Repetition: Nätanalys för AC. Repetition: Elektricitetslära. Repetition: Halvledarkomponenterna

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Repetition: Nätanalys för AC. Repetition: Elektricitetslära. Repetition: Halvledarkomponenterna"

Transkript

1 FÖRELÄSNING 2 Repetition: Nätanalys för AC Repetition: Elektricitetslära Repetition: Halvledarkomponenterna Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 1(49)

2 Repetition: Nätanalys för AC Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 2(49)

3 NÄTANALYS Med hjälp av jω-metoden kan man tillämpa den vanliga nätanalysen för likspänning/likström även för växelspänning/växelström. Med den vanliga nätanalysen för likspänning/likström menas alltså: 1. Kirchhoffs strömlag för knutpunkt = nod: I 1 + I 2 + I 3 = 0: I 1 I 2 I 3 2. Kirchhoffs spänningslag för slinga i krets: V in - V 1 - V 2 - V 3 = 0 + V in - + V V V 2 - Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 3(49)

4 NÄTANALYS FÖR AC Samma lagar gäller för AC som för DC. I 1 I 2 I 3 I 1 I 2 I 3 + V V V in - - V 3 + V V in - - V V 2 - Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 4(49)

5 NÄTANALYS FÖR AC - KOMPONENTER Resistansen är oberoende av frekvens. Reaktansen är en frekvensberoende resistans. Reaktanser ges på imaginär form: de förskjuter ström och spänning tidsmässigt. 1000,00m 800,00m 600,00m 32,00k 30,00k 28,00k 26,00k 24,00k 400,00m 200,00m 0,00-200,00m -400,00m -600,00m -800,00m 22,00k 20,00k 18,00k 16,00k 14,00k 12,00k 10,00k 8,00k 6,00k 4,00k 2,00k -1,00 0,00 Kapacitanssimulering: Gul kurva är ström - Röd kurva är spänning Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 5(49)

6 NÄTANALYS FÖR AC - KAPACITANSEN För en kapacitans har vi att reaktansen beskrivs som 1 jωc detta är en modell för att beskriva kapacitansen när man gör nätanalys. ω kallas vinkelfrekvens och är en funktion av fysisk frekvens ω = 2π frekvens. Om man bortser från frekvensegenskaperna så kan man ta absolutbeloppet för att titta på kapacitansens resistansbeteende ; då får vi 1 2πfC: Ju högre frekvens, desto mindre värde på reaktansen. Man kan säga att motståndet mot ström sänks, när vi höjer frekvensen. - Spolar (induktanser) tillhör inte kärnan av denna kurs, trots att induktanser spelar mycket stor roll för digitala integrerade kretsar. Vi har helt enkelt inte tid för dessa. - För att göra bilden av reaktanserna komplett, så noterar vi att induktansen har reaktansen jωl. När frekvensen höjs, utgör induktansen ett ökande motstånd. Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 6(49)

7 EXEMPEL PÅ jω-metoden 1(2) + V in - R 1 C 2 + V ut - Detta är ett lågpassfilter: Låga frekvenser passerar 1 Reaktansen (frekvensberoende resistans ) för C 2 : jωc 2 Alltså ger parallellkopplingen av C 2 och upphov till impedansen: jωc jωc 2 = jωc Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 7(49)

8 + V in - R 1 C 2 EXEMPEL PÅ jω-metoden 2(2) För att finna V ut, har vi nu att räkna ut en enkel spänningsdelning: + V ut - Antag att utgången är obelastad V ut V in jω C = = R jω C vilket kan skrivas som ( jω C 2 + 1)R 1 V ut V in = ( R 1 + ) + jωr 1 C 2 Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 8(49)

9 ÖVERFÖRINGSFUNKTION MED EN (1) POL V ut Vi har överföringsfunktionen = V in ( R 1 + ) + jωr 1 C 2 V ut V in = ( R 1 + ) jω R ( R 1 C 2 ) Här är kretsens dämpande egenskaper vid DC (likspänning/ström). ( R 1 + ) R Här är den övre gränsfrekvensen (dämpning 3 db dämpning ). R 1 C 2 2 Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 9(49)

10 POLFREKVENS OCH 3 DB När frekvensen av en växelspänning överensstämmer med polen 1 märker vi en dämpning på 3 db (eller ). 2 1 Vi har ju , vilket betyder att jω pol för fallet då ω = polfrekvensen fås amplituden (absolutbeloppet) = = j Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 10(49)

11 FASFÖRSKJUTNING Fasen i överföringsfunktionen uttrycks som argumentet, och detta räknas ut som arctangens av imaginärdel dividerad med realdel. Vi har ju V ut V in = Låt oss kalla denna H(ω). ( R 1 + ) + jωr 1 C 2 Hur får man upp j:et ur nämnaren? Jo, multiplicera med konjugatet av nämnaren: ( R 1 + ) jωr 1 C 2. Eftersom konjugatet hamnar i täljaren (som från början är enbart reell), ωr 1 C 2 fås nu fasen som arctan av R 1 + Fasen varierar tydligen med frekvensen! Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 11(49)

12 EXEMPEL PÅ LÅGPASSFILTER Exempel: R 1 = = 1 kω, C 2 = 100 nf = = 0,5 V ty V in = 1 V (2 V topp-topp). ( R 1 + ) R 1 + = = f R 1 C 3dB 2 ω 3dB = 3183 Hz. 2000πR 1 C 2 arg H(ω) då f = 1 khz arctan = -17,44. R 1 + Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 12(49)

13 TRANSIENTSIMULERING: TIDSDOMÄN 1000m 800m V in - blå V ut - röd 600m Voltages (lin) 400m 200m 0-200m -400m -600m 1 khz: V ut ligger 48,4 µs efter V in En period = 1 ms Fasförskjutning: 48, = 17, u 1m 1.5m 2m Time (lin) (TIME) Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 13(49)

14 AC-SIMULERING: FREKVENSDOMÄN 1 V in - blå Volts Mag (lin) 800m 600m V ut - röd Amplitud 400m 200m 0 2k 4k 6k 8k 10k Frequency (lin) (HERTZ) 0-20 Volts Phase (lin) -40 Fas k 4k 6k 8k 10k Frequency (lin) (HERTZ) Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 14(49)

15 TID OCH FREKVENS - MP3 MUSIK Musik: V(t) Musikfrekvenser Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 15(49)

16 AC-SIMULERING: FREKVENSDOMÄN LOGSKALA 1 Volts Mag (log) f 3dB = 3183 Hz 0,5 V ut 0,36 V = k Frequency (log) (HERTZ) 10k 0 Volts Phase (lin) Fasförskjutning vid 1 khz k Frequency (log) (HERTZ) 10k Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 16(49)

