Undervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203

Storlek: px
Starta visningen från sidan:

Download "Undervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203"

Transkript

1 Undervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203 Styrdokument: Kursplan i matematik med betygskriterier. Läromedel: Matematik 3000 N&K. Lån för studerande upp till 20 år De studerande som är över 20 år köper själva böcker. Räknare: TI 83 plus, grafritande räknare. De studerande köper själva sina räknare. INNEHÅLL Kursplan enligt skolverket sid 2 Betygskriterier för nivåerna G, VG och MVG sid 3 Kursinnehåll med exempel på betygskrav inom Algebra och derivator sid 4 Funktioner och kurvor sid 8 Matematikkursens syfte, karaktär och uppbyggnad enligt Skolverket. sid 9 Verifiering av betygskriterier och säkerhetskälla likvärdig bedömning sid 10 Säkerställa likvärdig bedömning sid 10 KOMVUX (10)

2 KURSINNEHÅLL MATEMATIK C 100 poäng Matematik C bygger vidare på Matematik B inom aritmetik, algebra och funktionslära. Den innehåller även differentialkalkyl. I kursen behandlas problem som gäller optimering, förändringar och extremvärden. Problemens innehåll skall så långt som möjligt ha anknytning till viktiga frågor inom de studerandes studieinriktning. Mål Mål som de studerande skall ha uppnått efter avslutad kurs Den studerande skall - kunna formulera, analysera och lösa matematiska problem av betydelse för tillämpningar och vald studieinriktning med fördjupad kunskap om sådana begrepp och metoder som ingår i tidigare kurser - kunna tolka och använda logaritmer och potenser med reella exponenter samt kunna tillämpa dessa vid problemlösning - kunna ställa upp, förenkla och använda uttryck med polynom samt beskriva och använda egenskaper hos några polynomfunktioner och potensfunktioner - kunna ställa upp, förenkla och använda rationella uttryck samt lösa polynomekvationer av högre grad genom faktorisering - kunna använda matematiska modeller av olika slag, däribland även sådana som bygger på summan av en geometrisk talföljd - känna till hur datorer och grafiska räknare kan utnyttjas som hjälpmedel vid studier av matematiska modeller i olika tillämpade sammanhang - kunna förklara, åskådliggöra och använda begreppen ändringskvot och derivata för en funktion samt använda dessa för att beskriva egenskaper hos funktionen och dess graf - kunna härleda deriveringsregler för några grundläggande potensfunktioner, summor av funktioner samt enkla exponentialfunktioner och i samband därmed beskriva varför och hur talet e införs - kunna dra slutsatser om en funktions derivata och uppskatta derivatans värde numeriskt då funktionen är given genom sin graf - kunna använda sambandet mellan en funktions graf och dess derivata i olika tillämpade sammanhang med och utan grafritande hjälpmedel. KOMVUX (10)

3 Betygskriterier Kriterier för betyget Godkänd Den studerande använder lämpliga matematiska begrepp, metoder och tillvägagångssätt för att formulera och lösa problem i ett steg. Den studerande genomför matematiska resonemang såväl muntligt som skriftligt. Den studerande använder matematiska termer, symboler och konventioner samt utför beräkningar på ett sådant sätt att det är möjligt att följa, förstå och pröva de tankar som kommer till uttryck. Den studerande skiljer gissningar och antaganden från givna fakta och härledningar eller bevis. Kriterier för betyget Väl godkänd Den studerande använder lämpliga matematiska begrepp, metoder, modeller och tillvägagångssätt för att formulera och lösa olika typer av problem. Den studerande deltar i och genomför matematiska resonemang såväl muntligt som skriftligt. Den studerande gör matematiska tolkningar av situationer eller händelser samt genomför och redovisar sitt arbete med logiska resonemang såväl muntligt som skriftligt. Den studerande använder matematiska termer, symboler och konventioner på sådant sätt att det är lätt att följa, förstå och pröva de tankar som kommer till uttryck såväl muntligt som skriftligt. Den studerande visar säkerhet beträffande beräkningar och lösning av olika typer av problem och använder sina kunskaper från olika delområden av matematiken. Den studerande ger exempel på hur matematiken utvecklats och använts genom historien och vilken betydelse den har i vår tid inom några olika områden. Kriterier för betyget Mycket väl godkänd Den studerande formulerar och utvecklar problem, väljer generella metoder och modeller vid problemlösning samt redovisar en klar tankegång med korrekt matematiskt språk. Den studerande analyserar och tolkar resultat från olika typer av matematisk problemlösning och matematiska resonemang. Den studerande deltar i matematiska samtal och genomför såväl muntligt som skriftligt matematiska bevis. Den studerande värderar och jämför olika metoder, drar slutsatser från olika typer av matematiska problem och lösningar samt bedömer slutsatsernas rimlighet och giltighet. Den studerande redogör för något av det inflytande matematiken har och har haft för utvecklingen av vårt arbets- och samhällsliv samt för vår kultur. KOMVUX (10)

