KOMIHÅG 2: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P. = r PA

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "KOMIHÅG 2: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P. = r PA"

Transkript

1 1 KOMIHÅG 2: Kraft är en vektor me angreppspunkt och verkningslinje. Kraftmoment: M P = r PA ", r P =momentpunkt, r A angreppspunkt, r PA = r A " r P. - Oberoene av om angreppspunkten flyttas längs verkningslinjen. öreläsning 3: ANALYS och ÖRENKLING av KRATSYSTEM Två elementära (grunläggane) kraftsystem: Ensam kraft: Ensam kraft kan inte förenklas, bara flyttas längs sin verkningslinje. Ensamt KRATPAR: Ensamt kraftpar kan inte ersättas me ensam kraft. Exempel: Betrakta två lika, men motriktae, krafter som angriper ett föremål me xy-axlar på följane fyra sätt: y O x Kraftparens egenskaper? Vilka kan vria? Åt vilket håll?

2 2 Ett kraftpars totala kraftsumma = 0, men et totala kraftmomentet är i allmänhet inte noll. Me angrepp i r 1 och r 2 ger kraftparet ett moment: M O = r 1 " + r 2 " # ( ) ( ) " = r 1 # r 2 Byte av momentpunkt från O till P? M P = ( r 1 " r P ) # + r 2 " r P ( ) # = M O ( ) #(") = r 1 " r 2 Oänligt många olika par av krafter kan skapa samma moment=kraftpar (par). Storleken (abslutbeloppet) av momentet beräknas enklast me formeln: M = =kraftens belopp, =avstån mellan kraftparets verkningslinjer. Vriningsriktningen kan förtyligas me en bågforma pil för vriningar (moturs/meurs) i ett plan. Ett kraftpar ligger allti i ett plan och vriningsriktningen i et planet kan beskrivas me en bågforma pil! örenkling av komplicerae system av krafter: Hur än ett system av många krafter ser ut så är et viktiga för ess verkan på stela kroppar hur totalkraften ser ut och hur en totala vriane förmågan M P ser ut, för någon lämplig momentpunkt P. Därför kan alla kraftsystem ersättas me en ensam kraft och ett ensamt (kraftlöst) kraftpar me moment M P i en vala punkten P.

3 Speciellt vi JÄMVIKT. Jämviktslag (Eulers lagar): för alla val av P : 1) = 0, 2) M P = 0. I praktiken räcker et att välja en lämplig momentpunkt P för beräkning av kraftmomentet. Se slutet av enna föreläsning. EKVIMOMENTA kraftsystem Definition: Ekvimomenta kraftsystem är såana att eras totala kraftmoment är lika för gotyckligt val av momentpunkt. Systemen har samma kraftsumma (totalkraft). 3 M= De båa kraftsystemen i figuren är ekvimomenta. Det vänstra kraftsystemet har bara en kraft, et högra kraftsystemet har en lika stor kraft angripane i en annan punkt me ett kompenserane kraftparsmoment. Reuktionspunkt: angreppspunkt för et förenklae kraftsystemet, vs RESULTANTEN lera val av reuktionspunkt kan förekomma. Ett förenklat, men ekvimoment system av en ensam kraft + ett ensamt kraftpar i en val reuktionspunkt kallas resultant(-systemet) för enna reuktionspunkt.

4 Problem: örenkla följane plana kraftsystem till ett ekvimoment kraft+kraftpar system i origo. Om möjligt hitta även en speciell reuktionspunkt så att inget kraftpar behövs. 4 Lösning: först sean 2 2 M=-2 ENKRATS-RESULTANT Ett kraftsystem som kan reuceras till enast en ekvivalent kraft sägs ha en enkraftsresultant (kraftresultant).

5 5 Problem: inns et fler enkraftsresultanter som är ekvivalenta me ett givet kraftsystem.??? Svar: Ja!! Längs en linje av reuktionspunkter, som ligger på kraftsummans verkningslinje. Hur bevisas etta? Problem: Har et plana kraftsystemet i figuren en enkraftsresultant? Rita ut en i så fall. Lösning: Ja! Se figuren:

6 6 Krafternas vriane förmåga beror av momentpunkten. Hur ska man välja momentpunkt? inns et enkla val? Till exempel: Om man letar efter en enkraftresultant för ett kraftsystem måste man hitta en (moment-)punkt som kraftsystemet inte kan vria kring! Sambansformeln for kraftmoment. Byte av momentpunkt: Antag att vi har ett system av krafter och kraftpar. Detta kan beskrivas av ett antal krafter me respektive angreppspunkter: r j, j { }, är j =1, 2,..., N. I momentpunkten O mäter vi et totala momentet N M O = # r j " j, j=1 för N krafter utplacerae me angreppspunkter r j. I momentpunkten P mäter vi et totala momentet N M P = $ r j " r P, för samma krafter. j=1 ( ) # j Skillnaen blir i etta fall: N N M O " M P = $ r j " r j + r P = # r P " j. j=1 ( ) # j j=1 ( ) Detta uttryck kan lätt förenklas om vi inför totala kraften N = " j. j=1 Ty nu ser vi sambanet: M O = M P + r P ". (Sambansformeln för M) Kom ihåg att r P = r OP! Ifall man vill jämföra anra val av momentpunkter.