17 Repetition: Elektricitetslära (i det följande betyder E elektriskt fält, inte energi) Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 17(49)

18 ELEKTRICITETSLÄRA... handlar om elektriska och magnetiska fält, vilket betyder att elläran sysslar med mekanismer som verkar över både små och stora avstånd.... beskriver påverkan/samverkan i liten skala (en transistor, en ledning...) och stor skala (en låda, ett hus, en basstation och en telefon...).... är viktig för förståelse av elektriska egenskaper konstruktionsintuition.... ger möjlighet att modellera vad som händer i en komponent, så att man kan göra nätanalys. - Maxwells ekvationer sammanfattar hur elektriska och magnetiska fält samspelar. Inom fysik- och elektroprogrammen går man igenom ekvationerna i detalj. Det varken hinner eller vill (fast det är rätt intressant!) vi göra i denna kurs; vi ska enbart plocka ut de mest användbara bitarna. Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 18(49)

19 MAXWELLS EKVATIONER (MED VEKTORER) ρ D = ρ (eller E = ---- ) [fet stil = vektor] ε 0 elektriska fält uppstår från en punkt av laddning B = 0 magnetiska fält går runt i cirklar D H = J + t ett elektriskt fält som varierar ger upphov till magnetfält - tänk elmagnet eller tänk på elallergiker B E = t ett magnetiskt fält som varierar ger upphov till ett elektriskt fält - en generator! Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 19(49)

20 ELEKTRISKA FÄLTET E är det elektriska fältet som uppstår från en punkt av laddning Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 20(49)

21 MAGNETISKA FÄLTET H är det magnetiska fältet som går runt i cirklar Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 21(49)

22 En gren av elläran kallas elstatik ELSTATIK B D [ statik i betydelsen ingenting rör på sig d.v.s. = = 0]. t t B Med E = = 0 kan t man visa att potential (spänning) kan tas fram som en linjeintegral P 2 V = E dl genom fältet. P 1 Och...? Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 22(49)

23 Låt oss studera en plattkapacitans! ELSTATIK - KAPACITANSEN 1(2) Elektriska fältet är konstant och homogent den komplicerade integralen d kan förenklas så att V = E d l = E d, där E är det elektriska fältet i en 0 dimension, givet med enheten Volt/meter, medan plattavståndet d ges i meter. Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 23(49)

24 APROPÅ VARIATION OCH KONSTANS y(x) y(x) X 0 X 0 Y = y dx = Y 0 X 0 0 Y = 0 y dx Y 0 Y x Y x X 0 X 0 Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 24(49)

25 ELSTATIK - KAPACITANSEN 2(2) ρ ρ Men V = E d (en slide bakåt) och E = ---- (Maxwell!) ger V = ---- d. Vad som utmärker en effektiv kapacitans är att den kan lagra många laddningar utan att spänningen över kapacitansen höjs; Q därför definieras elektrisk kapacitans som C = ---, där Q representerar laddning. V Om vi för plattkapacitansen ger ρ som laddning per ytenhet A ρ A för respektive platta, får vi C = V ρ ρ A A Men V = ---- d vilket insatt i C = ger C = Vi har hittat ett uttryck. V d ε 0 ε 0 ε 0 ε 0 Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 25(49)

26 ELSTATIK - RESISTANS 1(2) Elläran låter oss också förstå varifrån resistansbegreppet kommer. Om man låter ett elektriskt fält sätta fart på en laddning, t.ex. en elektron med den dv negativa laddningen q, så kommer den att accelerera, inuti fältet: qe = m, dt där m är en konstant som beskriver elektronens tröghet (en slags massa). Men... det finns hinder för laddningen; fysiska hinder. Ett material har alltid en viss oordning bland sina atomer och dessa står i vägen för vår accelererande laddning. Man kan räkna på hur hindren påverkar hastigheten, genom inkrementella minskningar av v: dt dv = v τ cn Här berättar τ cn hur lång tid, i medeltal, som förflyter mellan kollisionerna. Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 26(49)

27 ELSTATIK - RESISTANS 2(2) Vi får nu qe m v = m τ cn dv, en differentialekvation med lösningen: dt v = q τ cn e t τ cn ( ) E, där den stationära delen är intressant. m Med en ström på n stycken laddningar, vardera med laddningen q, färdandes i hastigheten v, får man ström per tvärsnittsyta (för en ledning) J nq q τ cn = E = nq µ, m n E där µ n kallas för elektronmobilitet. Vi har nu fått en skymt av Ohms lag; strax innan det är dags att gå vidare... Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 27(49)

28 Repetition: Halvledarkomponenterna Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 28(49)

29 HALVLEDARE Dioder och transistorer, hur fungerar dessa halvledarkomponenter? Vi kommer göra en snabb genomgång av dioden, den bipolära transistorn (BJT) samt fälteffektstransistorn (MOSFET:en). Begrepp som är extra viktiga i Kretselektronik är: 1. diodens funktion 2. MOSFET:ens funktion, speciellt: - hur strömmen genom MOSFET:ens kanal beror av spänningen på de olika terminalerna, samt - hur MOSFET:ens kapacitanser är sammansatta och hur de påverkar kretsar. Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 29(49)

30 DOPNING I HALVLEDARE gräns för ledningsband gräns för valensband E d E c T E v 0 K Ökande T Rumstemperatur De extra elektroner som n-dopningen förde med sig är nu bundna De extra elektroner som dopningen förde med sig är nu fria Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 30(49)

31 DOPNING När man n-dopar ett halvledarmaterial fås som resultat många fria elektroner, men mycket få fria hål. På samma sätt ger p-dopning många fria hål, men mycket få fria elektroner. antal fria laddningsbärare per volym p 0 n 0 p-material n 0 p 0 n-material Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 31(49)

32 TRANSPORT AV FRIA ELEKTRONER Dopningens syfte är att introducera ett överskott av fria laddningar; antingen elektroner eller hål. Drift: Elektronerna kan föras genom ett pålagt elektriskt fält J = nq µ n E (elläran!). Diffusion: Om man har en högre koncentration av elektroner på ett ställe dn diffunderar de mot områden med lägre koncentration J = qd n. dx Drift och diffusion: För dessa två transportmekanismer verkar antalet fria elektroner, n, vara viktigt! Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 32(49)

33 NU BYGGER VI EN DIOD 1(3) elektronenergi Överskjutande energi betyder kinetisk energi n-material ledningsband ferminivå i n ferminivå i p valensband p-material Vi har två material åtskilda, ett med överskott av elektroner och ett med överskott av hål Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 33(49)

34 NU BYGGER VI EN DIOD 2(3) Vi har nu fogat samman de två materialen, och elektroner och hål diffunderar över till motsatta materialet Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 34(49)