4 ALGEBRA OCH DERIVATOR Följande moment behandlas Räkning med potenser. Räkning med rationella uttryck. Funktioner av första och andra graden. Kurvors lutning. Ändringskvoter. Derivata. Kurvkonstruktioner. Växande och avtagande. Extrempunkter. Tillämpningar. Grafitritande räknare för bestämning av rötter, maxima och minima, och derivator. Exempel på uppgifter som motsvarar betygskraven för GODKÄND nivån: - Lös ekvationer av typen (x + 2)(x 2) (x 6) 2 = 8 - Utveckla uttryck av typen (3x 4) 2 - Lös ekvationen t + 5 = - Bestäm f (1) om f (x) = 2x 2 - x Bestäm derivatan till f (x) = x x 2 9x Beräkna f (5) om f (x) = 3 x 4 2x Bestäm lutningen för tangenten till kurvan y = f (x) i punkten med x-koordinaten 3, om f (x) = 2x 3 5x - Ange en ekvation för tangenten i den punkt på kurvan y = x 2 som har x-koordinaten 2. Rita figur. - Den vägsträcka s m, som en kropp rätlinjigt rört sig på tiden t s har antecknats i värdetabellen till höger. Beräkna medelhastigheten i tidsintervallet från t 1 = 1,0 till t 2 = 2,5 s. - Grafen visar den vägsträcka s m, som en kropp rätlinjigt rört sig på tiden t s. Bestäm kroppens medelhastighet från t 1 = 2,0 till t 2 = 5,0 s. m s t/s s/m 0 0 0,5 0,21 1,0 0,83 1,5 1,87 2,0 3,32 2,5 5,19 3,0 7, t s KOMVUX (10)

5 - En vagn rör sig längs en rät linje. Vägsträckan s m som vagnen rört sig på t s ges av formeln s (t) = 33t - 4t 2 Beräkna och förklara i ord vad s (4) betyder. - I figuren är kurvan y = f (x) ritad. Ange tecknet för a) f (-2) b) f (0) c) f (2) d) f (7) - f (x) = x - 7x 2 Bestäm funktionens största och minsta värde i intervallet 0 x 3. - I ett hörn där två murar möts avgränsas ett rektangulärt trädgårdsland av ett nät som är 28 m långt. a) Arean är y m 2. Bestäm y som funktion av x. b) Ange funktionens definitionsmängd. c) Vilken är den största arean som trädgårdslandet kan få. (m) 28-x x y m 2 Exempel på uppgifter som motsvarar betygskraven på VÄL GODKÄND nivån: - Lös ekvationen 4(3-3x)(8-2x 2 )= 0 - Låt f (x) = x 2 + 3x och förenkla f ( 2+ h ) f ( 2) h - Bestäm x så att f (x) = 0 om f (x) = 5x 2-30x Rita en enkel skiss av grafen till någon av de funktioner f som uppfyller följande villkor: f (3) = 1, f (3) = 0 och f (4) < 0 för alla x. - Derivera funktionen y = (3x-5) 2 - Följande kurvor har två extrempunkter. Bestäm deras koordinater och avgör om det är maximi- eller minimipunkter. a) y = x 3-12x b) y = x 3 /3 - x 2 - Härled derivatan till y = x En kran öppnas till en vattentank. Efter t h är vattenvolymen V(t) liter. Vad betyder det att a) V(0) = och V (0) = b) V(30) = V(0)/4 och V (30) = V (0)/2? - Figuren till höger återger grafiskt derivatan f (x) till funktionen f (x). a) För vilka värden på x växer funktionen f (x)? b) För vilket eller vilka vilka värden på x har funktionen lokalt maximum eller lokalt minimum? KOMVUX (10)

6 - Funktionen f (x) = x 3 - ax 2 har ett extremvärde för x = -2. Bestäm a och avgör om det är ett maximi- eller minimivärde. - Figuren till höger föreställer ett rektangulärt område som skall inhägnas på tre sidor med ett 72 m långt stängsel. Den fjärde sidan begränsas av ett vattendrag. Bestäm största möjliga area på inhägnaden. vatten - Temperaturen y C i en brandhärd ges av formeln y = 0,12t 2-0,00050t 3 + 0,025t + 10 där t är tiden i sekunder. Beräkna temperaturändringen per sekund, då temperaturen är 180 o C. - Av en plåt som är 36 cm bred ska man bocka en öppen ränna med rektangulärt tvärsnitt. Vilka mått ger största möjliga tvärsnittsarea. Exempel på uppgifter som motsvarar betygskraven på MYCKET VÄL GODKÄND nivån: - Lös ekvationen (x 3-3x 2 ) - (2x - 6) = 0 - Låt f (x) = 6x + 1 och z = f (f (x)), bestäm x så att z (x) = 34 - Bestäm g (x), om g (x) = f (f (x)) och f (x) = 2x Bestäm ekvationen för den tangent till kurvan y = x 2 + 6x som är parallell med den räta linjen y = 2x F - Ur en stock med diametern 64 cm skall Enok såga en bjälke med rektangulärt tvärsnitt som tål största möjliga belastning. Enligt en bok i hållfasthetslära inträffar detta då produkten W = x h 2 /12 är maximal (se figur). Uttryck först W som funktion enbart av x och hjälp sedan Enok att bestämma bjälkens dimensioner. 64 x h - En plåtskiva har formen av en rektangel med sidorna 12,5 dm och 18,3 dm. Genom att klippa bort lika stora kvadrater i varje hörn och sedan vika plåtskivan utefter de streckade linjerna kan vi tillverka en öppen låda. Hur stora skall sidorna i kvadraten vara om vi vill ha så stor volym som möjligt hos den öppna lådan? KOMVUX (10)

