen den 20 december 2008 kl 8:30-13:30 i V Examinator: Docent Louise Olsson Louise Olsson

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.

Läs mer

Repetition F10. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F10. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F10 Gibbs fri energi o G = H TS (definition) o En naturlig funktion av P och T Konstant P och T (andra huvudsatsen) o G = H T S 0 G < 0: spontan process, irreversibel G = 0: jämvikt, reversibel

Läs mer

Farmakokinetik. Farmakokinetik och farmakodynamik 2011-11-06. Ernst Brodin, Institutionen för Fysiologi och Farmakologi, Karolinska Institutet

Farmakokinetik. Farmakokinetik och farmakodynamik 2011-11-06. Ernst Brodin, Institutionen för Fysiologi och Farmakologi, Karolinska Institutet Farmakokinetik och farmakodynamik Ernst Brodin, Institutionen för Fysiologi och Farmakologi, Karolinska Institutet KUT HT 2011 Farmakokinetik 1 Farmakokinetik = att matematiskt försöka beskriva tidsförloppet

Läs mer

Enzymkinetik. - En minskning i reaktantkoncentrationen per tidsenhet (v = - A/ t)

Enzymkinetik. - En minskning i reaktantkoncentrationen per tidsenhet (v = - A/ t) Enzymkinetik Hastigheten för en reaktion A P kan uttryckas som: - En minskning i reaktantkoncentrationen per tidsenhet ( - A/ t - En ökning i produktkoncentrationen per tidsenhet ( P/ t Detta innebär att

Läs mer

y(0) = e + C e 1 = 1

y(0) = e + C e 1 = 1 KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs

Läs mer

Homogen gasjämvikt: FYSIKALISK KEMI. Laboration 2. Dissociation av dikvävetetraoxid. N2O4(g) 2 NO2(g)

Homogen gasjämvikt: FYSIKALISK KEMI. Laboration 2. Dissociation av dikvävetetraoxid. N2O4(g) 2 NO2(g) Linköpings universitet 2013-10-03 IFM / Kemi Fysikalisk kemi Termodynamik FYSIKALISK KEMI Laboration 2 Homogen gasjämvikt: Dissociation av dikvävetetraoxid N2O4(g) 2 NO2(g) Linköpings Universitet Kemi

Läs mer

Lösning till dugga för Grundläggande kemi Duggauppgifter enligt lottning; nr X, Y och Z.

Lösning till dugga för Grundläggande kemi Duggauppgifter enligt lottning; nr X, Y och Z. till dugga för Grundläggande kemi 2013-11-29 Duggauppgifter enligt lottning; nr X, Y och Z. 1. a) Ange kvalitativt buffertkapacitetens storlek (stor eller liten, med motivering, dock inga beräkningar)

Läs mer

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop

Läs mer

Definition Materialfysik II Ht Kinetik 5.1 Allmänt om kinetik. Massverkningslagen (eng. law of mass action ) Processer

Definition Materialfysik II Ht Kinetik 5.1 Allmänt om kinetik. Massverkningslagen (eng. law of mass action ) Processer Definition 530117 Materialfysik II Ht 2010 5. Kinetik 5.1 Allmänt om kinetik [Mitchell 3.0; lite ur Porter-Easterling 5.4] Med kinetik avses tidsberoendet av processer, hur snabbt de sker Avgörande storhet

Läs mer

Lathund algebra och funktioner åk 9

Lathund algebra och funktioner åk 9 Lathund algebra och funktioner åk 9 För att bli en rackare på att lösa ekvationer är det viktigt att man kan sina förutsättningar, dvs vilka matematiska regler som gäller. Prioriteringsreglerna (vilken

Läs mer

Arbete TD4 Gasreaktion. Den undersökta reaktionen är av typen A D + E. Reaktionens ordningstal är 1 och dess hastighetslag presenteras i ekvation (1).

Arbete TD4 Gasreaktion. Den undersökta reaktionen är av typen A D + E. Reaktionens ordningstal är 1 och dess hastighetslag presenteras i ekvation (1). Arbete TD4 Gasreaktion 1. INLEDNING Då en organisk förening förbränns sker reaktioner med och utan syra. Reaktionerna utan syre är protolysreaktioner där en kemisk förening sönderfaller till stabila produkter.