35 NU BYGGER VI EN DIOD 3(3) E fältet qv 0 ferminivån uniform Kvar på ömse sida om sammanfogningen finns nu orörliga joner, som bygger upp ett fält E som stoppar utarmningen av fria laddningsbärare Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 35(49)

36 EN FRAMSPÄND DIOD p-material q (V 0 -V A ) Det finns fria elektroner med olika hög energi; ju högre energi, desto färre antal avtar som e -energi + V A 0 n-material x Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 36(49)

37 LADDNINGSKONCENTRATION I EN FRAMSPÄND DIOD Laddningsbärare (de s.k. majoritetsbärarna) diffunderar över det s.k. utarmningsområdet. Elektroner åker från n-materialet till p-sidan, och hål åt andra hållet Ett stort tillskott av elektroner på p-sidan (och motsvarande för hål på n-sidan): elektronkoncentration hålkoncentration p( 0) = p 0 e qv A kt n(x) p-material n 0 p0 p(x) n-material x Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 37(49)

38 DIFFUSION PÅ N-SIDAN I EN FRAMSPÄND DIOD Hålen som tagit sig in på n-sidan diffunderar vidare åt höger mot lägre koncentrationer. Det finns många elektroner i ett n-material, så risken är stor att ett hål träffar på en elektron på sin resa åt höger. Om hål och elektron möts, försvinner de; denna rekombination ger en foton (lysdiod!). Avtagandet i överskottskoncentrationen (p.g.a. rekombination) beskrivs som: δp( x) = δp( 0) e x ---- L p p 0 (L p kallas hålens diffusionslängd.) Överskottsbärare: δp(x) = p(x) - p 0 p(0) = totalt antal fria hål (i x=0) p(x) n-material x Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 38(49)

39 DRIFT PÅ N-SIDAN I EN FRAMSPÄND DIOD En del av hålen som diffunderar åt höger rekombinerar alltså med elektroner som hör hemma i n-materialet. Om en elektron upphör att finnas till så störs balansen mellan positiva och negativa laddningar i n-materialet (tänk på att hålen som diffunderar förbi bara är på tillfälligt besök). Underskott av negativa laddningar överskott av positiva laddningar elektroner sugs in från kontakten till höger. Hålströmmen i punkten x = 0 är totala strömmen som uppstår i n-materialet. p 0 x = 0 n-material x Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 39(49)

40 ANSATS FÖR LÖSNING Jag letar efter strömmen orsakad av hål i x = 0. Strömmen dp i x = 0 beror enbart av diffusion J = qd p och därför vill jag veta dx lutningen på funktionen p(x). Jag behöver alltså få reda på denna funktion! Funktionens utseende beror på rekombination och den ekvation som beskriver detta förlopp har vi sett förut. Överskottsbärarna avtar enligt: δp( x) = δp( 0) e Lutningen för p(x) är ju samma som för dp(x), så vi kan lika gärna arbeta med dp(x) och dess lutning. För att få reda på dp(x) måste jag först hitta dp(x = 0). x ---- L p Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 40(49)

41 EKVATIONER 1(2) Först vill vi veta hur många hål som tar sig över från p-materialet. qv A kt Antalet och koncentrationen beror på pålagd spänning: p( 0) = p 0 e. Vi vet också att överskottsbärarna är δp( x) = p( x) p 0, så i x = 0 får vi qv A kt δp( 0) = p( 0) p 0 = p 0 e p 0 = p 0 e qv A kt 1. Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 41(49)

42 EKVATIONE(2) Så här blir det när vi sätter samman uttrycken: x ---- L p δp( x) = δp( 0) e = p 0 e qv A kt 1 Diffusionsströmmen från hålen kan längs hela längden x skrivas som dp I( x) = qad p = dx qad p d dx e x ---- qv A kt p0 e L p. 1 e x ---- L p. Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 42(49)

43 STRÖMMEN GENOM DEN FRAMSPÄNDA DIODEN Nu vet vi att hålströmmen i x = 0 blir I qad p kt = p ---- e 1. L p Tar man med p-materialet också får man något man kanske känner igen: qv A I qv D p D A n qa p L n kt = p L 0 n e 1 = I 0 e qv A kt 1. Detta är strömekvationen för dioden. Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 43(49)

44 EN BACKSPÄND DIOD p-material n-material Lägger man en backspänning över en diod leder den nästan inte någon ström alls Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 44(49)

45 DEN BIPOLÄRA TRANSISTORN n-material Emitter p-material Bas n-material Kollektor Om man lägger till en s.k. emitter till den backspända dioden har vi skapat en bipolär transistor Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 45(49)

46 ÄNTLIGEN... EN MOSFET-TRANSISTOR AV N-TYP gate source drain n n substrat - lätt p-dopat material Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 46(49)

47 NMOS:ENS FYSISKA OPERATIONSMODER V GS < 0 V ackumulerade hål 0 V < V GS < V T utarmad kanalregion V GS > V T, V T = tröskelspänning inverterad kanalregion Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 47(49)

48 NMOS:ENS ELEKTRISKA OPERATIONSMODER Det linjära området (V DS V GS - V T och V GS > V T ): I D = 2 W V DS --- µ L n C ox ( V GS V T )V DS Det mättade området (V DS > V GS - V T och V GS > V T,): I D = W --- µ n C ox ( V L 2 GS V T ) 2 ( 1+ λv DS ) Ofta används en förkortning: W k = --- µ L n C ox Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 48(49)

49 I-V KARAKTERISTIK I D V DS = V GS - V T V GS = 5 V V GS = 4 V V GS = 3 V V GS = 2 V V DS Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 49(49)

MOSFET:ens in- och utimpedanser. Småsignalsmodeller. Spänning- och strömstyrning. Stora signaler. MOSFET:ens högfrekvensegenskaper

MOSFET:ens in- och utimpedanser. Småsignalsmodeller. Spänning- och strömstyrning. Stora signaler. MOSFET:ens högfrekvensegenskaper FÖRELÄSNING 4 MOSFET:ens in och utimpedanser Småsignalsmodeller Spänning och strömstyrning Stora signaler MOSFET:ens högfrekvensegenskaper Per LarssonEdefors, Chalmers tekniska högskola EDA351 Kretselektronik

Läs mer

Förstärkarens högfrekvensegenskaper. Återkoppling och stabilitet. Återkoppling och förstärkning/bandbredd. Operationsförstärkare.