7 7 Problem: Bestäm enkraftsresultanten för e två verkane krafterna på balken. 8 kn 2 m 4 m 5 kn Lösning: Den ekvimomenta enkraftsresultanten måste vara lika stor som kraftsumman av e ursprungliga krafterna, vs y =-3 kn. Antag att en angriper på avstånet x från väggen. Då måste gälla att totala momenten m a p väggfästet är lika: y x = 5" 2 knm# 8 " 6 knm = #38 knm x =12.67 m HOPPSAN! Enkraftsresultanten kanske inte allti är förknippa me en fysikalisk punkt! Anmärkning: Enkraftsresultanten kan ju inte vria map sin egen angreppspunkt. Det måste å även gälla et ursprungliga kraftsystemets totala moment i en angreppspunkten.

8 8 KOMIHÅG 3: Ekvimomenta kraftsystem: Lika kraftsumma och momentsumma. Sambansformeln: M O = M P + r P ". eller M Q = M P + r QP ", för momentpunkter Q, P. Enkraftsresultant. öreläsning 4: Enkraftsresultant finns inte allti! Antag att et finns en enkraftsresultant som angriper i r A. Då kan enna ensamma kraft återskapa momentet M O för et ursprungliga kraftsystemet. Dvs: M O = r A ". ör kraftsystem me enkraftsresultant gäller sålees: M O " (kryssprouktens egenskap). Egenskapen är ett använbart villkor för att testa om ett kraftsystem har en enkraftsresultant eller inte. Hur hittar man placeringen r A av en kraftresultant? ör att bestämma enna behöver man räkna ut kraftsumman och momentsumman av et ursprungliga kraftsystemet. Vi kan allti använa origo som momenpunkt. Sean ställer vi upp ekvationen: M O = r A "

9 9 Använ komponenter i ekvationen. ör ett plant kraftsystem förenklas vektorekvationen till en 'skalära' ekvationen för z-riktingens komponent (upp ur xy-planet): x A y " y A x = M O Detta är ett samban för en linje i ( x, y )-planet, men et räcker att hitta en punkt på linjen, t.ex är y = y A = 0. Alltså har vi resultantens läge i planet givet av " r A = M % O $,0 # ', samt längs verkningslinjen. y & Komihåg: En krafts angreppspunkt kan fritt väljas längs kraftens verkningslinje!! JÄMVIKTER Definition: öremål i jämvikt: Det finns en icke-roterane och icke-accelererane referensram (vs inertialsystem) är föremålet befinner sig i vila. Jämviktslag: Jämvikt kräver (növänigt) för gotycklig resultant 1) = 0 2) M P = 0 (alla momentpunkter P) Detta är förutsättningen för att ett föremål ej börjar röra sig = börjar translation+rotation.

10 10 Jämviktsproblem 3 kn A 1.2 m 2.4 m B Problem: En homogen och likformig balk har en massa /läng given av 60 kg/m. Bestäm reaktionskrafterna i stöpunkterna A och B. Lösning: ritt vribar le i A representeras av en s.k. enkraftsresultant i planet. ri rullkontakt i B representeras av en vertikal normalkraft. Totala tyngkraften kan skrivas som en enkraftsresultant W som angriper i mitten på balken. 3 obekanta! 3 ekvationer krävs! rilägg balk! A y A x 2 B W 3/2 Jämvikt kräver: " A x = 0, " A y + B # #W = 0, A!! W( 3 / 2) + B( 3) = 0 och är vi infört: =1.2 m, W = 60 " 9.81" 3.6 N = 2120 N Vi löser ut obekanta ur e två sista ekvationerna: A y = W, B = W

11 11 A α N A N B mg B Problem: Ett glatt homogent klot me massan m vilar mot två plana håra ytor enligt figuren. Bestäm kontaktkrafternas storlek. Lösning: Kraftanalys: Det finns ingen friktion vi kontaktytorna enligt uppgift, enast tyngkraften och normalkrafterna beaktas. Vi bestämmer N A > 0 och N B > 0 på följane sätt. Den plana jämvikten kräver: N A cos" # mg = 0, N A sin" # N B = 0, vs N A = mg cos", N B = mg tan".