Läs mer

En trafikmodell. Leif Arkeryd. Göteborgs Universitet. 0 x 1 x 2 x 3 x 4. Fig.1

En trafikmodell. Leif Arkeryd. Göteborgs Universitet. 0 x 1 x 2 x 3 x 4. Fig.1 10 En trafikmodell Leif Arkeryd Göteborgs Universitet Tänk dig en körfil på en landsväg eller motorväg, modellerad som x axeln i positiv riktning (fig.1), och med krysset x j som mittpunkten för bil nummer

Läs mer

Matematik 3c Kap 2 Förändringshastighet och derivator

Matematik 3c Kap 2 Förändringshastighet och derivator Matematik 3c Kap 2 Förändringshastighet och derivator Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html

Läs mer

TATA42: Föreläsning 6 Potensserier

TATA42: Föreläsning 6 Potensserier TATA4: Föreläsning 6 Potensserier Johan Thim januari 7 Vi ska nu betrakta serier där termerna inte längre är konstanter. Speciellt ska vi studera så kallade potensserier. Dessa definieras som a k x k a

Läs mer

4. Kemisk jämvikt när motsatta reaktioner balanserar varandra

4. Kemisk jämvikt när motsatta reaktioner balanserar varandra 4. Kemisk jämvikt när motsatta reaktioner balanserar varandra 4.1. Skriv fullständiga formler för följande reaktioner som kan gå i båda riktningarna (alla ämnen är i gasform): a) Kolmonoxid + kvävedioxid

Läs mer

Louise Olsson (031-772 4390) kommer att besöka tentamenslokalen på förmiddagen.

Louise Olsson (031-772 4390) kommer att besöka tentamenslokalen på förmiddagen. Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Onsdagen den 11 april 2012 kl 8:30-13:30 i Väg och vattensalarna Examinator: Bitr. Prof. Louise Olsson Louise Olsson (031-772 4390) kommer att besöka

Läs mer

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002 RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions

Läs mer

Övningar till datorintroduktion

Övningar till datorintroduktion Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,

Läs mer

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik E MA105 50p Respektive programmål gäller över kurskriterierna MA105 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är

Läs mer

Övningsuppgifter till Originintroduktion

Övningsuppgifter till Originintroduktion UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft

Läs mer

Logaritmer. Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos

Logaritmer. Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos Logaritmer Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos 24 september 2003 Innehåll 1 Introduktion 2 2 Naturliga logaritmer 3 2.1 Talet e................................. 3 2.2 Den naturliga

Läs mer

Praktisk beräkning av SPICE-parametrar för halvledare

Praktisk beräkning av SPICE-parametrar för halvledare SPICE-parametrar för halvledare IH1611 Halvledarkomponenter Ammar Elyas Fredrik Lundgren Joel Nilsson elyas at kth.se flundg at kth.se joelni at kth.se Martin Axelsson maxels at kth.se Shaho Moulodi moulodi

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag CALMERS 1 (3) Kemi- och bioteknik/fysikalk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag jälpmedel: Kursböckerna

Läs mer

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1. Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

Tentamen i Allmän kemi 7,5 hp 5 november 2014 ( poäng)

Tentamen i Allmän kemi 7,5 hp 5 november 2014 ( poäng) 1 (6) Tentamen i Allmän kemi 7,5 hp 5 november 2014 (50 + 40 poäng) Tentamen består av två delar, räkne- respektive teoridel: Del 1: Teoridel. Max poäng: 50 p För godkänt: 28 p Del 2: Räknedel. Max poäng:

Läs mer

dy dx = ex 2y 2x e y.

dy dx = ex 2y 2x e y. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 3 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, poäng 005-04-04 Skrivtid: 14 19. Hjälpmedel: Skrivdon,

Läs mer

Lösningar och kommentarer till uppgifter i 2.3

Lösningar och kommentarer till uppgifter i 2.3 Lösningar och kommentarer till uppgifter i 2.3 2303 d) TB: Jaha, nu gäller det att kunna sina deriveringsregler. Polynom kommer man alltid ihåg hur de ska deriveras. f(x) = 4x 2 + 5x 3 ger derivatan f

Läs mer

1. Talföljden {t n } n=0 24, n = 13, då den för n 2 satisfierar differensekvationen 12t n 8t n 1 + t n 2 =

1. Talföljden {t n } n=0 24, n = 13, då den för n 2 satisfierar differensekvationen 12t n 8t n 1 + t n 2 = MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA134 Differentialekvationer och transformmetoder

