Kapitel 23: Övningar 383

Storlek: px
Starta visningen från sidan:

Download "Kapitel 23: Övningar 383"

Transkript

1 Kapitel 23: Övningar 23 Analysera problemet med en påle som ska runt ett hörn Härledning av formeln för andragradsekvationens rötter Utforska en matris Utforska cos(x) = sin(x) Hitta den minsta ytarean på en parallellepiped Köra ett självstudieskript med Text Editor Dela upp en rationell funktion Studera statistik: Filtrera data med kategorier Ett CBL program för TI-89 / TI-92 Plus Analysera färden för en ivägslagen boll Visualisera komplexa rötter till ett tredjegradspolynom Lösa ett allmänt sparproblem Beräkna betalning Hitta rationella, reella och komplexa faktorer Simulering av dragning utan återläggning Detta kapitel innehåller övningar som beskriver hur TI-89 / TI-92 Plus kan användas för att lösa, analysera och visualisera olika matematiska problem. Kapitel 23: Övningar 383

2 Analysera problemet med en påle som ska runt ett hörn En tio meter bred hall möter en fem meter bred hall i hörnet av en byggnad. Hitta den maximala längden på en påle som kan flyttas runt hörnet utan att pålen lutas. Maximala längden på pålen i hallen Maxlängden på en påle, c, är det kortaste linjesegment som vidrör det inre hörnet och samtidigt de motstående väggarna, så som visas i bilden nedan. Tips! Använd proportionella sidor och Pythagoras sats för att räkna ut längden c med avseende på w. Hitta sedan nollställena för förstaderivatan av c(w). Det minsta värdet av c(w) är pålens maximala längd. w a 10 c a = w+5 b = 10a w 5 b Tips: När du vill definiera en funktion använder du namn med flera tecken då du skapar definitionen. 1. Skriv uttrycket för sidan a uttryckt i w och spara det i a(w). 2. Skriv uttrycket för sidan b uttryckt i w och spara det i b(w). 3. Definiera uttrycket för sidan c i termer av w och lagra det i c(w) Mata in: Define c(w)= (a(w)^2+b(w)^2) Obs! Maxlängden på pålen är minimivärdet för c(w). 4. Använd kommandot zeros() för att beräkna nollställena av förstaderivatan av c(w) för att hitta det minsta värdet av c(w). 384 Kapitel 23: Övningar

3 5. Beräkna den exakta maxlängden av pålen. Skriv: c(2±) Tips! Klipp ut och klistra in resultatet från steg 4 till inmatningsraden inom parentes för c( ) och tryck på. 6. Beräkna den ungefärliga maxlängden för pålen. Resultat: 20,8097 meter. Kapitel 23: Övningar 385

4 Härledning av formeln för andragradsekvationens rötter Denna övning visar hur du här leder formeln: ë b bñ -4ac x = 2a I kapitel 3: Algebra, finns detaljerad information om hur du använder kommandona i det här exemplet. Utföra beräkningar för att härleda formeln för andragradsekvationens rötter Obs! I detta exempel används resultatet av det senaste svaret för att utföra beräkningarna. Med denna funktion behöver du inte trycka på så många tangenter, vilket minskar risken för fel. Följ stegen nedan för att härleda formeln för andragradsekvationens rötter genom kvadratkomplettering av den generella andragradsekvationen. 1. Töm alla variabelnamn med ett tecken i aktuell mapp. TI-89: 2ˆ TI-92 Plus: ˆ Välj 1:Clear a-z och tryck på för att bekräfta. 2. Skriv följande generella andragradsekvation i grundfönstret: axñ+bx+c=0. 3. Dra bort c från båda sidor av ekvationen. TI-89: 2± jc TI-92 Plus: 2± C 4. Dividera båda sidor av ekvationen med koefficienten a. Tips! Fortsätt att använda det senaste svaret (2 ±) på samma sätt som i steg 3 i steg 4 till och med steg Använd funktion expand() för att utveckla det senaste svaret. 6. Kvadratkomplettera genom att lägga till ((b/a)/2) 2 till båda sidor av ekvationen. 386 Kapitel 23: Övningar

5 7. Faktorisera resultatet med funktionen factor(). 8. Multiplicera båda sidor av ekvationen med 4añ. 9. Dra roten ur båda sidor av ekvationen med följande begränsningar: a>0 och b>0 och x> Lös ut x genom att subtrahera b från båda sidor och sedan dividera med 2a. Obs! Detta är bara en av de två lösningarna på den generella andragradsekvationen beroende på begränsningarna i steg 9. Kapitel 23: Övningar 387

6 Utforska en matris Denna övning visar hur du utför flera olika matrisoperationer. Utforska en 3x3-matris Tips! Använd markören i historiklistan för att rulla resultatet. Tips! Använd markören i historiklistan för att rulla resultatet. Utför följande steg för att generera en slumpmatris, utvidga den med enhetsmatrisen och lös sedan matrisen för hitta ett ogiltigt värde på inversen. 1. Använd RandSeed i grundfönstret för att ställa in slumptalsgeneratorn till standard och använd därefter randmat() för att skapa en 3x3- slumpmatris och spara den i a. 2. Byt ut matriselementet [2,3] med variabeln x och använd sedan funktion augment() för att utvidga a med en enhetsmatris av ordning 3. Spara resultatet i b. 3. Använd rref() för att radreducera matrisen b: Resultatet kommer att ha enhetsmatrisen i de tre första kolumnerna och a^ë1 i de tre sista kolumnerna. 4. Lös för det värde på x som gör så att inversen på matrisen blir ogiltig. Skriv: solve(getdenom( 2 ±[1,4] )=0,x) Resultat: x=ë70/ Kapitel 23: Övningar

7 Utforska cos(x) = sin(x) Denna övning använder två metoder för att beräkna cos(x) = sin(x) för värden hos x mellan 0 och 3p. Metod 1: Grafplottning Tips! Tryck på och välj 5:Intersection. Svara på meddelandena för att välja de två kurvorna och den övre och undre gränsen för skärningspunkt A. Följ stegen nedan för att se var graferna av funktionerna y1(x)=cos(x) och y2(x)=sin(x) korsar varandra. 1. Mata in y1(x)=cos(x) och y2(x)=sin(x) i Y= Editor. 2. I Window Editor ställer du in xmin=0 och xmax=3p. 3. Tryck på och välj A:ZoomFit. 4. Hitta skärningspunkterna för de två funktionerna. 5. Lägg märke till x- och y- koordinaterna. (Upprepa steg 4 och 5 för att hitta de andra skärningspunkterna.) Metod 2: Algebra Tips! Flytta markören till historiklistan för att markera det sista resultatet. Tryck på för att kopiera resultatet av den generella lösningen. Tips! När du vill skriva in operatorn with : TI-89: Í TI-92 Plus: 2 È Följ stegen nedan för att lösa ekvationen sin(x)=cos(x) med avseende på f(x). 1. Mata in solve(sin(x)= cos(x),x) i grundfönstret. Lösningen för x är är ett heltal. 2. Använd kommandona ceiling() och floor() för att hitta det största respektive det minsta värdet för skärningspunkterna enligt bilden. 3. Mata in den generella lösningen för x och ange begränsningen enligt bilden. Jämför resultatet med metod 1. Kapitel 23: Övningar 389