12 12 Typiska resultanter Leer - Glatt le: - Ej glatt le: Inre spänningskrafter De krafter som uppkommer i och verkar på en snittyta mellan två elsystem i samma kropp representeras av två motriktae resultanter, som verkar på varera elsystem. j M M R R

13 13 Problem: Betrakta en smal, homogen balk i jämvikt som är infäst i en betongvägg. Den synliga elen av balken har läng L och massa m. Rita krafter på en elen av balken som ligger bortom snittet sett från väggen! Lösning: Vi frilägger (ritar krafter, kraftmoment och ientifierar essa) en högra (fria) elen av balken. M R L-x W W betecknar tyngkraft. R och M utgör resultant från en anra elen av balken som angriper i snittet.

Var ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j.

Var ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j. 1 KOMIHÅG 4: --------------------------------- Enkraftsresultantens existens. Vanliga resultanter vid analys av jämvikter. Jämviktsanalys: a) Kraftanalys - rita+symboler b) Jämviktslagar- Euler 1+2 c)

Läs mer

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen 010-05-6 Tentamen i Mekanik SG1107, baskurs S OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1 En cylinder med massan M vilar på en homogen horisontell planka med

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 005-05-7 Tentamen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En homogen stång med massan m är fäst i ena änden i en fritt vridbar

Läs mer

Biomekanik, 5 poäng Moment

Biomekanik, 5 poäng Moment (kraftmoment) En resulterande (obalanserad kraft) strävar efter att ändra en kropps rörelsetillstånd. Den kan också sträva efter att vrida en kropp. Måttet på kraftens förmåga att vrida kroppen runt en

Läs mer

Mer Friktion jämviktsvillkor

Mer Friktion jämviktsvillkor KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning

Läs mer

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Läsåret 11/12 Utförliga lärandemål SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Richard Hsieh Huvudsakligt innehåll: Vektoralgebra och dimensionsbetraktelser. Kraft och kraftmoment. Kraftsystem; kraftpar,

Läs mer

Krafter och moment. mm F G (1.1)

Krafter och moment. mm F G (1.1) 1 Krafter och moment 1.1 Inledning örståelsen för hur olika typer av krafter påverkar strukturer i vår omgivning är grundläggande för ingenjörsvetenskapen inom byggnadskonsten. Gravitationskraften är en

Läs mer

Tentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-03-17 Tentamen i Mekanik SG1130, baskurs P1 m fl OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 1 KTH Mekanik Problemtentamen En tunn homogen stav i jämvikt med massan m har i ena ändpunkten

Läs mer

mm F G (1.1) F mg (1.2) P (1.3)

mm F G (1.1) F mg (1.2) P (1.3) Sid 1-1 1 1.1 Krafter och moment Inledning örståelsen för hur olika tper av krafter påverkar strukturer i vår omgivning är grundläggande för ingenjörsvetenskapen inom bggnadskonsten. Gravitationskraften

Läs mer

Uppgifter till KRAFTER

Uppgifter till KRAFTER Uppgifter till KRAFTER Peter Gustavsson Per-Erik Austrell 1 Innehåll 1 Introduktion till statiken... 3 A-uppgifter...3 2 Krafter... 5 A-uppgifter...5 B-uppgifter...5 3 Moment... 7 A-uppgifter...7 B-uppgifter...9

Läs mer

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen 2015-06-12 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block

Läs mer

Till Kursen MEKANIK MSGB21

Till Kursen MEKANIK MSGB21 Välkommen! Till Kursen MEKANIK MSGB21 Kursansvar: Hans Johansson 21F226 Föreläsningar: Hans Johansson & Anders Gåård Övningar: Anders Gåård 21F229 Mikael Åsberg 21D209 Hans Johansson 21F226 Sekreterare:

Läs mer

Föreläsningar i Mekanik (FMEA30) Del1: Statik och partikeldynamik. Läsvecka 2

Föreläsningar i Mekanik (FMEA30) Del1: Statik och partikeldynamik. Läsvecka 2 Mekanik Del tatik- och artikeldynamik 05 Utgåva öreläsningar i Mekanik (M0) Del: tatik och partikeldynamik Läsvecka öreläsning : Jämvikt jämviktsvillkor statiskt obestämda kraftsystem (/-/). Jämvikt: Rörelse

Läs mer

Tentamen i Mekanik Statik

Tentamen i Mekanik Statik Tentamen i Mekanik Statik TMME63 2016-06-02, kl 08.00-12.00 Tentamenskod: TEN1 Tentasal: TER1, TER2, TERE Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna ca 09.00) Kursadministratör:

Läs mer

FYSIKTÄVLINGEN. KVALIFICERINGS- OCH LAGTÄVLING 5 februari 2004 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET

FYSIKTÄVLINGEN. KVALIFICERINGS- OCH LAGTÄVLING 5 februari 2004 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING februari 004 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET. Skillnaen i avläsningen av vågen mellan bil och bestäms av vattnets lyftkraft på metallstaven som enligt

Läs mer

1 Materiell derivata. i beräkningen och så att säga följa med elementet: φ δy + δz. (1) φ y Den materiella derivatan av φ definierar vi som.