Läs mer

Existens och entydighet

Existens och entydighet Föreläsning 7 Eistens och entydighet 7.1 Aktuella avsnitt i läroboken Appendi Eistence and Uniqueness of Solutions. 47 48 FÖRELÄSNING 7. EXISTENS OCH ENTYDIGHET Som vi sett i flera eempel kan man ibland

Läs mer

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x = UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

IN Inst. för Fysik och materialvetenskap ---------------------------------------------------------------------------------------------- INSTRUKTION TILL LABORATIONEN INDUKTION ---------------------------------------------------------------------------------------------

Läs mer

6.2 Partikelns kinetik - Tillämpningar Ledningar

6.2 Partikelns kinetik - Tillämpningar Ledningar 6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste

Läs mer

Kapitel 5: Primitiva funktioner

Kapitel 5: Primitiva funktioner Kapitel 5: Primitiva funktioner c 005 Eric Järpe Högskolan i Halmstad Primitiva funktioner är motsatsen till derivata. Att integrera är motsatsen till att derivera. Definition F är primitiva funktion till

Läs mer

Inledande matematik M+TD

Inledande matematik M+TD Introduktionsföreläsning p. 1/13 Introduktionsföreläsning Inledande matematik M+TD Stig Larsson http://www.math.chalmers.se/ stig Matematiska vetenskaper Chalmers tekniska högskola Göteborgs universitet

Läs mer

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Termodynamikens grundlagar Nollte grundlagen Termodynamikens 0:e grundlag Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Temperatur Temperatur är ett mått på benägenheten

Läs mer

Modellering av populationers tillväxt och avtagande

Modellering av populationers tillväxt och avtagande Modellering av populationers tillväxt och avtagande Torbjörn Tambour 15 januari 2015 Det sista avsnittet i kursen Gymnasieskolans matematik med akademiska ögon ska handla om tillämpningar inom naturvetenskaperna.

Läs mer

Föreläsning 2.3. Fysikaliska reaktioner. Kemi och biokemi för K, Kf och Bt S = k lnw

Föreläsning 2.3. Fysikaliska reaktioner. Kemi och biokemi för K, Kf och Bt S = k lnw Kemi och biokemi för K, Kf och Bt 2012 N molekyler V Repetition Fö2.2 Entropi är ett mått på sannolikhet W i = 1 N S = k lnw Föreläsning 2.3 Fysikaliska reaktioner 2V DS = S f S i = Nkln2 Björn Åkerman

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

4.1 Se lärobokens svar och anvisningar. 4.2 För reaktionen 2ICl(g) I 2 (g) + Cl 2 (g) gäller att. För reaktionen I 2 (g) + Cl 2 (g) 2ICl(g) gäller 2

4.1 Se lärobokens svar och anvisningar. 4.2 För reaktionen 2ICl(g) I 2 (g) + Cl 2 (g) gäller att. För reaktionen I 2 (g) + Cl 2 (g) 2ICl(g) gäller 2 apitel 4 Här hittar du svar och lösningar till de övningsuppgifter som hänvisas till i inledningen. I vissa fall har lärobokens avsnitt Svar och anvisningar bedömts vara tillräckligt fylliga varför enbart

Läs mer

Kapitel 6. Termokemi

Kapitel 6. Termokemi Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 Energi och omvandling 6.2 Entalpi och kalorimetri 6.3 Hess lag 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage

Läs mer

1. Introduktion. Vad gör senapsgas så farlig?

1. Introduktion. Vad gör senapsgas så farlig? Föreläsning 9 Reaktionslära II Kapitel 9.1-9.6 1) Introduktion 2) Monomolekylära nukleofila substitutioner 3) Parametrar 4) Sammanfattning 5) Exempel 1. Introduktion Vad gör senapsgas så farlig? 2. Nukleofila

Läs mer

Inledning. Kapitel 1. 1.1 Bakgrund. 1.2 Syfte

Inledning. Kapitel 1. 1.1 Bakgrund. 1.2 Syfte Sammanfattning Vi har i kursen Modelleringsprojekt TNM085 valt att simulera ett geléobjekt i form av en kub. Denna består av masspunkter som är sammankopplade med tre olika typer av fjädrar med olika parametrar.

Läs mer

Laboration 1 Nedslagskratrar

Laboration 1 Nedslagskratrar Laboration 1 Nedslagskratrar Den här laborationen är uppdelad i två försök, där man i båda försöken ska släppa stålkulor på en sandbädd, vilket kan ses som en mycket enkel simulering av ett meteoritnedslag.