8 Hitta den minsta ytarean på en parallellepiped Denna övning visar hur du beräknar den minsta ytan hos en parallellepiped med en konstant volym V. I kapitel 3: Algebra och kapitel 10: 3D-plottning finns detaljerad information om de steg som används i detta exempel. Utforska en 3D-graf av ytarean av en parallellepiped Följ stegen nedan för att definiera en funktion för ytarea av en parallellepiped, plotta en 3D-graf och använda verktyget Trace för att hitta en punkt nära den minsta ytarean. 1. Definiera funktionen sa(x,y,v) för ytarean av en parallellepiped, i grundfönstret. Skriv: define sa(x,y,v)=2ùxùy+ 2ùv/x+2ùv/y 2. Välj grafläget 3D. Mata därefter in funktionen för z1(x,y), så som visas i detta exempel med volymen v= Ställ in Window-variablerna till: eye= [60,90,0] x= [0,15,15] y= [0,15,15] z= [260,300] ncontour= [5] 4. Plotta funktionen och använd Trace för att gå till den punkt som är närmast minimivärdet för funktionen. 390 Kapitel 23: Övningar

9 Hitta den minsta ytarean analytiskt Tips! Tryck på för att visa det exakta resultatet. Tryck på för att visa det ungefärliga resultatet i decimalform. Följ stegen nedan för att lösa problemet analytiskt i grundfönstret. 1. Lös ut x och y uttryckt i v. Skriv: solve(d(sa(x,y,v),x)=0 and (d(sa(x,y,v),y)=0, {x,y}) 2. Hitta den minsta ytarean då v = 300. Skriv: 300!v Skriv: sa(v^(1/3), v^(1/3),v) Kapitel 23: Övningar 391

10 Köra ett självstudieskript med Text Editor Denna övning visar hur du använder textredigeraren för att köra ett övningsskript. I kapitel 18: Text Editor finns detaljerad information om textfunktioner. Köra ett självstudieskript Följ stegen nedan för att skriva ett skript med hjälp av Text Editor, testa varje rad och observera resultaten i historiklistan i grundfönstret. 1. Öppna Text Editor och skapa en ny variabel med namnet demo1. Obs! Kommandomärket "C" är tillgängligt på menyn 1:Command. 2. Skriv följande rader i Text Editor. : Compute the maximum value of f on the closed interval [a,b] : assume that f is differentiable on [a,b] C : define f(x)=x^3ì 2x^2+xì 7 C: 1!a:3.22! b C: d(f(x),x)! df(x) C : zeros(df(x),x) C : f(ans(1)) C : f({a,b}) : The largest number from the previous two commands is the maximum value of the function. The smallest number is the minimum value. 3. Tryck på och välj 1:Script view för att visa Text Editor och grundfönstret i ett delat fönster. Flytta markören till den första raden i Text Editor. 392 Kapitel 23: Övningar

11 Obs! Tryck på och välj 2:Clear split för att återgå till Text Editor i full storlek. 4. Tryck på upprepade gånger för att köra varje rad i skriptet, en åt gången. Tips! Tryck på 2K två gånger för att visa grundfönstret. 5. Om du vill visa resultatet av skriptet i ett fönster i full storlek går du till grundfönstret. Kapitel 23: Övningar 393

12 Dela upp en rationell funktion Denna övning beskriver vad som händer när en rationell funktion bryts ned till en kvot och en rest. I kapitel 6: Grundläggande funktionsplottning och kapitel 3: Algebra finns detaljerad information om stegen som används i detta exempel. Dela upp en rationell funktion Obs! Verkliga inmatningar visas mot svart bakgrund i exempelfönstren. Så här undersöker du uppdelningen av den rationella funktionen f(x)=(xòì10xñìx+50)/(xì2) på en graf: 1. Ange den rationella funktionen i grundfönstret så som visas på inmatningsraden och spara den i funktionen f(x). Skriv: (x^3ì 10x^2ì x+50)/ (xì 2)! f(x) 2. Använd funktion propfrac för att dela upp funktionen i en kvot och en rest. Tips! Flytta markören till historiklistan för att markera det senaste resultatet. Tryck på för att kopiera det till inmatningsraden. 3. Kopiera det senaste resultatet till inmatningsraden. eller Skriv: 16/(xì2)+x^2ì 8ùxì17 4. Redigera det senaste resultatet på inmatningsraden. Spara resten i y1(x) och kvoten i y2(x), så som visas i bilden. Skriv: 16/(xì2)!y1(x): x^2ì8ùxì17!y2(x) 5. Välj det tjocka grafformatet för y2(x) i Y= Editor. 394 Kapitel 23: Övningar

13 6. Lägg till den ursprungliga funktionen f(x) till y3(x) och välj grafstilen Square. 7. Ställ in Window-variablerna i Window Editor till: x= [ë 10,15,10] y= [ë 100,100,10] Obs! Kontrollera att grafläget är inställt till Function. 8. Rita grafen. Observera att det globala uppförandet av funktionen f(x) i stora drag motsvaras av andragradsekvationen y2(x). Det rationella uttrycket är i stort sett en andragradsfunktion då x går mot stora värden, både positiva och negativa. Den undre grafen är y3(x)=f(x) plottad separat med en tunn linje. Kapitel 23: Övningar 395

14 Studera statistik: Filtrera data med kategorier Denna övning omfattar en statistisk studie av skolelevers vikt med filtrering av data med hjälp av kategorier. I kapitel 15: Data/Matrix Editor och kapitel 16: Plotta statistiska data finns detaljerad information om hur du använder kommandona i detta exempel. Filtrera data med kategorier Varje student placeras i en av åtta kategorier, beroende på kön och vilken årskurs de går i (förstaårsstudent, andraårsstudent, tredjeårsstudent eller sistaårsstudent). Informationen (vikt i pund) och respektive kategorier matas in i Data/Matrix Editor. Tabell 1: Kategori kontra beskrivning Kategori (C2) Årskurs och kön Förstaårsstudent pojkar Förstaårsstudent flickor Andraårsstudent pojkar Andraårsstudent flickor Tredjeårsstudent pojkar Tredjeårsstudent flickor Sistaårsstudent pojkar Sistaårsstudent flickor Tabell 2: C1 (vikten hos varje student i pund) kontra C2 (kategori) C1 C2 C1 C2 C1 C2 C1 C Kapitel 23: Övningar