1 Materiell derivata. i beräkningen och så att säga följa med elementet: φ δy + δz. (1) φ y Den materiella derivatan av φ definierar vi som. Föreläsning 2. 1 Materiell erivata ätskor och gaser kallas me ett sammanfattane or för fluier. I verkligheten består fluier av partiklar, v s atomer eller molekyler. I strömningsmekaniken bortser vi från

Läs mer

Anmärkning: Härledning av ovanstående formel finns i slutet av stencilen.

Anmärkning: Härledning av ovanstående formel finns i slutet av stencilen. VSTÅNDSERÄKNING I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkter Låt = x, och = x, y, z ) vara två punkter i rummet vstånet mellan och är x) + y y) + z ) = = x z ===================================================

Läs mer

Biomekanik, 5 poäng Jämviktslära

Biomekanik, 5 poäng Jämviktslära Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande

Läs mer

KOMPLETTERINGAR TILL FYSIK A FÖR TEKNIK/NATURVETENSKAPLIGA BASÅRET N 2. Juni 2006 NILS ALMQVIST

KOMPLETTERINGAR TILL FYSIK A FÖR TEKNIK/NATURVETENSKAPLIGA BASÅRET N 2. Juni 2006 NILS ALMQVIST KOMPLETTERINGAR TILL YSIK A ÖR TEKNIK/NATURVETENSKAPLIGA BASÅRET Mg N N Juni 006 NILS ALMQVIST INSTITUTIONEN ÖR TILLÄMPAD YSIK, MASKIN- OCH MATERIALTEKNIK örord Detta kompendium och bifogade laborationshandledningar

Läs mer

Inre krafters resultanter

Inre krafters resultanter KOMIHÅG 6: --------------------------------- Torr friktion: F " µn Normalkraftens angrepp?? Risk för glidning eller stjälpning ---------------------------------- Föreläsning 7: Inre krafters resultanter

Läs mer

M12 Mekanikens grunder Steg 2 Krafter och moment

M12 Mekanikens grunder Steg 2 Krafter och moment M12 Mekanikens grunder Steg 2 Krafter och moment Namn: Kurs: Datum: Lektion 1: 2 Mekanikens grunder Kraft Exempel 1 Ex. 1 Rymdfärjan Columbus har just placerat ut den sista satelliten för denna gång och

Läs mer

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande

Läs mer

KRAFTER. Peter Gustavsson Per-Erik Austrell

KRAFTER. Peter Gustavsson Per-Erik Austrell KRATER Peter Gustavsson Per-Erik Austrell örord Denna skrift har tagits fram för att utgöra kurslitteratur i kursen Mekanik för Industri Design vid Lunds Tekniska Högskola. Skriften börjar med en introduktion

Läs mer

. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt:

. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt: KOMIHÅG 19: ------------------------------------------------------ Dämpade vibrationer: Fria fallet Kritisk dämpningsrörelse x(t) = e "# nt ( B + Ct) + x j Svag dämpningsrörelse x(t) = e "#$ nt ( Bcos(

Läs mer

Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar.

Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar. öreläsning 2,dynamik Partikeldynamik handlar om hur krafter påverkar partiklar. Exempel ges på olika typer av krafter, dessa kan delas in i mikroskopiska och makroskopiska. De makroskopiska krafterna kan

Läs mer

Exempel på hur man ställer upp den styrande differentialekvationen.

Exempel på hur man ställer upp den styrande differentialekvationen. inköpings tekniska högskola Mekanik Dynamik 214-2-21 IEI/Mekanik Ulf Elun Svängningsproblem Eempel på hur man ställer upp en styrane ifferentialekvationen. Betrakta följane system beståene av en partikel

Läs mer

" e n och Newtons 2:a lag

 e n och Newtons 2:a lag KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar

Läs mer

FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06

FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06 FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06 JONAS ELIASSON Detta är föreläsningsanteckningar för istanskursen Matematik A - analyselen vi Uppsala universitet höstterminen 2006. 1. Derivata I grunläggane analys

Läs mer

3 Fackverk. Stabil Instabil Stabil. Figur 3.2 Jämviktskrav för ett fackverk

3 Fackverk. Stabil Instabil Stabil. Figur 3.2 Jämviktskrav för ett fackverk 3 Fackverk 3.1 Inledning En struktur som består av ett antal stänger eller balkar och som kopplats ihop med mer eller mindre ledade knutpunkter kallas för fackverk. Exempel på fackverkskonstruktioner är

Läs mer

Grundläggande om krafter och kraftmoment

Grundläggande om krafter och kraftmoment Grundläggande om krafter och kraftmoment Text: Nikodemus Karlsson Original character art by Esa Holopainen, http://www.verikoirat.com/ Krafter - egenskaper och definition Vardaglig betydelse Har med påverkan

Läs mer

Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik

Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Fredagen den 25 oktober 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Översikt Kursintroduktion Kursens syfte och mål Kursprogram Upprop Inledande föreläsning Föreläsning: Kapitel 1. Introduktion till statik Kapitel 2. Att räkna med krafter