Läs mer

Bestämning av fluoridhalt i tandkräm

Bestämning av fluoridhalt i tandkräm Bestämning av fluoridhalt i tandkräm Laborationsrapport Ida Henriksson, Simon Pedersen, Carl-Johan Pålsson 2012-10-15 Analytisk Kemi, KAM010, HT 2012 Handledare Carina Olsson Institutionen för Kemi och

Läs mer

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Fredagen den 31 augusti 2007 kl 8:30-12:30 i M. Man får svara på svenska eller engelska!

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Fredagen den 31 augusti 2007 kl 8:30-12:30 i M. Man får svara på svenska eller engelska! 2007-08-31 Sid 2(6) Uppgift 1 (5 poäng) Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Fredagen den 31 augusti 2007 kl 8:30-12:30 i M Examinator: Derek Creaser Derek Creaser (0702-283943) kommer

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

14 min 60 s min 42 s 49m 2 =18 s m 2, alltså samma tid. Vi kan säga att den tid som mamman behövde åt dammsugning var beroende av husets storlek.

14 min 60 s min 42 s 49m 2 =18 s m 2, alltså samma tid. Vi kan säga att den tid som mamman behövde åt dammsugning var beroende av husets storlek. PASS 10. FUNKTIONER 10.1 Grundbegrepp om funktioner Mamman i den finländska modellfamiljen från pass fyra brukade dammsuga det 100 m 2 stora huset varje lördag. Det tog 30 minuter. Efter att pappan hade

Läs mer

Biologisk katalysator

Biologisk katalysator Enzymer biologiska katalysatorer Enzymer är biologiska katalysatorer som sänker aktiverings-energin! Biochemistry Kapitel 8 samt delar av kapitel 9 och 10 Biologisk katalysator Enzymer sänker aktiveringsenergin!

Läs mer

Arbetet beror på vägen

Arbetet beror på vägen VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.

Läs mer

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna.

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna. Fysik 1 övningsprov 1-13 facit Besvara 6 frågor. Återlämna uppgiftspappret! 1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna..

Läs mer

Aggregationstillstånd

Aggregationstillstånd 4. Gaser Aggregationstillstånd 4.1 Förbränning En kemisk reaktion mellan ett ämne och syre. Fullständig förbränning (om syre finns i överskott), t.ex. etanol + syre C2H6OH (l) +3O2 (g) 3H2O (g) + 2CO2

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

9.1 Mer om differentialekvationer

9.1 Mer om differentialekvationer 9.1 Mer om differentialekvationer 9.1.1 Olika typer Ordinär differentialekvationer.ode innehåller derivator med avseende på endast en variabel. Partiella differentialekvationer.pde innehåller (partiella)

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

Meddelande. Föreläsning 2.5. Repetition Lv 1-4. Kemiska reaktioner. Kemi och biokemi för K, Kf och Bt 2012

Meddelande. Föreläsning 2.5. Repetition Lv 1-4. Kemiska reaktioner. Kemi och biokemi för K, Kf och Bt 2012 Energi Kemi ch bikemi för K, Kf ch Bt 2012 Föreläsning 2.5 Kemiska reaktiner Meddelande 1. Justerat labschema Lv5-7. Berör K6, Bt6, Bt2, Kf3 2. Mittmötet. Rättning av inlämningsuppgifter. Knstruktiv kritik

Läs mer

Tentamen i Miljö och Matematisk Modellering för TM Åk 3, MVE345 MVE maj 2012,

Tentamen i Miljö och Matematisk Modellering för TM Åk 3, MVE345 MVE maj 2012, Tentamen i Miljö och Matematisk Modellering för TM Åk 3, MVE345 MVE345 24 maj 2012, 8.30-13.00 1. Ge exempel på en avklingningsfunktion för att beskriva en gas som bryts ner i atmosfären. Presentera också

Läs mer

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser. TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP2 10-11 Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning Denna

Läs mer

Allmän kemi. Läromålen. Viktigt i kap 17. Kap 17 Termodynamik. Studenten skall efter att ha genomfört delkurs 1 kunna:

Allmän kemi. Läromålen. Viktigt i kap 17. Kap 17 Termodynamik. Studenten skall efter att ha genomfört delkurs 1 kunna: Allmän kemi Kap 17 Termodynamik Läromålen Studenten skall efter att ha genomfört delkurs 1 kunna: n - använda de termodynamiska begreppen entalpi, entropi och Gibbs fria energi samt redogöra för energiomvandlingar

Läs mer