15 Följ stegen nedan för att jämföra studenternas vikt med deras årskurs. 1. Starta Data/Matrix Editor och skapa en ny datavariabel med namnet students. 2. Mata in informationen och kategorierna från tabell 2 till kolumnerna c1 och c2. Obs! Ställ in flera lådagram för att jämföra olika delar av hela informationsmängden. 3. Öppna menyn Plot Setup. 4. Definiera plottnings- och filterparametrarna för Plot 1, som visas i exemplet. 5. Kopiera Plot 1 till Plot Upprepa steg 5 och kopiera Plot 1 till Plot 3, Plot 4 och Plot 5. Kapitel 23: Övningar 397

16 7. Tryck på ƒ och ändra alternativet Include Categories för Plot 2 till och med Plot 5 till följande: Obs! Du bör endast markera Plot 1 till och med Plot 5. Plot 2: {1,2} (förstaårsstudent pojkar och flickor) Plot 3: {7,8} (sistaårsstudent pojkar och flickor) Plot 4: {1,3,5,7} (alla pojkar) Plot 5: {2,4,6,8} (alla flickor) 8. Avmarkera alla funktioner som kan vara markerade från tidigare övningar i Y = Editor. 9. Visa plottningarna genom att trycka på och välja 9:Zoomdata. 10. Använd verktyget Trace för att jämföra medianvikt för olika kategorier av studenter. alla studenter alla förstaårsstudenter alla sistaårsstudenter alla pojkar alla flickor median, alla studenter 398 Kapitel 23: Övningar

17 Ett CBL program för TI-89 / TI-92 Plus Denna övning omfattar ett program som kan användas när din TI-89 / TI-92 Plus är ansluten till en CBL-enhet (Calculator-Based Laboratoryé). Programmet fungerar med experimentet "Newton s Law of Cooling" och, med vissa mindre ändringar, experimentet "Coffee To Go" i CBL System Experiment Workbook. Du kan använda din dator när du vill skriva in längre texter och sedan använda TI-GRAPH LINK för att skicka den till din TI-89 / TI-92 Plus Fler TI-89 / TI-92 Plus CBL-program hittar du på TI:s hemsidor: Programinstruktion :cooltemp() :Prgm :Local i :setmode("graph","function") :PlotsOff :FnOff :ClrDraw :ClrGraph :ClrIO :-10!xmin:99!xmax:10!xscl :ú20!ymin:100!ymax:10!yscl :{0}!data :{0}!time :Send{1,0} :Send{1,2,1} :Disp "Press ENTER to start" :Disp "graphingtemperature." :Pause :PtText "TEMP(C)",2,99 :PtText "T(S)",80,-5 :Send{3,1,-1,0} : :For i,1,99 :Get data[i] :PtOn i,data[i] :EndFor :seq(i,i,1,99,1)!time :NewPlot 1,1,time,data,,,,4 :DispG :PtText "TEMP(C)",2,99 :PtText "T(S)",80,-5 :EndPrgm Beskrivning Programnamn Deklarerar en lokal variabel; existerar endast då programmet körs. Ställer in räknaren för funktionsplottning. Stänger av eventuella tidigare plottningar. Stänger av eventuella tidigare funktioner Tar bort föregående ritobjekt från graffönstret. Tar bort föregående grafer. Rensar Program I/O-fönstret. Ställer in Window-variabler. Skapar och/eller tar bort en lista med namnet data. Skapar och/eller tar bort en lista med namnet time. Skickar ett kommando som rensar CBL-enheten. Ställer in kanal 2 i CBL:n till AutoID för att avläsa temperatur. Uppmanar användaren att trycka på. Väntar tills användaren är klar att börja. Etiketterar grafens y-axel. Etiketterar grafens x-axel. Skickar kommandot Trigger till CBL:n; samla in data i realtid. Upprepar nästa två instruktioner för 99 temperaturavläsningar. Hämtar en temperatur från CBL:n och spara den i en lista. Plottar temperaturdata som en graf. Skapar en lista som ska innehålla time- eller data-avläsningsnummer. Plottar time och data med hjälp av NewPlot och verktyget Trace. Visar grafen. Visar åter namn (etikett) på axlarna. Stoppar programmet. Du kan även använda Calculator-Based Ranger (CBR ) när du vill utforska de matematiska och fysikaliska sambanden mellan sträcka, hastighet, acceleration och tid med data insamlade från dina aktiviteter. Kapitel 23: Övningar 399

18 Analysera färden för en ivägslagen boll Denna övning använder en delad skärm för att visa en graf i parameter form tillsammans med en tabell för att beskriva rörelsen hos en boll. Ställa in en parametergraf och tabell Följ stegen nedan för att granska färden för en ivägskickad boll som har en utgångshastighet på 95 fot/sek och en utgångsvinkel på 32 grader. 1. Ställ in lägena för Page 1, som i bilden. 2. Ställ in lägena för Page 2, som i bilden. Tips! Tryck på 2 för att skriva en gradsymbol. 3. På vänstra sidan i Y= Editor matar du in ekvationen xt1(t) som avståndet till bollen vid en tidpunkt t. xt1(t)=95ùtùcos(32 ) 4. Mata in ekvationen yt1(t) som bollens höjd vid en tidpunkt t. yt1(t)=m16ùt^2+95ùtù sin(32 ) 400 Kapitel 23: Övningar

19 5. Ställ in Window-variablerna till: t values= [0,4,.1] x values= [0,300,50] y values= [0,100,10] Tips! Tryck på 2a. 6. Växla till den högra sidan och visa grafen. Tips! Tryck på &. 7. Visa dialogrutan TABLE SETUP och ändra tblstart till 0 till 0,1. Tips! Tryck på '. 8. Visa tabellen på vänstra sidan och tryck på D för att markera t=2. Obs! När du flyttar spårningsmarkören från tc=0,0 till tc=3,1 visas bollens position vid tiden tc. 9. Växla till den högra sidan. Tryck på och spåra grafen för att visa värdena för xc och yc när tc=2. Valfri övning Anta samma begynnelsehastighet på 95 fot/sek. Hitta sedan den utgångsvinkel vid vilken bollen färdas den längsta sträckan innan den faller till marken. Kapitel 23: Övningar 401