Förstärkarens högfrekvensegenskaper. Återkoppling och stabilitet. Återkoppling och förstärkning/bandbredd. Operationsförstärkare. FÖRELÄSNING 5 Förstärkarens högfrekvensegenskaper Återkoppling och stabilitet Återkoppling och förstärkning/bandbredd Operationsförstärkare Kaskadkoppling Per Larsson-Edefors, Chalmers tekniska högskola

Läs mer

Lösningar Tenta

Lösningar Tenta Lösningar Tenta 110525 1) a) Driftström: Elektriskt laddade partiklar (elektroner och hål) rör sig i ett elektriskt fält. Detta ger upphov till en ström som följer ohms lag. Diffusion: Elektroner / hål

Läs mer

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2 7 Elektriska kretsar Av: Lasse Alfredsson och Klas Nordberg 7- Nedan finns en krets med resistanser. Då kretsen ansluts till en annan elektrisk krets uppkommer spänningen vin ( t ) och strömmen ( ) Bestäm

Läs mer

Tentamen i Komponentfysik ESS030, ETI240/0601 och FFF090

Tentamen i Komponentfysik ESS030, ETI240/0601 och FFF090 011-01-10 08 00-13 00 Tentamen i Komponentfysik ESS030, ETI40/0601 och FFF090 Hjälpmedel: TEFYMA, ordlista, beteckningslista, formelsamlingar och räknare. Max 5p, för godkänt krävs 10p. Om inget annat

Läs mer

ETE115 Ellära och elektronik, tentamen oktober 2006

ETE115 Ellära och elektronik, tentamen oktober 2006 (2) 9 oktober 2006 Institutionen för elektrovetenskap Daniel Sjöberg ETE5 Ellära och elektronik, tentamen oktober 2006 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna inte är

Läs mer

I: Beskriv strömmarna i en npn-transistor i normal mod i de neutrala delarna av transistorn.

I: Beskriv strömmarna i en npn-transistor i normal mod i de neutrala delarna av transistorn. Komponentfysik Övning 4 VT-10 Utredande uppgifter: I: Beskriv strömmarna i en npn-transistor i normal mod i de neutrala delarna av transistorn. II: Beskriv de fyra arbetsmoderna för en npn-transistor.

Läs mer

Olika sätt att bygga förstärkare. Differentialförstärkaren (översikt) Strömspegeln. Till sist: Operationsförstärkaren

Olika sätt att bygga förstärkare. Differentialförstärkaren (översikt) Strömspegeln. Till sist: Operationsförstärkaren FÖRELÄSNING 12 Olika sätt att bygga förstärkare Differentialförstärkaren (översikt) Strömspegeln Till sist: Operationsförstärkaren Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik

Läs mer

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Sensorer, effektorer och fysik Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Innehåll Grundläggande begrepp inom mekanik. Elektriskt fält och elektrisk potential. Gauss lag Dielektrika

Läs mer

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare

Läs mer

Föreläsning 9 Bipolära Transistorer II

Föreläsning 9 Bipolära Transistorer II Föreläsning 9 Bipolära Transistorer II Funktion bipolär transistor Småsignal-modell Hybrid-p 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser Optokomponenter pn-övergång:

Läs mer

Växelström K O M P E N D I U M 2 ELEKTRO

Växelström K O M P E N D I U M 2 ELEKTRO MEÅ NIVERSITET Tillämpad fysik och elektronik Sverker Johansson Johan Pålsson 999-09- Rev.0 Växelström K O M P E N D I M ELEKTRO INNEHÅLL. ALLMÄNT OM LIK- OCH VÄXELSPÄNNINGAR.... SAMBANDET MELLAN STRÖM

Läs mer

Elektricitet och magnetism

Elektricitet och magnetism Elektricitet och magnetism Eldistribution Laddning Ett grundläggande begrepp inom elektricitetslära är laddning. Under 1700-talet fann forskarna två sorters laddning POSITIV laddning och NEGATIV laddning

Läs mer

Moment 1 - Analog elektronik. Föreläsning 2 Transistorn del 2

Moment 1 - Analog elektronik. Föreläsning 2 Transistorn del 2 Moment 1 - Analog elektronik Föreläsning 2 Transistorn del 2 Jan Thim 1 F2: Transistorn del 2 Innehåll: Fälteffekttransistorn - JFET Karakteristikor och parametrar MOSFET Felsökning 2 1 Introduktion Fälteffekttransistorer

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, ht 25, Krister Henriksson 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera

Läs mer

Moment 1 - Analog elektronik. Föreläsning 1 Transistorn del 1

Moment 1 - Analog elektronik. Föreläsning 1 Transistorn del 1 Moment 1 - Analog elektronik Föreläsning 1 Transistorn del 1 Jan Thim 1 F1: Transistorn del 1 Innehåll: Historia Funktion Karakteristikor och parametrar Transistorn som förstärkare Transistorn som switch

Läs mer

Växelström i frekvensdomän [5.2]

Växelström i frekvensdomän [5.2] Föreläsning 7 Hambley avsnitt 5.-4 Tidsharmoniska (sinusformade) signaler är oerhört betydelsefulla inom de flesta typer av kommunikationssystem. adio, T, mobiltelefoner, kabel-t, bredband till datorer

Läs mer

Föreläsning 11 Fälteffekttransistor II

Föreläsning 11 Fälteffekttransistor II Föreläsning 11 Fälteffekttransistor Fälteffekt Tröskelspänning Beräkning av strömmen Storsignal, D Kanallängdsmodulation Flatband-shift pmosfet 013-05-03 Föreläsning 11, Komponentfysik 013 1 Komponentfysik

Läs mer

Föreläsning 7 Fälteffek1ransistor IV

Föreläsning 7 Fälteffek1ransistor IV Föreläsning 7 Fälteffek1ransistor IV PMOS Småsignal FET A, f t MOS- Kondensator D/MOS- kamera Flash- minne 1 PMOS U Gate U - 0.V 1.0V 0.4V Source Isolator SiO Drain U - 1V P ++ N- typ semiconductor P ++

Läs mer

Föreläsning 8. MOS transistorn. IE1202 Analog elektronik KTH/ICT/EKT HT09/BM

Föreläsning 8. MOS transistorn. IE1202 Analog elektronik KTH/ICT/EKT HT09/BM Föreläsning 8 MOS transistorn Förstärkare med MOS transistorn t Exempel, enkel förstärkare med MOS IE1202 Analog elektronik KTH/ICT/EKT HT09/BM 1 Varför MOS transistorn Förstå en grundläggande komponent

Läs mer

ETE115 Ellära och elektronik, tentamen januari 2008

ETE115 Ellära och elektronik, tentamen januari 2008 januari 2008 (8) Institutionen för elektro och informationsteknik Daniel Sjöberg ETE5 Ellära och elektronik, tentamen januari 2008 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna

Läs mer

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10)

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10) Sammanfattning av kursen ETIA0 Elektronik för D, Del (föreläsning -0) Kapitel : sid 37 Definitioner om vad laddning, spänning, ström, effekt och energi är och vad dess enheterna är: Laddningsmängd q mäts