7 - I en regelbunden pyramid med kvadratisk basyta är sidokanterna 6,0 cm (se figur). Hur stor kan pyramidens volym högst vara? (cm) 6,0 FUNKTIONER OCH KURVOR Följande moment behandlas: Exponentialfunktioner Logaritmfunktioner Potensfunktioner. Aritmetiska och geometriska talföljder. Ekonomiska och naturvetenskapliga tillämpningar Exempel på uppgifter som motsvarar betygskraven för GODKÄND nivån: - Ange ekvationen för den linje som i punkten (0,2) tangerar kurvan y= 5+ x 3 e x - Lös ekvationen 2 3 x = 5 - Lös ekvationen lg x = 5 - Bestäm x med tre värdesiffror: x 1,19 = 9,32 - Givet funktionen f (x) = e x - 0,5x 2-2x a) Bestäm derivatans positiva nollställe med tre decimaler med grafritande räknare. b) Avgör om detta nollställe ger ett maximi- eller minimivärde. - Hur stort blir ett kapital på 5000 kr om det förräntar sig med 10% årligen i 7 år. - Beräkna den aritmetiska summan Ange ytterligare 3 element i en geometrisk talföljd som börjar 9, Exempel på uppgifter som motsvarar betygskraven för VÄL GODKÄND nivån: - Lös ekvationen lg 12 - lg x = lg 3 - I en geometrisk talföljd a 1, a 2, a 3,... är a 1 = 2187 och a 4 = 81. Bestäm talföljden. - I skinnet från en mammut som man funnit i Sibirien var halten av kol-14 bara 2,2% av den normala halten. För hur länge sedan dog mammuten? (Halveringstiden för kol-14 är 5730 år.) KOMVUX (10)

8 - En patient tar varje morgon medicin i form av en tablett på 20 mg. För varje dygn utsöndrar kroppen 50% av den ursprungliga mängden. Hur storstor mängd av medicinen har patienten i blodet efter n tabletter? - Adam har lovat att vid slutet av 2001 betala 8000 kr till Bertil. Men redan vid slutet av 1996, dvs fem år i förväg vill Adam göra sig fri från sitt åtagande. Hur mycket är nuvärdet av dessa 8000 kr om ränta på ränta beräknas efter 13%, d v s hur mycket bör A vid slutet av 1996 betala till B för att denne fem år senare med ränta på ränta ska ha 8000 kr? Exempel på uppgifter som motsvarar betygskraven för MYCKET VÄL GODKÄND nivån: - Förenkla så långt som möjligt 0,8 lg 10 a - lg 10-2a 3n/ 4 n+ 1 - Förenkla n/ 3 8 2x - Derivera a) f(x) = e ax /e bx 3 b) f(x) = 10 - År 1990 var världskonsumtionen av mineralolja ton. Den totala råoljereserven på jorden uppskattades då till ton. När tar råoljan slut, om förbrukningen a) ökar med 4% årligen b) minskar med 4% årligen? KOMVUX (10)