20 Visualisera komplexa rötter till ett tredjegradspolynom Denna övning visar hur du plottar de komplexa nollställena hos ett kubiskt polynom. I kapitel 3: Algebra och kapitel 10: 3D-plottning finns detaljerad information om stegen som används i detta exempel. Visualisera komplexa rötter Tips! Flytta markören till historiklistan och markera det senaste svaret. Tryck på för att kopiera det till inmatningsraden. Obs! Absolutbeloppet av en funktion tvingar alla rötter att visuellt endast nudda, i stället för att korsa x-axeln. Likaledes kommer absolutbeloppet av en funktion med två variabler att tvinga alla rötter att visuellt bara nudda xy-planet. Obs! Grafen till z1(x,y) är ytan som definieras av absolutbeloppet av funktionen. Följ stegen nedan för att utveckla tredjegradspolynomet (xì1)(xìi)(x+i), hitta absolutvärdet av funktionen, plotta den yta som definieras av absolutbeloppet av funktionen och använda verktyget Trace för att utforska ytan. 1. Använd funktion expand() i grundfönstret för att utveckla uttrycket (xì1)(xìi) (x+i) och visa tredje gradspolynomet. 2. Kopiera och klistra in det senaste resultatet på inmatningsraden och spara det i funktionen f(x). 3. Använd funktion abs() för att hitta absolutbeloppet av f(x+yi). (Denna beräkning kan ta ca två minuter.) 4. Kopiera och klistra in det senaste resultatet på inmatningsraden och spara det i funktionen z1(x,y). 5. Ställ in räknaren till 3D-grafläge, visa koordinataxlarna och ställ in Window-variablerna till: eye= [20,70,0] x= [ë 2,2,20] y= [ë 2,2,20] z= [ë 1,2] ncontour= [5] 402 Kapitel 23: Övningar

21 Obs! Det tar ca tre minuter för grafen att beräknas och ritas. 6. I Y=Editor, tryck på: TI-89: Í TI-92 Plus: F och ställ in variablerna för grafformat till: Axes= ON Labels= ON Style= HIDDEN SURFACE 7. Plotta ytan. 3D-grafen används visuellt för att visa en bild av rötterna där ytan nuddar xy-planet. 8. Använd verktyget Trace för att utforska funktionsvärdena då x=1 och y=0. 9. Använd verktyget Trace för att utforska funktionsvärdena vid x=0 och y= Använd verktyget Trace för att utforska funktionsvärdena vid x=0 och y=ë1. Sammanfattning Lägg märke till att zc är noll för varje funktionsvärde i punkt 7 till 9 ovan. På så sätt kan du visualisera rötterna 1,ëi, i till polynomet xòìxì+xì1, där de tre punkterna för grafen av ytan nuddar xy-planet. Kapitel 23: Övningar 403

22 Lösa ett allmänt sparproblem Denna övning kan användas till att beräkna räntesats, kapitalbelopp, antal betalningsperioder och framtida annuitetsvärde. Hitta räntesatsen vid ett sparande Följ stegen nedan för att hitta räntesatsen (i) av ett sparande där startkapitalet (p) är kr, antal ränteterminer (n) är 6 år och det slutliga värdet (s) är kr. 1. Mata in ekvationen i exemplet och lös den med avseende på p i grundfönstret. 2. Mata in ekvationen i exemplet och lös den med avseende på n. Tips! När du vill skriva in operatorn with ( ): TI-89: Í TI-92 Plus: 2 È Tips! Tryck på för att få ett decimaltalsresultat. 3. Mata in ekvationen i exemplet och lös den med avseende på i med operatorn "with". solve(s=pù (1+i)^n,i) s=2000 and p=1000 and n=6 Resultat: Räntan är 12,246%. Hitta det framtida värdet av ett sparande Hitta det framtida värdet av ett sparande med värdena från föregående exempel och med en ränta på 14%. Mata in ekvationen i exemplet och lös den med avseende på s. solve(s=pù (1+i)^n,s) i=.14 and p=1000 and n=6 Resultat: Det framtida värdet är 2 194,97 kr vid en ränta på 14%. 404 Kapitel 23: Övningar

23 Beräkna betalning Med detta övning kan du skapa en funktion som kan användas för att hitta kostnaden av att finansiera en bil. I kapitel 17: Programmering finns detaljerad information om stegen som används i detta exempel. Funktionen betalning Tips! Du kan använda din dator när du skriver in långa texter och sedan använda TI-GRAPH LINK för att skicka dessa till din TI-89 / TI-92 Plus. I Program Editor definierar du följande betalningsfunktion (Time- Value-of-Money) där temp1= antal inbetalningar, temp2= årlig ränta, temp3= aktuellt värde, temp4= månatlig avbetalning, temp5=framtida värde och temp6= start- eller slutperiod för betalning (1=i början av månaden, 0=i slutet av månaden). :tvm(temp1,temp2,temp3,temp4,temp5,temp6) :Func :Local tempi,tempfunc,tempstr1 :ë temp3+(1+temp2/1200ù temp6)ù temp4ù ((1ì (1+temp2/1200)^ (ë temp1))/(temp2/1200))ì temp5ù (1+temp2/1200)^(ë temp1)! tempfunc :For tempi,1,5,1 :"temp"&exact(string(tempi))! tempstr1 :If when(#tempstr1=0,false,false,true) Then :If tempi=2 :Return approx(nsolve(tempfunc=0,#tempstr1) #tempstr1>0 and #tempstr1<100) :Return approx(nsolve(tempfunc=0,#tempstr1)) :EndIf :EndFor :Return "parameter error" :EndFunc Hitta den månatliga avbetalningen Hittar den månatliga avbetalningen på en bil som kostar kr om du gör 48 avbetalningar med en årlig ränta på 10%. Ange i grundfönstret tvm-värdena för att hitta pmt. Resultat: Månadsavbetalningen är 251,53 kr. Hitta antalet avbetalningar Hitta antalet avbetalningar som krävs för att betala bilen om du kan betala av 300 kr per månad Ange i grundfönstret tvm-värdena för att hitta n. Resultat: Antalet avbetalningar är 38,8308. Kapitel 23: Övningar 405

24 Hitta rationella, reella och komplexa faktorer I detta övning visas hur du kan hitta rationella, reella och komplexa faktorer av uttryck. I kapitel 3: Algebra finns detaljerad information om stegen som används i detta kapitel. Hitta faktorer Mata in följande uttryck i grundfönstret. 1. factor(x^3ì5x) visar ett rationellt resultat. 2. factor(x^3+5x) visar ett rationellt resultat. 3. factor(x^3ì5x,x) visar ett reellt resultat. 4. cfactor(x^3+5x,x) visar ett komplext resultat. 406 Kapitel 23: Övningar