Läs mer

Sensorer och elektronik. Grundläggande ellära

Sensorer och elektronik. Grundläggande ellära Sensorer och elektronik Grundläggande ellära Innehåll Grundläggande begrepp inom mekanik Elektriskt fält och elektrisk potential Dielektrika och kapacitans Ström och strömtäthet Ohms lag och resistans

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator Elektroner Hål Intrinsisk halvledare effekt av temperatur Donald Judd, untitled 1 Komponentfysik - Kursöversikt

Läs mer

Välkomna till kursen i elektroniska material! Martin Leijnse

Välkomna till kursen i elektroniska material! Martin Leijnse Välkomna till kursen i elektroniska material! Martin Leijnse Information Innehåll: fasta tillståndets fysik med fokus på halvledarfysik. Dioder, solceller, transistorer... Lärare: Martin Leijnse (föreläsare,

Läs mer

Spolen och Kondensatorn motverkar förändringar

Spolen och Kondensatorn motverkar förändringar Spolen och Kondensatorn motverkar förändringar Spolen och kondensatorn motverkar förändringar, tex vid inkoppling eller urkoppling av en källa till en krets. Hur går det då om källan avger en sinusformad

Läs mer

Om inget annat anges så gäller det kisel och rumstemperatur (300K)

Om inget annat anges så gäller det kisel och rumstemperatur (300K) Komponentfysik Övning 3 VT-0 Om inget annat anges så gäller det kisel och rumstemperatur (300K) Utredande uppgifter: I: En diod har två typer av kapacitanser, utarmningskapacitans och diffusionskapacitans.

Läs mer

Föreläsning 9 Bipolära Transistorer II

Föreläsning 9 Bipolära Transistorer II Föreläsning 9 ipolära Transistorer Funktion bipolär transistor Småsignal-modell Hybrid-p Designparametrar 1 Komponentfysik - Kursöversikt ipolära Transistorer pn-övergång: kapacitanser Optokomponenter

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 10. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, vt 2008, Kai Nordlund 10.1 10.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera kretsar

Läs mer

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6)

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6) Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6) Kapitel 1: sid 1 37 Definitioner om vad laddning, spänning, ström, effekt och energi är och vad dess enheterna är: Laddningsmängd

Läs mer

Föreläsning 13 Fälteffekttransistor III

Föreläsning 13 Fälteffekttransistor III Föreläsning 13 Fälteffekttransistor III pmo måsignal FET A, f t MO-Kondensator 014-05-19 Föreläsning 13, Komponentfysik 014 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser

Läs mer

2: Räkna ut utsträckningen av rymdladdningsområdet i de två fallen i 1 för n-sidan, p-sidan och den totala utsträckningen.

2: Räkna ut utsträckningen av rymdladdningsområdet i de två fallen i 1 för n-sidan, p-sidan och den totala utsträckningen. Komponentfysik Uppgifter pn del 1 VT-15 Utredande uppgifter Ia) Rita skisser med nettoladdning, elektriskt fält och bandstruktur för en symmetrisk pn-övergång. b) Rita motsvarande skisser som i a), men

Läs mer

Tentamen i Elektronik för E, ESS010, 12 april 2010

Tentamen i Elektronik för E, ESS010, 12 april 2010 Tentamen i Elektronik för E, ESS00, april 00 Tillåtna hjälpmedel: Formelsamling i kretsteori v i v in i Spänningen v in och är kända. a) Bestäm i och i. b) Bestäm v. W lampa spänningsaggregat W lampa 0

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator lektroner Hål Intrinsisk halvledare effekt av temperatur 1 Komponentfysik - Kursöversikt Bipolära Transistorer

Läs mer

Föreläsning 7 Fälteffek1ransistor IV

Föreläsning 7 Fälteffek1ransistor IV Föreläsning 7 Fälteffek1ransistor IV måsignal FET A, f t MO- Kondensator D/MO- kamera Flash- minne 1 måsignalmodell A kapacitanser i mä1nadsmod δu Isolator io 2 D N ++ N ++ P- typ halvledare δ Q δu >>

Läs mer

Komponentfysik Introduktion. Kursöversikt. Varför Komponentfysik? Hålltider --- Ellära, Elektriska fält och potentialer

Komponentfysik Introduktion. Kursöversikt. Varför Komponentfysik? Hålltider --- Ellära, Elektriska fält och potentialer Komponentfysik 2012 Introduktion Kursöversikt Varför Komponentfysik? Hålltider Ellära, Elektriska fält och potentialer 1 Lite om mig själv Erik Lind (Erik.Lind@eit.lth.se) Civ. Ing. i Teknisk Fysik Doktorerade

Läs mer

Föreläsning 6: Opto-komponenter

Föreläsning 6: Opto-komponenter Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser

Läs mer

1 Grundläggande Ellära

1 Grundläggande Ellära 1 Grundläggande Ellära 1.1 Elektriska begrepp 1.1.1 Ange för nedanstående figur om de markerade delarna av kretsen är en nod, gren, maska eller slinga. 1.2 Kretslagar 1.2.1 Beräknar spänningarna U 1 och

Läs mer

Grindar och transistorer

Grindar och transistorer Föreläsningsanteckningar Föreläsning 17 - Digitalteknik I boken: nns ej med Grindar och transistorer Vi ska kort beskriva lite om hur vi kan bygga upp olika typer av grindar med hjälp av transistorer.

Läs mer

2. DC (direct current, likström): Kretsar med tidskonstanta spänningar och strömmar.

2. DC (direct current, likström): Kretsar med tidskonstanta spänningar och strömmar. Introduktion till elektronik Introduktionen är riktad till studenter på Pi-programmet på Lund universitet och består av följande avsnitt: 1. Grundläggande begrepp: Potential, spänning, ström, resistans,

Läs mer

VÄXELSTRÖM SPÄNNINGSDELNING

VÄXELSTRÖM SPÄNNINGSDELNING UMEÅ UNIVERSITET Tillämpad fysik och elektronik Agneta Bränberg 1996-06-12 VÄXELSTRÖM SPÄNNINGSDELNING Laboration E10 ELEKTRO Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): Rättningsdatum Kommentarer

Läs mer

Vad är elektricitet?

Vad är elektricitet? Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret

Läs mer

Vad är elektricitet?

Vad är elektricitet? Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret

Läs mer

Physics to Go! Part 1. 2:a på Android

Physics to Go! Part 1. 2:a på Android Physics to Go! Part 1 2:a på Android Halvledare Halvledare Halvledare V V V Grupp V: Si, Ge Transistorer, CCD, solceller, indirekt bandgap Grupp -V: GaP, GaAs, ngaasp LED, lasrar, detektorer Grupp -N:

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentamen ellära 92FY21 och 27 2014-06-04 kl. 8 13 Svaren anges på separat papper. Fullständiga lösningar med alla steg motiverade och beteckningar utsatta ska redovisas för att få full poäng. Poängen för

Läs mer

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D Lars-Erik ederlöf Tentamen i Grundläggande ellära och digitalteknik ET 03 för D 000-03-3 Tentamen omfattar 40 poäng, poäng för varje uppgift. 0 poäng ger godkänd tentamen. Tillåtet hjälpmedel är räknedosa.