9 MATEMATIKÄMNETS SYFTE, KARAKTÄR OCH STRUKTUR SYFTE Utbildningen syftar till att ge kunskaper i matematik för studier inom vald studieinriktning och för fortsatta studier. Utbildningen skall leda till förmåga att kommunicera med matematikens språk och symboler, som är likartade över hela världen. Utbildningen i matematik i gymnasieskolan syftar också till att eleverna skall kunna analysera, kritiskt bedöma och lösa problem för att självständigt kunna ta ställning i frågor, som är viktiga både för dem själva och samhället, som t.ex. etiska frågor och miljöfrågor. Utbildningen syftar även till att eleverna skall uppleva glädjen i att utveckla sin matematiska kreativitet och förmåga att lösa problem samt få erfara något av matematikens skönhet och logik. KARAKTÄR OCH STRUKTUR I matematik arbetar man med väldefinierade begrepp och bygger upp teorier genom att logiskt och strikt bevisa att formulerade hypoteser är giltiga. Resultaten av bevisen formuleras som satser eller samband, som visar hur begreppen kan användas. Nya begrepp införs som följd av frågeställningar i tillämpningsämnen eller av idéer inom matematiken som sådan. Problemlösning, kommunikation, användning av matematiska modeller och matematikens idéhistoria är fyra viktiga aspekter av ämnet matematik som genomsyrar undervisningen. Tillgången till tekniska hjälpmedel har delvis förändrat matematikämnet. Såväl numeriska, grafiska som algebraiska metoder utnyttjas och nya typer av problem av mer sammansatt karaktär kan studeras i ämnet. De tekniska hjälpmedlen har dock begränsat värde utan kunskaper om begrepp och metoder. Förståelse, analys av hela lösningsprocedurer och kritisk granskning av resultat samt förmåga att dra slutsatser är grundläggande i gymnasieskolans matematikämne. En viktig del av problemlösningen är att utforma och använda matematiska modeller och på olika sätt kommunicera om de matematiska idéerna och tankegångarna. Både i vardagsliv och yrkesliv behöver allt fler kunna förstå innebörden av och kommunicera om frågor med matematiskt innehåll. Matematikens kraft som verktyg för förståelse och modellering av verkligheten blir tydlig om ämnet tillämpas på områden som är välbekanta för eleverna. Kunskaper i matematik är ofta en förutsättning för att målen för många av karaktärsämnena skall uppnås. Matematikämnet i gymnasieskolan är uppbyggt av flera områden: aritmetik, algebra, geometri, sannolikhetslära, statistik, funktionslära, trigonometri samt differential- och integralkalkyl med differentialekvationer. Vissa av dessa områden behandlas i olika omfattning i grundskolans matematikkurs och fördjupas och utvecklas i gymnasieskolan. Nya områden införs, fördjupas och breddas successivt i gymnasieskolan. I ämnet matematik ingår fem kurser, Matematik A-E, som bygger på varandra. KOMVUX (10)

10 Säkerställa likvärdig bedömning För att säkerställa betygsättningen använder vi oss av skolverkets nationella prov. Några av dessa är frisläppta och kan därför användas för att diskutera proven i förhållande till kursplanerna Ett flertal grupper med lärare och lärarutbildare är involverade i problemkonstruktion, utprövning och kravgränser av de nationellt fastställda kursproven. Dessa personer är också med i diskussioner om poängsättning och helhetsbedömning. Provens och bedömningsanvisningarnas utformning och innehåll bygger på utprövningar samt erfarenheter och synpunkter från lärarenkäter. För att ytterligare säkerställa tolkningen av skolverkets nationella prov för vi en kontinuerlig dialog med Nils Ericsonsgymnasiets matematiklärare. KOMVUX (10)

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 Anvisningar Provtid Hjälpmedel Provmaterialet Provet Poäng och betygsgränser NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 240 minuter för Del I och Del II tillsammans. Vi rekommenderar att du använder

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Undervisningsplanering i Matematik KURS A (100 poäng) Kurskod: MA1201

Undervisningsplanering i Matematik KURS A (100 poäng) Kurskod: MA1201 Undervisningsplanering i Matematik KURS A (100 poäng) Kurskod: MA1201 Styrdokument: Kursplan i kärnämnet matematik med betygskriterier. Läromedel: Matematik 3000 N&K. Lån för studerande upp till 20 år

Läs mer

C Höstterminen 2009. Matematik. Elevhäfte KURSPROV. Elevens namn

C Höstterminen 2009. Matematik. Elevhäfte KURSPROV. Elevens namn KURSPROV Matematik C Höstterminen 2009 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t o m 2015-12-31.

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 017-06-0. Vid sekretessbedömning ska

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

NYA KURSPLANER FÖR GRUNDSKOLAN MATEMATIK GRUNDSKOLAN

NYA KURSPLANER FÖR GRUNDSKOLAN MATEMATIK GRUNDSKOLAN NYA KURSPLANER FÖR GRUNDSKOLAN Den 17 mars 1994 fastställde regeringen KURSPLANER FÖR GRUNDSKOLAN att gälla i årskurserna 1 7 från läsåret 1995/96, i årskurs 8 läsåret 1996/97 och i årskurs 9 läsåret 1997/98.

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med den 10 juni 2005. Anvisningar NATIONELLT

Läs mer

Studiehandledning. kurs Matematik 1b

Studiehandledning. kurs Matematik 1b Studiehandledning kurs Matematik 1b Innehållsförteckning Inledning och Syfte... 1 Ämnesplan för ämnet matematik... 1 Ämnets syfte... 1 Centralt innehåll... 2 Problemlösning... 2 Taluppfattning, aritmetik

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

MATEMATIK. Ämnets syfte. Kurser i ämnet

MATEMATIK. Ämnets syfte. Kurser i ämnet MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Matematik i Gy11. 110912 Susanne Gennow

Matematik i Gy11. 110912 Susanne Gennow Matematik i Gy11 110912 Susanne Gennow Var finns matematik? Bakgrund Nationella utredning 2003 PISA 2009 TIMSS Advanced 2008 Skolinspektionens rapporter Samband och förändring åk 1 3 Olika proportionella

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med den 10 juni 2005. Anvisningar NATIONELLT

Läs mer

Metoder för beräkningar med potenser med rationella exponenter.