25 Simulering av dragning utan återläggning I det här övning simuleras dragning utan återläggning av olikfärgade bollar från en urna. I kapitel 17: Programmering finns detaljerad information om stegen som används i detta kapitel. Funktionen för dragning utan återläggning Definiera drawball() som en funktion i Program Editor som kan anropas med två parametrar. Den första parametern är en lista där varje element är antalet bollar i en viss färg. Den andra parametern är antalet bollar du kan dra. Denna funktion returnerar en lista där varje element är antalet bollar av varje färg som drogs. :drawball(urnlist,drawnum) :Func :Local templist,drawlist,colordim, numballs,i,pick,urncum,j :If drawnum>sum(urnlist) :Return too few balls :dim(urnlist)! colordim :urnlist! templist :newlist(colordim)! drawlist :For i,1,drawnum,1 :sum(templist)! numballs :rand(numballs)! pick :For j,1,colordim,1 :cumsum(templist)! urncum (fortsättning i nästa kolumn) :If pick urncum[j] Then :drawlist[j]+1! drawlist[j] :templist[j]ì 1! templist[j] :Exit :EndIf :EndFor :EndFor :Return drawlist :EndFunc Dragning utan återläggning Anta att en urna innehåller n1 bollar i en färg, n2 bollar i en andra färg, n3 bollar i en tredje färg osv. Dra bollar utan att lägga tillbaka dem. 1. Mata in ett slumptal med kommandot RandSeed för att initiera slumptalsgeneratorn. 2. Anta att en urna innehåller 10 röda och 25 vita bollar. Simulera att du drar fem bollar slumpmässigt från urnan utan återläggning. Skriv drawball({10,25},5). Resultat: 2 röda och 3 vita bollar. Kapitel 23: Övningar 407

26 408 Kapitel 23: Övningar

Kapitel 23: Praktiska exempel

Kapitel 23: Praktiska exempel Kapitel 23: Praktiska exempel 23 1: Analysera problemet med en påle som ska runt ett hörn... 362 2: Härledning av formeln för andragradsekvationens rötter... 364 3: Utforska en matris... 366 4: Utforska

Läs mer

16 Programmering TI -86 F1 F2 F3 F4 F5 M1 M2 M3 M4 M5

16 Programmering TI -86 F1 F2 F3 F4 F5 M1 M2 M3 M4 M5 16 Programmering Skriva program till TI-86... 214 Köra program... 221 Arbeta med program... 223 Hämta och köra assemblerprogram... 226 Arbeta med strängar... 227 TI -86 M1 M2 M3 M4 M5 F1 F2 F3 F4 F5 214

Läs mer

Kapitel 15: Data/Matrix Editor

Kapitel 15: Data/Matrix Editor Kapitel 15: Data/Matrix Editor 15 Översikt över Data/Matrix Editor... 226 Översikt över list-, data- och matrisvariabler... 227 Starta en Data/Matrix Editor-session... 229 Mata in och visa cellvärden...

Läs mer

Introduktion till Matlab

Introduktion till Matlab Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar

Läs mer

Kapitel 13: Plotta talföljder

Kapitel 13: Plotta talföljder Kapitel 13: Plotta talföljder 13 Översikt över plottning av talföljder...234 Översikt över stegen i plottning av talföljder...235 Skillnader mellan plottning av talföljder och funktioner...236 Ställa in

Läs mer

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan

Läs mer

Kapitel 12: Plotta polärekvationer

Kapitel 12: Plotta polärekvationer Kapitel 12: Plotta polärekvationer 12 Översikt över polärplottning...228 Översikt över stegen i att plotta polärekvationer...229 Skillnader mellan polär- och funktionsplottning...230 I det här kapitlet

Läs mer

Kapitel 16: Programmering

Kapitel 16: Programmering Kapitel 16: mering Innehåll Komma igång: Volymen av en cylinder...2 Skapa och ta bort program...4 Skriva instruktioner och köra program...5 Redigera program...6 Kopiera och byta namn på program...7 PRGM

Läs mer

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde: TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger

Läs mer

Kapitel 1: Komma igång

Kapitel 1: Komma igång Kapitel 1: Komma igång 1 Innan du börjar använda TI.92...2 Utföra beräkningar...4 Plotta en funktion...7 Konstruera geometriska objekt...9 I det här kapitlet får du hjälp med att snabbt komma igång med

Läs mer

Fråga 3: Räknaren är på men min skärm är blank. Allmänt Fråga 1: Jag vill avsluta/rensa/komma ut från det jag håller på med

Fråga 3: Räknaren är på men min skärm är blank. Allmänt Fråga 1: Jag vill avsluta/rensa/komma ut från det jag håller på med Allmänt Fråga 1: Jag vill avsluta/rensa/komma ut från det jag håller på med Fråga 3: Räknaren är på men min skärm är blank. Svar 1: Pröva följande alternativ: Tryck C Tryck yî Tryck o eventuellt följt

Läs mer

Laboration: Grunderna i MATLAB

Laboration: Grunderna i MATLAB Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar

Läs mer

MMA132: Laboration 1 Introduktion till MATLAB

MMA132: Laboration 1 Introduktion till MATLAB MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer

Läs mer

Stora talens lag eller det jämnar ut sig

Stora talens lag eller det jämnar ut sig Stora talens lag eller det jämnar ut sig kvensen för krona förändras när vi kastar allt fler gånger. Valda inställningar på räknaren Genom att trycka på så kan man göra ett antal inställningar på sin räknare.

Läs mer

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom Sidor i boken 110-113, 68-69 Räkning med polynom Faktorisering av heltal. Att primtalsfaktorisera ett heltal innebär att uppdela heltalet i faktorer, där varje faktor är ett primtal. Ett primtal är ett

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

1.2 Polynomfunktionens tecken s.16-29

1.2 Polynomfunktionens tecken s.16-29 Detta avsnitt handlar om olikheter. < mindre än > större än mindre än eller lika med (< eller =) större än eller lika med (> eller =) Vilka tal finns mellan 2 och 5? Alla tal som är större än 2. Och samtidigt

Läs mer

ger rötterna till ekvationen x 2 + px + q = 0.

ger rötterna till ekvationen x 2 + px + q = 0. KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 2.1 Introduktion Introduktion Avsnitt 2 handlar om den enklaste typen av algebraiska uttryck, polynomen. Eftersom polynom i princip

Läs mer

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning Karlstads GeoGebrainstitut Institutionen för matematik och datavetenskap Karlstads universitet Mats Brunström Maria Fahlgren GeoGebra ett digitalt verktyg för framtidens matematikundervisning Invigning