Läs mer

Komplexa tal. j 2 = 1

Komplexa tal. j 2 = 1 Komplexa tal De komplexa talen används när man behandlar växelström inom elektroniken. Imaginära enheten betecknas i elektroniken med j (i, som används i matematiken, är ju upptaget av strömmen). Den definieras

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, vt 213, Kai Nordlund 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera kretsar

Läs mer

IN Inst. för Fysik och materialvetenskap ---------------------------------------------------------------------------------------------- INSTRUKTION TILL LABORATIONEN INDUKTION ---------------------------------------------------------------------------------------------

Läs mer

Komponentfysik ESS030. Den bipolära transistorn

Komponentfysik ESS030. Den bipolära transistorn Komponentfysik ESS030 Den bipolära transistorn T- 2016 Syfte Syftet med denna laboration är att studenten ska bekanta sig med den grundläggande fysiken i en bipolär transistor. Det fundamentala byggblocket

Läs mer

Ellära och Elektronik Moment AC-nät Föreläsning 4

Ellära och Elektronik Moment AC-nät Föreläsning 4 Ellära och Elektronik Moment AC-nät Föreläsning 4 Kapacitans och Indktans Uppladdning av en kondensator Medelvärde och Effektivvärde Sinsvåg över kondensator och spole Copyright 8 Börje Norlin Kondensatorer

Läs mer

Växelström och reaktans

Växelström och reaktans Växelström och reaktans Magnus Danielson 6 februari 2017 Magnus Danielson Växelström och reaktans 6 februari 2017 1 / 17 Outline 1 Växelström 2 Kondensator 3 Spolar och induktans 4 Resonanskretsar 5 Transformator

Läs mer

Frekvensplanet och Bode-diagram. Frekvensanalys

Frekvensplanet och Bode-diagram. Frekvensanalys Frekvensplanet och Bode-diagram Frekvensanalys Signaler Allt inom elektronik går ut på att manipulera signaler genom signalbehandling (Signal Processing). Analog signalbehandling Kretsteori: Nod-analys,

Läs mer

Introduktion till fordonselektronik ET054G. Föreläsning 3

Introduktion till fordonselektronik ET054G. Föreläsning 3 Introduktion till fordonselektronik ET054G Föreläsning 3 1 Elektriska och elektroniska fordonskomponenter Att använda el I Sverige Fas: svart Nolla: blå Jord: gröngul Varför en jordkabel? 2 Jordning och

Läs mer

AC-kretsar. Växelströmsteori. Lund University / Faculty / Department / Unit / Document / Date

AC-kretsar. Växelströmsteori. Lund University / Faculty / Department / Unit / Document / Date AC-kretsar Växelströmsteori Signaler Konstant signal: Likström och likspänning (DC) Transienta strömmar/spänningar Växelström och växelspänning (AC) Växelström/spänning Växelström alternating current (AC)

Läs mer

Elektricitetslära och magnetism - 1FY808

Elektricitetslära och magnetism - 1FY808 Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Laborationshäfte för kursen Elektricitetslära och magnetism - 1FY808 Ditt namn:... eftersom labhäften far runt i labsalen. 1 1. Instrumentjämförelse

Läs mer

Sammanfattning. ETIA01 Elektronik för D

Sammanfattning. ETIA01 Elektronik för D Sammanfattning ETIA01 Elektronik för D Definitioner Definitioner: Laddningsmängd q mäts i Coulomb [C]. Energi E ( w ) mäts i enheten Joule [J]. Spänning u ( v ) är hur mycket energi (i Joule) som överförs

Läs mer

1( ), 2( ), 3( ), 4( ), 5( ), 6( ), 7( ), 8( ), 9( )

1( ), 2( ), 3( ), 4( ), 5( ), 6( ), 7( ), 8( ), 9( ) Inst. för Fysik och materialvetenskap Ola Hartmann Tentamen i ELEKTROMAGNETISM I 2008-10-08 Skrivtid: 5 tim. för Kand_Fy 2 och STS 3. Hjälpmedel: Physics Handbook, formelblad i Elektricitetslära, räknedosa

Läs mer

Ellära 2, Tema 3. Ville Jalkanen Tillämpad fysik och elektronik, UmU. 1

Ellära 2, Tema 3. Ville Jalkanen Tillämpad fysik och elektronik, UmU. 1 Ellära 2, ema 3 Ville Jalkanen illämpad fysik och elektronik, UmU ville.jalkanen@umu.se 1 Innehåll Periodiska signaler Storlek, frekvens,... Filter Överföringsfunktion, belopp och fas, gränsfrekvens ville.jalkanen@umu.se

Läs mer

Introduktion till modifierad nodanalys

Introduktion till modifierad nodanalys Introduktion till modifierad nodanalys Michael Hanke 12 november 213 1 Den modifierade nodanalysen (MNA) Den numeriska simuleringen av elektriska nätverk är nära besläktad med nätverksmodellering. En väletablerad

Läs mer

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0). 1 Föreläsning 2 Motsvarar avsnitten 2.4 2.5 i Griffiths. Arbete och potentiell energi (Kap. 2.4) r 1 r 2 C Låt W vara det arbete som måste utföras mot ett givet elektriskt fält E, då en laddning Q flyttas

Läs mer

Föreläsning 29/11. Transienter. Hambley avsnitt

Föreläsning 29/11. Transienter. Hambley avsnitt 1 Föreläsning 9/11 Hambley avsnitt 4.1 4.4 Transienter Transienter inom elektroniken är signaler som har kort varaktighet. Transienterna avtar ofta exponentiellt med tiden. I detta avsnitt studerar vi

Läs mer

Lektion 1: Automation. 5MT001: Lektion 1 p. 1

Lektion 1: Automation. 5MT001: Lektion 1 p. 1 Lektion 1: Automation 5MT001: Lektion 1 p. 1 Lektion 1: Dagens innehåll Electricitet 5MT001: Lektion 1 p. 2 Lektion 1: Dagens innehåll Electricitet Ohms lag Ström Spänning Motstånd 5MT001: Lektion 1 p.