Metoder för beräkningar med potenser med rationella exponenter. Kurskod: MATMAT02a Kursen matematik 2a omfattar punkterna 1 7 under rubriken Ämnets syfte. Centralt innehåll Kommentar Begrepp i kursen matematik 2a Metoder för beräkningar vid budgetering. Budgetering

Läs mer

Matematik 1B. Taluppfattning, aritmetik och algebra

Matematik 1B. Taluppfattning, aritmetik och algebra Matematik 1a Centralt innehåll Metoder för beräkningar med reella tal skrivna på olika former inom vardagslivet och karaktärsämnena, inklusive överslagsräkning, huvudräkning och uppskattning samt strategier

Läs mer

Nationellt kursprov i MATEMATIK KURS A Våren 2005. Del I

Nationellt kursprov i MATEMATIK KURS A Våren 2005. Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med 10 juni 2005. Nationellt kursprov i MATEMATIK

Läs mer

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Institutionen för beteendevetenskapliga mätningar PBMaE 5-5 Umeå universitet Provtid PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Del I: Uppgift -9 Del II: Uppgift -7 Anvisningar Totalt 4 minuter

Läs mer

Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del

Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del prövning matematik 1a Malmö stad Komvux Malmö Södervärn PRÖVNING PRÖVNINGSANVISNINGAR Prövningen avser Kurskod Matematik 1a MATMAT01a Gymnasiepoäng 100 Läromedel Prövningsutformning Bifogas Matematik 5000

Läs mer

NpMa3c Muntligt delprov Del A ht 2012

NpMa3c Muntligt delprov Del A ht 2012 Till eleven - Information inför det muntliga delprovet Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater

Läs mer

Välkommen till studier i Matematik kurs C

Välkommen till studier i Matematik kurs C Innehåll Välkommen till studier Matematik kurs C...2 Studietips...2 Kursens uppläggning och mål...5 Examination...6 Kursmaterial...7 Webbtips...8 Litteraturtips...8 Övrigt om kursen...10 Problemlösning...11

Läs mer

Kommentarer till uppbyggnad av och struktur för ämnet matematik

Kommentarer till uppbyggnad av och struktur för ämnet matematik 2011-06-10 Kommentarer till uppbyggnad av och struktur för ämnet matematik Likheter och skillnader jämfört med den gamla kursplanen Ämnesplanen i gymnasieskola 2011 (Gy 2011) har en ny struktur jämfört

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. 1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Planering för matematik 2a OBS: Provdatumen är endast förslag, kontakta läraren innan du kommer och vill ha prov

Planering för matematik 2a OBS: Provdatumen är endast förslag, kontakta läraren innan du kommer och vill ha prov År Startvecka 2013 2 Planering för matematik 2a OBS: Provdatumen är endast förslag, kontakta läraren innan du kommer och vill ha prov Vecka Lektion (2h) Datum Kapitel Avsnitt 2 Ti 08-jan Kap 1: Räta linjen

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

Kurskod: GRNMAT2 Verksamhetspoäng: 600

Kurskod: GRNMAT2 Verksamhetspoäng: 600 Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper

Läs mer

Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -

Kap 1: Aritmetik - Positiva tal -  -  -  -  - -  -  -  -  - År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel

Läs mer

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska

Läs mer

Kursplan Grundläggande matematik

Kursplan Grundläggande matematik 2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium.

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium. Så här hittar man extrempunkter, max-, min eller terrasspunkter, till en kurva y = f(x) med hjälp av i första hand f (x) 1 Bestäm f (x) och f (x) 2 Lös ekvationen f (x) = 0. Om ekvationen saknar rötter

Läs mer

Ämnesplaner för matematik grundskolan enligt Lgr11 och gymnasieskolan enligt Gy11

Ämnesplaner för matematik grundskolan enligt Lgr11 och gymnasieskolan enligt Gy11 Ämnesplaner för matematik grundskolan enligt Lgr11 och gymnasieskolan enligt Gy11 I ämnesplanen för grundskolans matematik har tidigare ering markerats om det är Matematik eller en högre kurs eller momentet

Läs mer

Konsultarbete, Hitta maximal volym fo r en la da

Konsultarbete, Hitta maximal volym fo r en la da Konsultarbete, Hitta maximal volym fo r en la da Uppgift 2. Maximal låda. I de fyra hörnen på en rektangulär pappskiva klipper man bort lika stora kvadrater. Flikarna viks sedan upp så att vi får en öppen

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1998. Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1998. Tidsbunden del Nationellt prov i Matematik kurs A vt 1998 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

Studiehandledning för Matematik 1a

Studiehandledning för Matematik 1a Studiehandledning för Matematik 1a Innehåll Studiehandledning för Matematik 1a... 1 Inledning och Syfte... 2 Ämne - Matematik... 3 Ämnets syfte... 3 Matematik 1a... 4 Centralt innehåll... 4 Kunskapskrav...