Läs mer

Kapitel 12: Ytterligare graffunktioner

Kapitel 12: Ytterligare graffunktioner Kapitel 12: Ytterligare graffunktioner 12 Översikt över ytterligare grafverktyg... 202 Spara datapunkter från en graf... 203 Plotta en funktion som är definierad i grundfönstret... 204 Plotta en funktion

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU 2015/2016 Matematiska vetenskaper Introduktion till Matlab 1 Inledning Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor och universitet runt

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare Karlstads universitet 19-0 april Exempel på elevaktiviteter framtagna i skolutvecklingsprojektet IKT och lärande i matematik 1

Läs mer

Matematik 1 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 1 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 1 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 1 digitala övningar med TI-82 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel

Läs mer

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,

Läs mer

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och... Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer

Funktionsstudier med derivata

Funktionsstudier med derivata Funktionsstudier med derivata Derivatan ett kraftfullt verktyg för att studera och tolka funktioner Det här avsnittet handlar om att man kan använda derivatan till att bestämma en funktions egenskaper

Läs mer

Matematik 2 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 2 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 2 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 2 digitala övningar med TI 82 Stat, TI 84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel

Läs mer

Kapitel 18: Text Editor

Kapitel 18: Text Editor Kapitel 18: Text Editor 18 Översikt över textfunktioner... 304 Starta en session i Text Editor... 305 Skriva och redigera text... 307 Skriva specialtecken... 311 Mata in och köra ett kommandoskript...

Läs mer

Avsnitt 3, introduktion.

Avsnitt 3, introduktion. KTHs Sommarmatematik Introduktion 3:1 3:1 Avsnitt 3, introduktion. Teckenstudium Här tränas teckenstudium av polynom och rationella funktioner (som är kvoter av polynom). Metoden går ut på att man faktoriserar

Läs mer

Instruktion för laboration 1

Instruktion för laboration 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik MD, ANL, TB (rev. JM, OE) SANNOLIKHETSTEORI I Instruktion för laboration 1 De skriftliga laborationsrapporterna skall vara

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 1. Vektorer och Matriser 1 Inledning I denna övning skall du träna på att använda Matlab för enklare beräkningar och grafik. För att lösa uppgifterna

Läs mer

Laboration: Att vika ett A4-papper

Laboration: Att vika ett A4-papper Laboration: Att vika ett A4-papper Vik ett A4-papper så att det övre vänstra hörnet, P, hamnar på motstående långsida i en punkt som vi kallar P. Då bildas en rätvinklig triangel där den nedvikta sidan

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april. Liten introduktionsguide för nybörjare

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april. Liten introduktionsguide för nybörjare GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare 19-20 april Liten introduktionsguide för nybörjare GeoGebra 0 Introduktionsövningar till GeoGebra När man startar GeoGebra är det

Läs mer

Kap Dubbelintegraler.

Kap Dubbelintegraler. Kap 4. 4.. ubbelintegraler. A. Beräkna följande dubbelintegraler a. d. (x + y) dxdy, över kvadraten x 3, y. (sin y + y cos x) dxdy, då ges av x π, y π. x cos xy dxdy, då ges av x π, y. xy cos (x + y )

Läs mer

Ekvationer och olikheter

Ekvationer och olikheter Kapitel Ekvationer och olikheter I kapitlet bekantar vi oss med första och andra grads linjära ekvationer och olikheter. Vi ser också på ekvationer och olikheter med absolutbelopp och kvadratrötter. När

Läs mer

Subtraktion. Räkneregler

Subtraktion. Räkneregler Matriser En matris är en rektangulär tabell av tal, 1 3 17 4 3 2 14 4 0 6 100 2 Om matrisen har m rader och n kolumner så säger vi att matrisen har storlek m n Index Vi indexerar elementen i matrisen genom

Läs mer

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Frågeställning Av en cirkulär pappersskiva kan en cirkelsektor med en viss vinkel klippas bort. Med den resterande sektorn går

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna

Läs mer

Sammanfattningar Matematikboken Z

Sammanfattningar Matematikboken Z Sammanfattningar Matematikboken Z KAPitel procent och statistik Procent Ordet procent betyder hundradel och anger hur stor del av det hela som något är. Procentform och 45 % = 0,45 6,5 % = 0,065 decimalform

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU STUDIO 1 LMA515b - 2016/2017 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor

Läs mer

Laborationstillfälle 1 Lite mer om Matlab och matematik

Laborationstillfälle 1 Lite mer om Matlab och matematik Laborationstillfälle Lite mer om Matlab och matematik En första introduktion till Matlab har ni fått under kursen i inledande matematik. Vid behov av repetition kan materialet till de övningar som gjordes

Läs mer

MMA132: Laboration 2 Matriser i MATLAB

MMA132: Laboration 2 Matriser i MATLAB MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

MMA132: Laboration 1 & 2 Introduktion till MATLAB

MMA132: Laboration 1 & 2 Introduktion till MATLAB MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med

Läs mer

Begrepp Uttryck, värdet av ett uttryck, samband, formel, graf, linje, diagram, spridningsdiagram.

Begrepp Uttryck, värdet av ett uttryck, samband, formel, graf, linje, diagram, spridningsdiagram. Aktivitetsbeskrivning Denna aktivitet samlar ett antal olika sätt att göra procentuella beräkningar på grafräknare. Dessa metoder finns som uppgifter eller som en samling tips i en lathund. Matematiskt

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

En introduktion till MatLab

En introduktion till MatLab Chalmers tekniska högskola En introduktion till MatLab Gustafsson Gabriel gabgus@student.chalmers.se Johansson Việt Simon simoj@student.chalmers.se Författare: Norell Pontus npontus@student.chalmers.se

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 2. Linjär Algebra, Villkor och Logik 1 Linjär Algebra Programsystemet Matlab utvecklades ursprungligen för att underlätta beräkningar från linjär

Läs mer

Grafräknare för alla

Grafräknare för alla Grafräknare för alla Ett antal exempel på hur du kan använda grafräknare i undervisningen Dagens grafiska miniräknare är avancerade små apparater. Det som för några år sedan bara kunde utföras av ganska

Läs mer

Kort introduktion till Casio fx-9750 GII. Knappsats

Kort introduktion till Casio fx-9750 GII. Knappsats Kort introduktion till Casio fx-9750 GII Knappsats För ytterligare information kontakta Viweka Palm Viweka.palm@casio.se Tel 08-442 70 25 1 De vanligaste programmen: RUN- MAT Vanliga beräkningar och matrisberäkning

Läs mer

sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är

sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är PASS 7. EKVATIONSLÖSNING 7. Grundbegrepp om ekvationer En ekvation säger att två matematiska uttryck är lika stora. Ekvationen har alltså ett likhetstecken och två deluttryck på var sin sida om likhetstecknet.