Läs mer

Föreläsning 8 Bipolära Transistorer I

Föreläsning 8 Bipolära Transistorer I Föreläsning 8 iolära ransistorer Funktion biolär transistor Geometri nn D oeration, strömförstärkning Oerationsmoder Early-effekten n transistor 1 Komonentfysik - Kursöversikt iolära ransistorer n-övergång:

Läs mer

Elektronik. MOS-transistorn. Översikt. Då och nu. MOS-teknologi. Lite historik nmosfet Arbetsområden pmosfet CMOS-inverterare NOR- och NAND-grindar

Elektronik. MOS-transistorn. Översikt. Då och nu. MOS-teknologi. Lite historik nmosfet Arbetsområden pmosfet CMOS-inverterare NOR- och NAND-grindar Översikt Pietro Andreani Institutionen för elektro- och informationsteknik unds universitet ite historik nmofet Arbetsområden pmofet CMO-inverterare NOR- och NAN-grindar MO-teknologi å och nu Metal-e-silicon

Läs mer

Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007.

Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007. Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007. Uppgifterna i tentamen ger totalt

Läs mer

Halvledare. Transistorer, Förstärkare

Halvledare. Transistorer, Förstärkare Halvledare Transistorer, Förstärkare Om man har en två-ports krets v in (t) ~ v ut (t) R v ut (t) = A v in (t) A är en konstant: Om A är mindre än 1 så kallas kretsen för en dämpare Om A är större än 1

Läs mer

Hambley avsnitt

Hambley avsnitt Föreläsning Hambley avsnitt 6.6.8 Filter [6.2, 6.5 6.8] Nästan all trådlös och trådbunden kommunikation är baserad på tidsharmoniska signaler. Signalerna utnyttjar ett frekvensband centrerad kring en bärfrekvens.

Läs mer

Extra kursmaterial om. Elektriska Kretsar. Lasse Alfredsson. Linköpings universitet November 2015

Extra kursmaterial om. Elektriska Kretsar. Lasse Alfredsson. Linköpings universitet November 2015 Extra kursmaterial om Elektriska Kretsar asse lfredsson inköpings universitet asse.lfredsson@liu.se November 205 Får kopieras fritt av ith-studenter för användning i kurserna TSDT8 Signaler & System och

Läs mer

Instruktioner för laboration 2, Elektromagnetism och elektriska nät 1TE025 Elektriska system 1TE014

Instruktioner för laboration 2, Elektromagnetism och elektriska nät 1TE025 Elektriska system 1TE014 Instruktioner för laboration 2, Elektromagnetism och elektriska nät 1TE025 Elektriska system 1TE014 Mattias Wallin Datum: 15 februari 2010 16 februari 2010 1 Inledning I denna laboration ingår förberedande

Läs mer

Bra tabell i ert formelblad

Bra tabell i ert formelblad Bra tabell i ert formelblad Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna alstras. Tidigare

Läs mer

Föreläsning 8 Bipolära Transistorer I

Föreläsning 8 Bipolära Transistorer I Föreläsning 8 iolära ransistorer Funktion biolär transistor Geometri nn D oeration, strömförstärkning Oerationsmoder Early-effekten n transistor G. alla 1 Komonentfysik - Kursöversikt iolära ransistorer

Läs mer

Svaren på förståelsedelen skall ges på tesen som skall lämnas in.

Svaren på förståelsedelen skall ges på tesen som skall lämnas in. Dugga i Elektromagnetisk fältteori F. för F2. EEF031 2005-11-19 kl. 8.30-12.30 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna anteckningar

Läs mer

Kapitel: 32 Elektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge EM-vågor

Kapitel: 32 Elektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge EM-vågor Kapitel: 3 lektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge M-vågor genskaper hos M-vågor nergitransport i M-vågor Det elektromagnetiska spektrat Maxwell s ekvationer Kan

Läs mer

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

Impedans och impedansmätning

Impedans och impedansmätning 2016-09- 14 Impedans och impedansmätning Impedans Många givare baseras på förändring av impedans Temperatur Komponentegenskaper Töjning Resistivitetsmätning i jordlager.... 1 Impedans Z = R + jx R = Resistans

Läs mer

3.9. Övergångar... (forts: Halvledare i kontakt)

3.9. Övergångar... (forts: Halvledare i kontakt) 3.9. Övergångar... (forts: Halvledare i kontakt) [Understanding Physics: 20.9-20.12] Utjämningen av Ferminivåerna för två ledare i kontakt med varandra gäller också för två halvledare i kontakt med varandra.

Läs mer

Sammanfattning av kursen ETIA01 Elektronik för D, Del 2 (VT2)

Sammanfattning av kursen ETIA01 Elektronik för D, Del 2 (VT2) Sammanfattning av kursen ETIA01 Elektronik för D, Del 2 (VT2) Kapitel 3: sid 114 140 Kapacitans En kondensator är en komponent som består av två elektrskt ledande ytor som är isolerade från varandra. På

Läs mer

Rättade inlämningsuppgifter hämtas på Kents kontor Föreläsning 4 Må 11.00-11.30, 12.30-13.15 Kent Palmkvist To 11.00-11.30, 12.30-13.

Rättade inlämningsuppgifter hämtas på Kents kontor Föreläsning 4 Må 11.00-11.30, 12.30-13.15 Kent Palmkvist To 11.00-11.30, 12.30-13. /5/14 15:56 Praktisk info, forts. Löst uppgift Fyll i ett konvolut (återanvänds tills uppgiften godkänd TTE Elektronik Konvolut hittas ovanpå den svarta brevlåda som svar lämnas i vart brevlåda placerad

Läs mer

3.4 RLC kretsen. 3.4.1 Impedans, Z

3.4 RLC kretsen. 3.4.1 Impedans, Z 3.4 RLC kretsen L 11 Växelströmskretsar kan ha olika utsende, men en av de mest använda är RLC kretsen. Den heter så eftersom den har ett motstånd, en spole och en kondensator i serie. De tre komponenterna

Läs mer

Tentamen i Elektronik för E, 8 januari 2010

Tentamen i Elektronik för E, 8 januari 2010 Tentamen i Elektronik för E, 8 januari 200 Tillåtna hjälpmedel: Formelsamling i kretsteori Tvåpol C A I V Du har tillgång till en multimeter som kan ställas in som voltmeter eller amperemeter. Voltmeter

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 1/1 016, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Strålningsfält och fotoner. Kapitel 23: Faradays lag

Strålningsfält och fotoner. Kapitel 23: Faradays lag Strålningsfält och fotoner Kapitel 23: Faradays lag Faradays lag Tidsvarierande magnetiska fält inducerar elektriska fält, eller elektrisk spänning i en krets. Om strömmen genom en solenoid ökar, ökar

Läs mer

Ellära. Lars-Erik Cederlöf

Ellära. Lars-Erik Cederlöf Ellära LarsErik Cederlöf Elektricitet Elektricitet bygger på elektronens negativa laddning och protonens positiva laddning. nderskott av elektroner ger positiv laddning. Överskott av elektroner ger negativ