Läs mer

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Frågeställning Av en cirkulär pappersskiva kan en cirkelsektor med en viss vinkel klippas bort. Med den resterande sektorn går

Läs mer

Teresia Månsson, VFU, Matematik 5, 2014-12-10

Teresia Månsson, VFU, Matematik 5, 2014-12-10 Temauppgifter Syfte Det är tänkt att det ska finnas möjlighet med uppgiften att öva på följande förmågor: begrepps-, procedur-, problemlösning, kommunikations-, resonemang, modelleringsförmåga och relevansförmåga

Läs mer

Bedömningsexempel. Matematik kurs 1c

Bedömningsexempel. Matematik kurs 1c Bedömningsexempel Matematik kurs 1c Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter som är representativa för Del I... 5 Exempeluppgifter som är representativa för Del II och Del III... 9 Exempel

Läs mer

Del I. Miniräknare ej tillåten. Namn:... Klass/Grupp:... 1. Vilket tal är 0,1 större än 3,96? Svar: (1/0) 2. Vilket tal i decimalform ska stå i rutan?

Del I. Miniräknare ej tillåten. Namn:... Klass/Grupp:... 1. Vilket tal är 0,1 större än 3,96? Svar: (1/0) 2. Vilket tal i decimalform ska stå i rutan? Miniräknare ej tillåten Namn:... Klass/Grupp:... Del I 1. Vilket tal är 0,1 större än 3,96? Svar: (1/0) 2. Vilket tal i decimalform ska stå i rutan? a 0 1 2 Svar: a = (1/0) 3. Vilka koordinater har punkten

Läs mer

Funktioner, Algebra och Ekvationer År 9

Funktioner, Algebra och Ekvationer År 9 Undervisning Funktioner, Algebra och Ekvationer År 9 Mål att uppnå i år 9, ur Lpo 94 Utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

Matematik Uppnående mål för år 6

Matematik Uppnående mål för år 6 Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans.

Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Del B Del C Provtid Hjälpmedel Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR MATEMATIKPROV, KORT LÄROKURS 8..05 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte bindande för studentexamensnämndens bedömning. Censorerna beslutar

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del I

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2010. NATIONELLT KURSPROV

Läs mer

Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren

Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren Publicerad med tillstånd av Nämnaren Thomas Lingefjärd Geogebra i gymnasieskolan En tilltalande egenskap med Geogebra är att programmet kan användas tvärs över stora delar av utbildningssystemets matematikkurser.

Läs mer

17.10 Hydrodynamik: vattenflöden

17.10 Hydrodynamik: vattenflöden 824 17. MATEMATISK MODELLERING: DIFFERENTIALEKVATIONER 20 15 10 5 0-5 10 20 40 50 60 70 80-10 Innetemperaturen för a =1, 2och3. Om vi har yttertemperatur Y och startinnetemperatur I kan vi med samma kalkyl

Läs mer

KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng

KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng 1(5) KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng Mathematics för Teachers, 61-90 credits, 30 credits Kurskod: LMGN12 Fastställd av: Utbildningsledare 2012-06-15 Gäller fr.o.m.: HT

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2001 3. Skolverkets svar, #1 #6 9. Några lösningar till D-kursprov vt 2001 10

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2001 3. Skolverkets svar, #1 #6 9. Några lösningar till D-kursprov vt 2001 10 JENSENvuutbildning NpMaD vt för Ma4 (4) VERSION UNDER ARBETE. Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Skolverkets svar, # #6 9 Några lösningar till D-kursprov vt Digitala verktg är

Läs mer

LMA222a. Fredrik Lindgren. 17 februari 2014

LMA222a. Fredrik Lindgren. 17 februari 2014 LMA222a Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 17 februari 2014 F. Lindgren (Chalmers&GU) Matematisk analys 17 februari 2014 1 / 68 Outline 1 Lite

Läs mer

Individuella val Årskurs 3. Läsåret 2015/2016

Individuella val Årskurs 3. Läsåret 2015/2016 Individuella val Årskurs 3 Läsåret 2015/2016 1 Innehållsförteckning Anvisningar... 2 Engelska 6: 100 poäng... 4 Engelska 7: 100 poäng... 4 Fotografisk bild 1: 100 poäng... 4 Historia 1a2: 50 poäng... 5

Läs mer

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:...