Läs mer

ClassPad 330 Plus studentexamen Hösten 2012 lång matematik. Mer tid för matematik och mindre tid för att lära sig räknaren.

ClassPad 330 Plus studentexamen Hösten 2012 lång matematik. Mer tid för matematik och mindre tid för att lära sig räknaren. ClassPad 330 Plus studentexamen Hösten 2012 lång matematik Mer tid för matematik och mindre tid för att lära sig räknaren. Kära läsare! Användningen av CAS-beräkningar i studentexamen är ännu i ett tidigt

Läs mer

M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1

M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1 M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1 Ove Edlund LTU 2014-11-07 Ove Edlund (LTU) M0043M, M1 2014-11-07 1 / 14 Några elementära funktioner i Matlab Exempel exp Beräknar e

Läs mer

Excel kortkommando. Infoga rad, kolumn eller cell Ta bort rad, kolumn eller cell

Excel kortkommando. Infoga rad, kolumn eller cell Ta bort rad, kolumn eller cell Excel kortkommando Kommando Allmänt F10 Ctrl + B eller Skift + F5 Ctrl + G Ctrl + H Ctrl + i F1 Ctrl + N Ctrl + O Ctrl + P Ctrl + S F12 eller Alt + F2 Ctrl + W eller Alt + F4 Skift + F1 Skift + F10 Ctrl

Läs mer

Linjär algebra med MATLAB

Linjär algebra med MATLAB INGENJÖRSHÖGSKOLAN Matematik Fredrik Abrahamsson, Anders Andersson Innehåll Linjär algebra med MATLAB 1 Grundläggande begrepp 1 1.1 Introduktion...................................... 1 1.2 Genomförande

Läs mer

TI-89 / TI-92 Plus. en ny teknologi med

TI-89 / TI-92 Plus. en ny teknologi med TI-89 / TI-92 Plus en ny teknologi med När nya verktyg för matematik och naturvetenskapliga applikationer kommer på räknare behöver du nu inte köpa en ny. Om du har en Plus modul installerad i din TI-92

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

PROGRAMMERING A VC# 2012 EXPRESS UTVECKLINGSVERKTYGET VISUAL C#

PROGRAMMERING A VC# 2012 EXPRESS UTVECKLINGSVERKTYGET VISUAL C# PROGRAMMERING A VC# 2012 EXPRESS UTVECKLINGSVERKTYGET VISUAL C# Matte och programmering Allt det du gör idag ska ligga i samma projekt (och mapp). Varje uppgift läggs på en ny windowsform och länkas till

Läs mer

DATORÖVNING 4: DISKRETA

DATORÖVNING 4: DISKRETA IDA/Statistik 2008-09-25 Annica Isaksson DATORÖVNING 4: DISKRETA SANNOLIKHETSFÖRDELNINGAR. I denna datorövning ska du illustrera olika sannolikhetsfördelningar samt beräkna sannolikheter i dessa m h a

Läs mer

1 Addition, subtraktion och multiplikation av (reella) tal

1 Addition, subtraktion och multiplikation av (reella) tal Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

Laboration: Att inhägna ett rektangulärt område

Laboration: Att inhägna ett rektangulärt område Laboration: Att inhägna ett rektangulärt område Du har tillgång till ett hoprullat staket som är 30 m långt. Med detta vill du inhägna ett område och använda allt staket. Du vill göra inhägnaden rektangelformad.

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU LABORATION 1 MVE011-2012/2013 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska högskolor

Läs mer

Polynomekvationer (Algebraiska ekvationer)

Polynomekvationer (Algebraiska ekvationer) Polynomekvationer (Algebraiska ekvationer) Faktorsatsen 1. Pettersson: teori och exempel på sid. 21-22 Det intressanta är följande idé: Om man på något sätt (Vilket det är en annan fråga, se nedan!) har

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 1.1Introduktion Introduktion Avsnitt 1 handlar till att börja med om hantering av bråkstreck. Samtidigt ges exempel och övningar

Läs mer

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2.

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2. KTH Matematik Lars Filipsson Facit till Några extra uppgifter inför tentan Matematik Baskurs 1. Låt f(x) = ln 2x + 4x 2 + 9 + ln 2x 4x 2 + 9. Bestäm definitionsmängd och värdemängd till f och rita kurvan

Läs mer

Övning log, algebra, potenser med mera

Övning log, algebra, potenser med mera Övning log, algebra, potenser med mera Uppgift nr 1 Förenkla uttrycket x 3 + x 3 + x 3 + x 3 + x 3 Uppgift nr 2 Förenkla x x x+x x x Uppgift nr 3 Skriv på enklaste sätt x 2 x x x 8 x x x Uppgift nr 4 Förenkla

Läs mer

KPP053, HT2016 MATLAB, Föreläsning 1. Introduktion till MATLAB Skript Inläsning och utskrift av variabler Ekvationssystem Anonyma funktioner

KPP053, HT2016 MATLAB, Föreläsning 1. Introduktion till MATLAB Skript Inläsning och utskrift av variabler Ekvationssystem Anonyma funktioner KPP053, HT2016 MATLAB, Föreläsning 1 Introduktion till MATLAB Skript Inläsning och utskrift av variabler Ekvationssystem Anonyma funktioner MATLAB Väletablerat Mycket omfattande program GNU OCTAVE Öppen

Läs mer

Programmeringsteknik med C och Matlab

Programmeringsteknik med C och Matlab Programmeringsteknik med C och Matlab Kapitel 2: C-programmeringens grunder Henrik Björklund Umeå universitet Björklund (UmU) Programmeringsteknik 1 / 32 Mer organisatoriskt Imorgon: Datorintro i lab Logga

Läs mer

Datorövning 2 Statistik med Excel (Office 2007, svenska)

Datorövning 2 Statistik med Excel (Office 2007, svenska) Datorövning 2 Statistik med Excel (Office 2007, svenska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

DATORÖVNING 3: EXPERIMENT MED

DATORÖVNING 3: EXPERIMENT MED DATORÖVNING 3: EXPERIMENT MED SLUMPMÄSSIGA FÖRSÖK. I denna övning skall du med hjälp av färdiga makron simulera två olika försök och med hjälp av dessa uppskatta sannolikheter för ett antal händelser (och

Läs mer

Övningshäfte 3: Polynom och polynomekvationer

Övningshäfte 3: Polynom och polynomekvationer LMA100 VT2005 ARITMETIK OCH ALGEBRA DEL 2 Övningshäfte 3: Polynom och polynomekvationer Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med

Läs mer

Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare.

Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Dina lösningar på denna del görs på separat papper som ska lämnas in innan du får tillgång till din miniräknare. Observera

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 6 feb 16 (prövningstillfälle ) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

Lösningar och kommentarer till uppgifter i 3.1

Lösningar och kommentarer till uppgifter i 3.1 Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man

Läs mer

Övningar - Andragradsekvationer

Övningar - Andragradsekvationer Övningar - Andragradsekvationer Uppgift nr 1 x x = 36 Uppgift nr 2 x² = 64 Uppgift nr 3 0 = x² - 81 Uppgift nr 4 x² = -81 Uppgift nr 5 x² = 7 Ange också närmevärden med 3 decimaler med hjälp av miniräknare.

Läs mer

Kapitel 22: Överföring av variabler och uppgradering 365. I fönstret VAR-LINK visas en lista med definierade variabler, Flashprogram

Kapitel 22: Överföring av variabler och uppgradering 365. I fönstret VAR-LINK visas en lista med definierade variabler, Flashprogram Kapitel 22: Överföring av variabler och uppgradering 22 Länka två enheter... 366 Överföra variabler, Flash-program och mappar... 367 Överföra variabler under från ett program... 371 Uppgradera programkod

Läs mer

Fria matteboken: Matematik 2b och 2c

Fria matteboken: Matematik 2b och 2c Fria matteboken: Matematik 2b och 2c Det här dokumentet innehåller sammanfattning av teorin i matematik 2b och 2c, för gymnasiet. Dokumentet är fritt att använda, modifiera och sprida enligt Creative Commons

Läs mer

KOKBOKEN 1. Håkan Strömberg KTH STH

KOKBOKEN 1. Håkan Strömberg KTH STH KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................

Läs mer

Fri programvara i skolan datoralgebraprogrammet Maxima

Fri programvara i skolan datoralgebraprogrammet Maxima Per Jönsson & Thomas Lingefjärd Fri programvara i skolan datoralgebraprogrammet Maxima I takt med att priserna sjunker utrustar allt fler skolor sina elever med små bärbara datorer. Detta innebär nya och

Läs mer

Datorlära 6. Arbeta med strängar Inmatning med tangentbordet Bygga ett program med inmatning, funktioner, osv

Datorlära 6. Arbeta med strängar Inmatning med tangentbordet Bygga ett program med inmatning, funktioner, osv Datorlära 6 Arbeta med strängar Inmatning med tangentbordet Bygga ett program med inmatning, funktioner, osv 1 Arbeta med Strängar Strängar skapas med text inom citattecken, enkla eller dubbla.!>> str=

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU LABORATION 1 TMV157-2014/2015 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor

Läs mer

2320 a. Svar: C = 25. Svar: C = 90

2320 a. Svar: C = 25. Svar: C = 90 2320 a Utgå ifrån y = sin x Om vi subtraherar 25 från vinkeln x, så kommer den att "senareläggas" med 25 och således förskjuts grafen åt höger y = sin(x 25 ) Svar: C = 25 b Utgå ifrån y = sin x Om vi adderar

Läs mer

Kort manual till SPSS 10.0 för Mac/PC

Kort manual till SPSS 10.0 för Mac/PC Institutionen för beteendevetenskap Linköpings universitet Kort manual till SPSS 10.0 för Mac/PC 1. Att skapa en ny variabel Inmatning av data sker i det spread sheet som kallas Data View (flik längst

Läs mer

Funktioner och grafritning i Matlab

Funktioner och grafritning i Matlab CTH/GU LABORATION 3 MVE11-212/213 Matematiska vetenskaper 1 Inledning Funktioner och grafritning i Matlab Först skall vi se lite på (elementära) matematiska funktioner i Matlab, som sinus och cosinus.

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför

Läs mer

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR MATEMATIKPROV, KORT LÄROKURS 8..05 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte bindande för studentexamensnämndens bedömning. Censorerna beslutar

Läs mer

Idiotens guide till. Håkan Lyckeborgs SPSS-föreläsning 4/12 2008. Av: Markus Ederwall, 21488

Idiotens guide till. Håkan Lyckeborgs SPSS-föreläsning 4/12 2008. Av: Markus Ederwall, 21488 Idiotens guide till Håkan Lyckeborgs SPSS-föreläsning 4/12 2008 Av: Markus Ederwall, 21488 1. Starta SPSS! 2. Hitta din datamängd på Kurs 601\downloads\datamängd A på studentwebben 3. När du hittat datamängden

Läs mer

LABORATION cos (3x 2 ) dx I =

LABORATION cos (3x 2 ) dx I = SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför

Läs mer

Konsten att lösa icke-linjära ekvationssystem

Konsten att lösa icke-linjära ekvationssystem Konsten att lösa icke-linjära ekvationssystem Andreas Axelsson Vi beskriver här de grundläggande teknikerna för att lösa icke-linjära ekvationssystem. Detta är en nödvändig kunskap för att kunna lösa diverse

Läs mer

Att undervisa och studera matematik med datoralgebraprogrammet Maxima. Per Jönsson och Thomas Lingefjärd

Att undervisa och studera matematik med datoralgebraprogrammet Maxima. Per Jönsson och Thomas Lingefjärd Att undervisa och studera matematik med datoralgebraprogrammet Maxima Per Jönsson och Thomas Lingefjärd Malmö och Göteborg 2009 1 Kort om Maxima Begreppet CAS (computer algebra system) eller på svenska

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 49, 966 Årgång 49, 966 Första häftet 2555. Visa att 4 n + n + 8 ej kan vara primtal för något heltal n 0. 2556. Man vill göra en behållare utan lock, som rymmer m 3, i form av en rätvinklig

Läs mer

Studio 6: Dubbelintegral.

Studio 6: Dubbelintegral. Studio 6: Dubbelintegral. Analys och Linjär Algebra, del C, K1/Kf1/Bt1, vt09 20 februari 2009 1 Repetition av enkelintegral I ALA B skrev du en MATLAB-funktion minintegral som beräknar integralen av en

Läs mer

RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: 40-120 minuter beroende på variant Material: TI-82/83/84 samt tärningar

RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: 40-120 minuter beroende på variant Material: TI-82/83/84 samt tärningar Aktivitetsbeskrivning Denna aktivitet är utformat som ett spel som spelas av en grupp elever. En elev i taget agerar Gömmare och de andra är Gissare. Den som är gömmare lagrar (gömmer) tal i några av räknarens

Läs mer