Läs mer

KVALIFICERINGS- OCH LAGTÄVLING

KVALIFICERINGS- OCH LAGTÄVLING KALIFICEINGS- OCH LAGTÄLING SKOLONAS FYSIKTÄLING 9 feruari 1995 SENSKA DAGBLADET SENSKA FYSIKESAMFUNDET LÖSNINGSFÖSLAG 1. För att upphetta 1 kg vatten från 0 C till 100 C åtgår en energi av 4, 10 1 80

Läs mer

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION 1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen

Läs mer

MOMENT. 6.1 Inledning. 6.3 Kraftmoment. Rörelsemängdsmomentet L för en partikel. Rörelsemängdsmoment 6 1

MOMENT. 6.1 Inledning. 6.3 Kraftmoment. Rörelsemängdsmomentet L för en partikel. Rörelsemängdsmoment 6 1 Rörelsemängsmoment 6 6 RÖRELSEMÄNGDS- MOMENT 6. Inlening En speciell typ av partikelsystem är s k stela kroppar. En stel kropp kännetecknas av att en har fix form, avstånet mellan två goyckliga punkter

Läs mer

S T E FA N B. L I N D S T R Ö M F Ö R E L Ä S N I N G A R I S TAT I K

S T E FA N B. L I N D S T R Ö M F Ö R E L Ä S N I N G A R I S TAT I K S T E FA N B. L I N D S T R Ö M F Ö R E L Ä S N I N G A R I S TAT I K Föreläsningar i statik Lindström, Stefan B. Copyright c 2013 Stefan B. Lindström Publicerad av Stefan Lindström, Linköping. https://sites.google.com/site/lindstroemepublicering

Läs mer

2013-09-03. Välkomna till Högskoleingenjörsprogrammet i byggteknik. Annika Moström Universitetslektor i byggteknik. Ingenjör.

2013-09-03. Välkomna till Högskoleingenjörsprogrammet i byggteknik. Annika Moström Universitetslektor i byggteknik. Ingenjör. Välkomna till Högskoleingenjörsprogrammet i byggteknik Annika Moström Universitetslektor i byggteknik 3 Ingenjör Latinets ingénieur - uppfinning, krigsmaskin även handhavare av kastmaskin Teoretiskt och

Läs mer

NEWTONS 3 LAGAR för partiklar

NEWTONS 3 LAGAR för partiklar wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir

Läs mer

October 9, Innehållsregister

October 9, Innehållsregister October 9, 017 Innehållsregister 1 Vektorer 1 1.1 Geometrisk vektor............................... 1 1. Vektor och koordinatsystem.......................... 1 1.3 Skalär produkt (dot eller inner product)...................

Läs mer

" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar

 e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 2005-08-25 Tentamen i Mekanik 5C1107, baskurs S2. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. h 2a roblemtentamen En homogen låda står på ett strävt horisontellt plan och

Läs mer

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2# n KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------

Läs mer

Definitioner: hastighet : v = dr dt = r fart : v = v

Definitioner: hastighet : v = dr dt = r fart : v = v KOMIHÅG 8: --------------------------------- Jämvikten kan rubbas: stjälpning, glidning Flexibla system- jämvikt bara i jämviktslägen ---------------------------------- Föreläsning 9: PARTIKELKINEMATIK

Läs mer

Modul 2 Mål och Sammanfattning

Modul 2 Mål och Sammanfattning Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Moul 2 Mål och Sammanfattning Derivata. 1. MÅL FÖR MODUL 2 Förstå och använa erivatans efinition Förstå och använa erivata

Läs mer

Bo E. Sernelius Funktioner av Komplex Variabel 15 KOMPLEXVÄRDA FUNKTIONER AV KOMPLEX VARIABEL

Bo E. Sernelius Funktioner av Komplex Variabel 15 KOMPLEXVÄRDA FUNKTIONER AV KOMPLEX VARIABEL Bo E. Sernelius Funktioner av Komplex Variabel 5 KOMPLEXVÄRDA FUNKTIONER AV KOMPLEX VARIABEL I etta kapitel efinierar vi en komplexvär funktion av en komplex variabel, ess erivata, begreppet analytiska

Läs mer

9.2 Kinetik Allmän plan rörelse Ledningar

9.2 Kinetik Allmän plan rörelse Ledningar 9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,

Läs mer

Rapport LUTFD2/TFHF-3089/1-16/(2013) Föreläsningsexempel i Teknisk mekanik

Rapport LUTFD2/TFHF-3089/1-16/(2013) Föreläsningsexempel i Teknisk mekanik Rapport LUTFD2/TFHF-3089/1-16/(2013) Föreläsningsexempel i Teknisk mekanik Håkan Hallberg vd. för Hållfasthetslära Lunds Universitet December 2013 Exempel 1 Två krafter,f 1 och F 2, verkar enligt figuren.