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... DIGITALA VERKTYG ÄR INTE TILLÅTNA Namn:... Klass/Grupp:... Del I 1. Bestäm värdet av 25 3x om x = 2 Svar: (1/0/0) 2. Vilket tal ska stå i rutan för att likheten ska stämma? 2 3 + + 1 =1 Svar: (1/0/0) 9

Läs mer

Rymdutmaningen koppling till Lgr11

Rymdutmaningen koppling till Lgr11 en koppling till Lgr11 När man arbetar med LEGO i undervisningen så är det bara lärarens och elevernas fantasi som sätter gränserna för vilka delar av kursplanerna man arbetar med. Vi listar de delar av

Läs mer

Inriktnings- och fördjupningskurser Design och produktutveckling

Inriktnings- och fördjupningskurser Design och produktutveckling Inriktnings- och fördjupningskurser Design och produktutveckling TE - Berzeliusskolan Centralt innehåll för inriktnings- och fördjupningskurser för Design och produktutveckling på Berzeliusskolan Mer utförlig

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Anvisningar Del I. Namn: Födelsedatum: Komvux/gymnasieprogram: Provtid

Anvisningar Del I. Namn: Födelsedatum: Komvux/gymnasieprogram: Provtid Anvisningar Del I Provtid Hjälpmedel Miniräknarfri del Uppgift 14 Kravgränser 90 minuter för del I. Vi rekommenderar att du använder högst 45 minuter för arbetet med den miniräknarfria delen. Du får inte

Läs mer

Pedagogisk planering aritmetik (räkning)

Pedagogisk planering aritmetik (räkning) Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande

Läs mer

NATIONELLT PROV I MATEMATIK KURS C VÅREN 1996. Tidsbunden del. Anvisningar

NATIONELLT PROV I MATEMATIK KURS C VÅREN 1996. Tidsbunden del. Anvisningar NATIONELLT PROV I MATEMATIK KURS C VÅREN 1996 Tidsbunden del Anvisningar Provperiod 3 maj - 15 maj 1996. Provtid Hjälpmedel Provmaterialet 180 minuter utan rast. Miniräknare och formelsamling. Formelblad

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1)

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) NATUR OCH KULTURS PROV VÅRTERMINEN 1997 MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) Provets omfattning: t o m kapitel 5.6 i Matematik 2000 NV kurs AB. Provets omfattning: t o m kapitel 3.5

Läs mer

NpMa2b Muntlig del vt 2012

NpMa2b Muntlig del vt 2012 Till eleven - Information inför den muntliga provdelen Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater

Läs mer

Vad skall en matematiklärare kunna? Översikt. Styrdokument. Styrdokument. Problemlösning

Vad skall en matematiklärare kunna? Översikt. Styrdokument. Styrdokument. Problemlösning Vad skall en matematiklärare kunna? Andreas Ryve Stockholms universitet och Mälardalens Högskola. Översikt 1. Vad skall en elev kunna? 2. Matematik genom problemlösning ett exempel. 3. Skapa matematiska

Läs mer

Labora&v matema&k - för en varierad undervisning

Labora&v matema&k - för en varierad undervisning Labora&v matema&k - för en varierad undervisning Per Berggren & Maria Lindroth 2012-02- 23 Lgr11- Matema&ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar

Läs mer

Bedömningsexempel. Matematik kurs 1b

Bedömningsexempel. Matematik kurs 1b Bedömningsexempel Matematik kurs 1b Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter som är representativa för Del I... 5 Exempeluppgifter som är representativa för Del II och Del III... 9 Exempel

Läs mer

Kapitel 4. Funktioner. 4.1 Definitioner

Kapitel 4. Funktioner. 4.1 Definitioner Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet

Läs mer

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK KRAVNIVÅER Åtvidabergs kommuns grundskolor MATEMATIK Reviderade april 2009 Förord Välkommen att ta del av Åtvidabergs kommuns kravnivåer och bedömningskriterier för grundskolan. Materialet har tagits fram

Läs mer

Tummen upp! Matte ÅK 6

Tummen upp! Matte ÅK 6 Tummen upp! Matte ÅK 6 Tummen upp! är ett häfte som kartlägger elevernas kunskaper i förhållande till kunskapskraven i Lgr 11. PROVLEKTION: RESONERA OCH KOMMUNICERA Provlektion Följande provlektion är

Läs mer

MATEMATIK KURS A Våren 2005

MATEMATIK KURS A Våren 2005 MATEMATIK KURS A Våren 2005 1. Vilket tal pekar pilen på? 51 52 53 Svar: (1/0) 2. Skugga 8 3 av figuren. (1/0) 3. Vad är 20 % av 50 kr? Svar: kr (1/0) 4. Hur mycket vatten ryms ungefär i ett dricksglas?