Läs mer

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4 Linnéuniversitetet Institutionen för fysik och elektroteknik Elektricitetslära och magnetism - 1FY808 Lab 3 och Lab 4 Ditt namn:... eftersom labhäften far runt i labsalen. 1 Laboration 3: Likström och

Läs mer

Föreläsning 6: Opto-komponenter

Föreläsning 6: Opto-komponenter Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser Dan Flavin 2014-04-02 Föreläsning 6, Komponentfysik 2014 1 Komponentfysik

Läs mer

Föreläsning 4 1. Den andra av Maxwells ekvationer i elektrostatiken

Föreläsning 4 1. Den andra av Maxwells ekvationer i elektrostatiken Föreläsning 4 1 Potential Den andra av Maxwells ekvationer i elektrostatiken!" C E!dl = 0 eller # E = 0 innebär att E-fältet är konservativt. Det finns inga fältlinjer som bildar loopar. Alla fältlinjer

Läs mer

Föreläsning 4, Ht 2. Aktiva filter 1. Hambley avsnitt 14.10, 4.1

Föreläsning 4, Ht 2. Aktiva filter 1. Hambley avsnitt 14.10, 4.1 1 Föreläsning 4, Ht Hambley avsnitt 14.1, 4.1 Aktiva filter 1 I första läsperioden behandlades passiva filter. Dessa har nackdelen att lastens resistans påverkar filtrets prestanda. Om signalen tas ut

Läs mer

Föreläsning 11 Bipolära Transistorer I. BJT Bipolar JuncDon Transistor. FunkDon bipolär transistor. DC operadon, strömförstärkning

Föreläsning 11 Bipolära Transistorer I. BJT Bipolar JuncDon Transistor. FunkDon bipolär transistor. DC operadon, strömförstärkning Föreläsning 11 ipolära ransistorer J ipolar JuncDon ransistor FunkDon bipolär transistor Geometri npn D operadon, strömförstärkning OperaDonsmoder Early- effekten pnp transistor G. alla 1 deal transistor

Läs mer

Lablokalerna är i samma korridor som där ni gjorde lab1.

Lablokalerna är i samma korridor som där ni gjorde lab1. Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom och lös förberedelseuppgifterna innan labben det kommer ni att ha nytta av. De mest relevanta kapitel i kompendiet

Läs mer

IDE-sektionen. Laboration 5 Växelströmsmätningar

IDE-sektionen. Laboration 5 Växelströmsmätningar 9428 IDEsektionen Laboration 5 Växelströmsmätningar 1 Förberedelseuppgifter laboration 4 1. Antag att vi mäter spänningen över en okänd komponent resultatet blir u(t)= 3sin(ωt) [V]. Motsvarande ström är

Läs mer

Laborationsrapport Elektroteknik grundkurs ET1002 Mätteknik

Laborationsrapport Elektroteknik grundkurs ET1002 Mätteknik Laborationsrapport Kurs Lab nr Elektroteknik grundkurs ET1002 1 Laborationens namn Mätteknik Namn Kommentarer Utförd den Godkänd den Sign 1 Elektroteknik grundkurs Laboration 1 Mätteknik Förberedelseuppgifter:

Läs mer

Elektriska komponenter och kretsar. Emma Björk

Elektriska komponenter och kretsar. Emma Björk Elektriska komponenter och kretsar Emma Björk Elektromotorisk kraft Den mekanism som alstrar det E-fält som driver runt laddningarna i en sluten krets kallas emf(electro Motoric Force trots att det ej

Läs mer

TSTE20 Elektronik 01/31/ :24. Nodanalys metod. Nodanalys, exempel. Dagens föreläsning. 0. Förenkla schemat 1. Eliminera ensamma spänningskällor

TSTE20 Elektronik 01/31/ :24. Nodanalys metod. Nodanalys, exempel. Dagens föreläsning. 0. Förenkla schemat 1. Eliminera ensamma spänningskällor 0/3/204 0:24 Nodanalys metod 0. Förenkla schemat. liminera ensamma TST20 lektronik 2. Jorda en nod 3. nför nodpotentialer 4. nför referensriktningar på strömmarna i nätet 5. Sätt upp ekvation för varje

Läs mer

Laboration II Elektronik

Laboration II Elektronik 817/Thomas Munther IDE-sektionen Halmstad Högskola Laboration II Elektronik Transistor- och diodkopplingar Switchande dioder, D1N4148 Zenerdiod, BZX55/C3V3, BZX55/C9V1 Lysdioder, Grön, Gul, Röd, Vit och

Läs mer

Laboration 6. A/D- och D/A-omvandling. Lunds universitet / Fakultet / Institution / Enhet / Dokument / Datum

Laboration 6. A/D- och D/A-omvandling. Lunds universitet / Fakultet / Institution / Enhet / Dokument / Datum Laboration 6 A/D- och D/A-omvandling A/D-omvandlare Digitala Utgång V fs 3R/2 Analog Sample R R D E C O D E R P/S Skiftregister R/2 2 N-1 Komparatorer Digital elektronik Halvledare, Logiska grindar Digital

Läs mer

ELLÄRA. Denna power point är gjord för att du ska få en inblick i elektricitet. Vad är spänning, ström? Var kommer det ifrån? Varför lyser lampan?

ELLÄRA. Denna power point är gjord för att du ska få en inblick i elektricitet. Vad är spänning, ström? Var kommer det ifrån? Varför lyser lampan? Denna power point är gjord för att du ska få en inblick i elektricitet. Vad är spänning, ström? Var kommer det ifrån? Varför lyser lampan? För många kan detta vara ett nytt ämne och till och med en helt

Läs mer

3.8. Halvledare. [Understanding Physics: 20.8-20.11] Den moderna fysikens grunder, Tom Sundius 2009 1

3.8. Halvledare. [Understanding Physics: 20.8-20.11] Den moderna fysikens grunder, Tom Sundius 2009 1 3.8. Halvledare [Understanding Physics: 20.8-20.11] Som framgår av fig. 20.27, kan energigapet i en halvledare uttryckas E g = E c E v, där E c är den lägsta energin i ledningsbandet och E v den högsta

Läs mer

Fördröjningsminimering vid buffring. ON-resistansen. Energiåtgång och effektförbrukning i CMOS. RAM-minnet

Fördröjningsminimering vid buffring. ON-resistansen. Energiåtgång och effektförbrukning i CMOS. RAM-minnet FÖRELÄSNING 7 Fördröjningsminimering vid buffring ON-resistansen Energiåtgång och effektförbrukning i CMOS RAM-minnet Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 1(41) Fördröjningsminimering

Läs mer