Läs mer

K-uppgifter Strukturmekanik/Materialmekanik

K-uppgifter Strukturmekanik/Materialmekanik K-uppgifter Strukturmekanik/Materialmekanik K 1 Bestäm resultanten till de båda krafterna. Ange storlek och vinkel i förhållande till x-axeln. y 4N 7N x K 2 Bestäm kraftens komposanter längs x- och y-axeln.

Läs mer

/ ^'u*/ Vridmoment. Extrauppgifter. version 0.11 [131110]

/ ^'u*/ Vridmoment. Extrauppgifter. version 0.11 [131110] Extrauppgifter Vridmoment version 0.11 [131110] Christian Karlsson Uppgiterna 4.29 4.32 tar upp några saker som boken inte tar upp och bör göras med extra mycket eftertanke. Uppgifterna 4.33 4.40 är blandade

Läs mer

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet

Läs mer

Föreläsning 17: Jämviktsläge för flexibla system

Föreläsning 17: Jämviktsläge för flexibla system 1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla

Läs mer

9.1 Kinetik Rotation kring fix axel Ledningar

9.1 Kinetik Rotation kring fix axel Ledningar 9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn

Läs mer

Repetition Mekanik, grundkurs

Repetition Mekanik, grundkurs Repetition Mekanik, grundkurs Kraft är en vektor och beskrivs med storlek riktning och angreppspunkt F= Fe + F e + Fe x x y y z z Kraften kan flytta längs sin verkninglinje Addera krafter Moment i planet

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller LEDNINR TILL ROBLEM I KITEL 4 L 4. Kroppen har en rotationshastighet. Kulan beskriver en cirkelrörelse. För ren rotation gäller v = r v = 5be O t Eftersom och r O är vinkelräta bestäms storleken av kryssprodukten

Läs mer

S T E FA N B. L I N D S T R Ö M U P P L A G A 2 β F Ö R E L Ä S N I N G A R I S TAT I K

S T E FA N B. L I N D S T R Ö M U P P L A G A 2 β F Ö R E L Ä S N I N G A R I S TAT I K S T E FA N B. L I N D S T R Ö M U L A G A 2 β F Ö R E L Ä S N I N G A R I S TAT I K Föreläsningar i statik Stefan B. Lindström upplaga 2 β Copyright c 2016 Stefan B. Lindström ublicerad av Stefan Lindström,

Läs mer

S TAT I K O C H D Y N A M I K

S TAT I K O C H D Y N A M I K S T E FA N B. L I N D S T R Ö M U P P L A G A 1 F Ö R E L Ä S N I N G A R I M E K A N I K S TAT I K O C H D Y N A M I K Statik och dynamik Stefan B. Lindström upplaga 1 ISBN 978-91-981287-2-7 Copyright

Läs mer

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall,

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall, Huvudspänningar oc uvudspänningsriktningar n från: Huvudtöjningar oc uvudtöjningsriktningar n från: (S I)n = 0 ) det(s I) =0 ösningsskisser till där S är spänningsmatrisen Tentamen 0i Hållfastetslära för

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 006-08-8 Tentaen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen Ett glatt hoogent klot ed assan vilar ot två plana, hårda och glatta

Läs mer

S TAT I K O C H PA R T I K E L D Y N A M I K

S TAT I K O C H PA R T I K E L D Y N A M I K S T E FA N B. L I N D S T R Ö M U P P L A G A 2 - β F Ö R E L Ä S N I N G A R I M E K A N I K S TAT I K O C H PA R T I K E L D Y N A M I K Föreläsningar i mekanik: Statik och partikeldynamik Lindström,

Läs mer

19.4 Bohrs modell för väteatomen.

19.4 Bohrs modell för väteatomen. Den moerna fysikens gruner - Föreläsning 7 42 9.4 Bohrs moell för väteatomen. Som vi sett är en totala energin för elektronen i väteatomen E = 2 mv2 = e2 8πɛ 0 r. Eftersom L = mvr för cirkulära banor så

Läs mer

S TAT I K O C H PA R T I K E L D Y N A M I K

S TAT I K O C H PA R T I K E L D Y N A M I K S T E FA N B. L I N D S T R Ö M U P P L A G A 2 - β F Ö R E L Ä S N I N G A R I M E K A N I K S TAT I K O C H PA R T I K E L D Y N A M I K Föreläsningar i mekanik: Statik och partikeldynamik Lindström,

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den

Läs mer

En bijektion mellan två mängder A och B som har ändligt antal element kan finnas endast om mängderna har samma antal element.