Läs mer

Individuella val Årskurs 3. Läsåret 2014/2015

Individuella val Årskurs 3. Läsåret 2014/2015 Individuella val Årskurs 3 Läsåret 2014/2015 1 Innehållsförteckning Anvisningar... 2 Engelska 6: 100 poäng... 4 Engelska 7: 100 poäng... 4 Etik och människans livsvillkor: 100 poäng... 4 Fotografisk bild

Läs mer

Inriktnings- och fördjupningskurser Samhällsbyggnad och miljö

Inriktnings- och fördjupningskurser Samhällsbyggnad och miljö Inriktnings- och fördjupningskurser Samhällsbyggnad och miljö TE - Berzeliusskolan Centralt innehåll för inriktnings- och fördjupningskurser för Samhällsbyggnad och miljö på Berzeliusskolan Mer utförlig

Läs mer

Skolverkets förslag till nya ämnesplaner för gymnasieskolan (GY 2011)

Skolverkets förslag till nya ämnesplaner för gymnasieskolan (GY 2011) 2010-06-28 Till SKOLVERKET FI Dnr 10-871 Respektive kontaktpersoner för ämnesplaner: e-post: sa.gy2011@skolverket.se Johan Linder e-post: na.gy2011@skolverket.se Johan Börjesson e-post: es.gy2011@skolverket.se

Läs mer

Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2007.

Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2007. Miniräknare ej tillåten Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2007. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0)

Läs mer

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Matematik Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven

Läs mer

Matematik. Kursprov, vårterminen 2012. Bedömningsanvisningar. för samtliga skriftliga provdelar

Matematik. Kursprov, vårterminen 2012. Bedömningsanvisningar. för samtliga skriftliga provdelar Kursprov, vårterminen 2012 Matematik Bedömningsanvisningar för samtliga skriftliga provdelar 1b Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2011. Anvisningar Provtid

Läs mer

Centralt innehåll som vi arbetar med inom detta område:

Centralt innehåll som vi arbetar med inom detta område: BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp

Läs mer

Betygsättning i matematik -en kvalitativ studie om hur styrdokumenten tolkas

Betygsättning i matematik -en kvalitativ studie om hur styrdokumenten tolkas School of Mathematics and Systems Engineering Reports from MSI - Rapporter från MSI Betygsättning i matematik -en kvalitativ studie om hur styrdokumenten tolkas Mikael Arnström Jan 2007 MSI Report 07006

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR

Läs mer

Mål som eleverna skall ha uppnått i slutet av år 5 enligt nationella kursplanen

Mål som eleverna skall ha uppnått i slutet av år 5 enligt nationella kursplanen MATEMATIK Mål att sträva mot enligt nationella kursplanen Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

Funktioner från videofilmer. Sverker Aasa och Per Jönsson NMS, Malmö högskola

Funktioner från videofilmer. Sverker Aasa och Per Jönsson NMS, Malmö högskola Funktioner från videofilmer Sverker Aasa och Per Jönsson NMS, Malmö högskola Malmö 2008 1 Inledning Funktionsbegreppet är centralt inom matematiken. Ordet funktion, liksom en mängd andra matematiska termer,

Läs mer

MA/PROGR. www.kunda.nu/dennis VUXENUTBILDNINGEN. 2011-01-17 ÄLVKARLEBY KOMMUN Dennis Jonsson

MA/PROGR. www.kunda.nu/dennis VUXENUTBILDNINGEN. 2011-01-17 ÄLVKARLEBY KOMMUN Dennis Jonsson MA/PROGR. VT-2011 VUXENUTBILDNINGEN 2011-01-17 ÄLVKARLEBY KOMMUN Dennis Jonsson www.kunda.nu/dennis S i d a 2 INNEHÅLL INNEHÅLL... 2 KURSLITTERATUR... 3 BOKHANDEL PÅ INTERNET... 4 DENNIS... 5 SCHEMA VT-2011...

Läs mer

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60. Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd I föreläsning 18 bekantade vi oss med talföljder, till exempel eller 3, 6, 9, 1, 15, 18 1,, 4, 8, 16, 3 Nu är stunden inne, då vill vill summera talen i en talföljd och 3 + 6 + 9 + 1 + 15 + 18 1 + + 4

Läs mer

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning

Läs mer

Om ämnet Matematik. Bakgrund och motiv

Om ämnet Matematik. Bakgrund och motiv Om ämnet Matematik Bakgrund och motiv Skolämnet matematik handlar inte enbart om att räkna och lära sig en samling regler utantill. En del i matematiken är just att hantera procedurer och räkna, men enligt

Läs mer

Kommentarmaterial till kunskapskraven i matematik

Kommentarmaterial till kunskapskraven i matematik Kommentarmaterial till kunskapskraven i matematik Skolverket Stockholm 2012 www.skolverket.se ISBN: 978-91-87115-68-4 Innehåll 1. Inledning... 4 Vad materialet är och inte är...4 Materialets disposition...5

Läs mer

Matematik A Testa dina kunskaper!

Matematik A Testa dina kunskaper! Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2002. Del I

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2002. Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av juni månad 2002. NATIONELLT

Läs mer