En bijektion mellan två mängder A och B som har ändligt antal element kan finnas endast om mängderna har samma antal element. Inversa unktion BIJEKTION, INJEKTION, SURJEKTION Allmän terminologi I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs en unktion : A B Vi har otast

Läs mer

Vektoriella storheter är storheter med både värde och riktning. t.ex. hastighet och kraft

Vektoriella storheter är storheter med både värde och riktning. t.ex. hastighet och kraft Skalära och vektoriella storheter Vektoriella storheter är storheter med både värde och riktning. t.ex. hastighet och kraft Skalära storheter är storheter med enbart värde. t.ex. tid och temperatur Skalära

Läs mer

Lösningar Kap 11 Kraft och rörelse

Lösningar Kap 11 Kraft och rörelse Lösningar Kap 11 Kraft och rörelse Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik 1 Heureka: kapitel 11 11.1.-11.2 Se facit eller figurerna nedan. 1 11.3 Titta på figuren. Dra linjer parallella

Läs mer

Tentamen i Mekanik Statik

Tentamen i Mekanik Statik Tentamen i Mekanik Statik TMME63 2015-08-29, kl 14.00-18.00 Tentamenskod: TEN1 Tentasal: TER1, TERE Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna ca 15.00) Kursadministratör:

Läs mer

===================================================

=================================================== min Halilovic: EXTR ÖVNINGR 1 av 8 vstånsbeäkning VSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkte Låt = ( x1, och B = ( x, y, z) vaa två punkte i ummet

Läs mer

6.2 Partikelns kinetik - Tillämpningar Ledningar

6.2 Partikelns kinetik - Tillämpningar Ledningar 6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste

Läs mer

Lektion 1. Kurvor i planet och i rummet

Lektion 1. Kurvor i planet och i rummet Lektion 1 Kurvor i planet och i rummet Innehål Plankurvor Rymdkurvor Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation

Läs mer

Tentamen i Värmetransporter (4A1601)

Tentamen i Värmetransporter (4A1601) Tentamen i Värmetransporter (4A1601) 2005-12-15, kl. 14.00 19.00 Hjälpmeel: Uppgift 1-7: Inga hjälpmeel (enast papper och penna, ej räknare). Uppgift 8-10: Lärobok (Holman), formelsamling (Granry), räknare,

Läs mer

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 7 januari 0 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG. (a) Falltiden fås ur (positiv riktning nedåt) s v 0 t + at t s 0 a s,43 s. 9,8 (b) Välj origo

Läs mer

===================================================

=================================================== Amin Halilovic: EXTRA ÖVNINGAR 1 av 9 Avstånsbeäkning AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avstånet mellan två punkte Låt A = ( x1, och B = ( x, y, z ) vaa två punkte

Läs mer

LABORATION 4 DISPERSION

LABORATION 4 DISPERSION LABORATION 4 DISPERSION Personnummer Namn Laborationen gokän Datum Assistent Kungliga Tekniska högskolan BIOX (8) LABORATION 4 DISPERSION Att läsa i kursboken: si. 374-383, 4-45 Förbereelseuppgifter: Va

Läs mer

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP00, Fysikprogrammet termin 2 Tid: Plats: Ansvarig: Hjälpmedel: Lödag 29 maj 200, kl 8 30 3 30 V-huset Lennart Sjögren,

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Mekanik FK2002m. Kraft och rörelse I

Mekanik FK2002m. Kraft och rörelse I Mekanik FK2002m Föreläsning 4 Kraft och rörelse I 2013-09-05 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 4 Introduktion Hastighet Langt under 3x10 8 Nara : 3x10 8 Storlek 10 9 Langt over : 10 9 Klassisk

Läs mer

Numerisk kollision av stela kroppar

Numerisk kollision av stela kroppar Naturlagar i cberrmen VT 2006 Lektion 5 Numerisk kollision av stela kroppar Martin Servin Institutionen för fsik Umeå universitet -Look what happens to the ERTHLING when I remove his coffein an make some

Läs mer

Matrismetod för analys av stångbärverk

Matrismetod för analys av stångbärverk KTH Hållfasthetslära, J aleskog, September 010 1 Inledning Matrismetod för analys av stångbärverk Vid analys av stångbärverk är målet att bestämma belastningen i varje stång samt att beräkna deformationen

Läs mer

6.3 Partikelns kinetik - Härledda lagar Ledningar

6.3 Partikelns kinetik - Härledda lagar Ledningar 6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill

Läs mer

STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER

STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Armin Halilovic: EXTRA ÖVNINGAR, SF676 STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Innehåll Stabilitet för en kritisk punkt (grundbegrepp) Stabilitet för ett linjärt homogent system

Läs mer

Fysikum Kandidatprogrammet FK VT16 DEMONSTRATIONER ELEKTROSTATIK I

Fysikum Kandidatprogrammet FK VT16 DEMONSTRATIONER ELEKTROSTATIK I DEMONSTRATIONER ELEKTROSTATIK I Elektrisk influens Laning, kapacitans och spänning Urlaning Kraftverkan mellan konensatorplattor Uppatera en 9 november 15 Introuktion I litteraturen och framför allt på

Läs mer

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14 Tentamen i Fysik TEN 1: Tekniskt basår 009-04-14 1. En glaskolv med propp har volymen 550 ml. När glaskolven vägs har den massan 56, g. Därefter pumpas luften i glaskolven bort med en vakuumpump. Därefter

Läs mer

.I Minkowskis gitterpunktssats

.I Minkowskis gitterpunktssats 1.I Minkowskis gitterpunktssats Minkowskis sats klarar av en mängd problem inom den algebraiska talteorin och teorin för diofantiska ekvationer. en kan ses som en kontinuerlig, eller geometrisk, variant,

Läs mer

Lufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss.

Lufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Repetition, del II Lufttryck Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Med samma resonemang som för vätskor kommer vi fram till att lufttrycket på en viss yta ges av tyngden

Läs mer

MEKANIK KOMPENDIUM I FYSIK. Thomas Lundström. Avd för FYSIK Linnéuniversitetet TL jan 2007 Rev: CS mars 2010

MEKANIK KOMPENDIUM I FYSIK. Thomas Lundström. Avd för FYSIK Linnéuniversitetet TL jan 2007 Rev: CS mars 2010 Avd för FYSIK Linnéuniversitetet TL jan 2007 Rev: CS mars 2010 KOMPENDIUM I FYSIK MEKANIK Thomas Lundström Hämtat från The Physics Teacher 1997 The Variety of Learning Physics Innehållsförteckning: 1.

Läs mer

Sammanfattning Fysik A - Basåret

Sammanfattning Fysik A - Basåret Sammanfattning Fysik A - Basåret Martin Zelan, Insitutionen för fysik 6 december 2010 1 Inledning: mätningar, värdesiffror, tal, enheter mm 1.1 Värdesiffror Avrunda aldrig del uträkningar, utan vänta med

Läs mer

Kapitel 4 Arbete, energi och effekt

Kapitel 4 Arbete, energi och effekt Arbete När en kraft F verkar på ett föremål och föremålet flyttar sig sträckan s i kraftens riktning säger vi att kraften utför ett arbete på föremålet. W = F s Enheten blir W = F s = Nm = J (joule) (enheten

Läs mer

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11 Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd

Läs mer

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2"# n. x j,

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2# n. x j, KOMIHÅG 18: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = # n x j, 1 med konstanterna! n = k m och!" n = c m. ------------------------------------------------------

Läs mer

# o,too 26L 36o vq. Fy 1-mekaniken i sammandrag. 1 Rörelsebeskrivning (linjebunden rörelse) )-'f* 1.1 Hastighet och acceleration, allmänt

# o,too 26L 36o vq. Fy 1-mekaniken i sammandrag. 1 Rörelsebeskrivning (linjebunden rörelse) )-'f* 1.1 Hastighet och acceleration, allmänt Fy 1-mekaniken i sammandrag version 0.3 [140820] Christian Karlsson En del saker nedan tas inte upp i Fy 1-kursen, men är bra att med sig inför Fy 2. Dessa saker är markerade med [NYTT!]. 1 Rörelsebeskrivning

Läs mer

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25 Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMHL0, 009-03-13 kl LÖSNINGAR DEL 1 - (Teoridel utan hjälpmedel) 1. Du har en plattstav som utsätts för en

Läs mer

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel) ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem

Läs mer

Tentamen i Mekanik SG1130, baskurs. Problemtentamen

Tentamen i Mekanik SG1130, baskurs. Problemtentamen 013-03-14 Tentamen i Meani SG1130, basurs. OBS: Inga hjälpmedel förutom rit- och srivdon får användas KTH Meani 1. Problemtentamen En ub med massa m står lutad mot en vertial sträv vägg och med stöd på

Läs mer

Om ellipsen och hyperbelns optiska egenskaper

Om ellipsen och hyperbelns optiska egenskaper Om ellipsen och hyperbelns optiska egenskaper Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Ellipser och hyperbler är, liksom parabeln, s.k. kägelsnitt, dvs kurvor som uppkommer

Läs mer

τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j.

τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j. Föreläsning 4. 1 Eulers ekvationer i ska nu tillämpa Newtons andra lag på en materiell kontrollvolym i en fluid. Som bekant säger Newtons andra lag att tidsderivatan av kontrollvolymens rörelsemängd är

Läs mer

Stela kroppens plana rörelse; kinetik

Stela kroppens plana rörelse; kinetik Kap 9 Stela kroppens plana rörelse; kinetik 9.1 Rotation kring fix axel 9. b) Funktionen B sinωt + C cosω t kan skrivas som A sin(ω t + ϕ), där A = B 2 + C 2 9.6 Frilägg hjulet och armen var för sig. Normalkraften

Läs mer

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift Vecka ALA-c 6 Innehåll Linearization and Stability RÄKNEÖVNING VECKA. Uppgift 9........................................ Uppgift 9.5...................................... 5 Egenvärdesproblemet 9. Uppgift

Läs mer