Strömning och varmetransport/ varmeoverføring

Storlek: px
Starta visningen från sidan:

Download "Strömning och varmetransport/ varmeoverføring"

Transkript

1 Lektion 7: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Reynolds tal är ett dimensionslöst tal som beskriver flödesegenskaperna hos en fluid. Ett lågt värde på Reynolds tal (värden mindre än 2300) kallas ett laminärt flöde och beskriver en låg hastighet på flödet. Turbulent flöde beskrivs av Reynolds tal högre än 2300 och har hög hastighet. Ragnhild E. Aune 1

2 Värmetransport i form av konvetion Vad som händer i ett material då värme transporteras genom materialet har redan behandlats (värmetransport i fasta kroppar och stillastående fluider konduktiv värmeöverförning). I många fall kommer fasta material (kroppar) att avkylas/ uppvärmas av en omgivande fluid i rörelse. Denna typ av värmetransport benämnas konvektiv värmeöverförning. Värmeöverföring mellan två olika faser sker genom strömning. 2

3 Värmetransport i form av konvetion Den konvektiva värmeöverförningen antas ske genom ett tänkt gränsskikt mellan de två aktuella faserna. För att illustrera att värmeöverförningen antas ske genom ett tänkt gränsskikt mellan de två aktuella faserna studeras en horisontell plan platta av temperatur T 0 och en strömmande fluid av temperaturen T. 3

4 Värmetransport i form av konvetion Fluidens uppgift är att antingen värma/kyla plattan, och antas strömma över plattan från vänster till höger. 4

5 Värmetransport i form av konvetion Om en temperaturskillnad existerar mellan två faser kommer en viss värmeöverföring att ske mellan dessa faser (i detta fall mellan den horisontella plattan och den strömmande fluiden). Hastighetsgränsskikt Temperaturgränsskikt Som ett resultat av denna värmeöverförning kommer ett termiskt gränsskikt tillsammans med ett hastighetsgränsskikt att bildas ovanför plattan (det antas att all värmeöverföring sker i temperaturgränsskiktet). 5

6 Värmetransport i form av konvetion Gränsskiktets tjocklek kan i vissa enkla fall beräknas, men i verkligheten är det dock betydligt svårare att få fram ett värde. Temperaturen i gränsskiktet är inte konstant, och den sätts ofta till ett värde som representeras av medeltemperaturen mellan den fasta kroppen och fluiden. Hastighetsgränsskikt Temperaturgränsskikt 6

7 Värmetransport i form av konvetion Vid beräkning av den konvektiva värmeöverförningen görs först en indelning av hur fluiden har satts i rörelse: Naturlig konvektion, fri konvektion eller egenkonvektion Fluidens rörelse uppkommer till följd av olikhet i densitet mellan de två betraktade medierna. Denna densitetsskillnad uppkommer i sin tur till följd av den temperaturdifferens som existerar mellan de två medierna. Påtvingad konvektion eller forserad konvektion Fluidens rörelse åstadkommes av yttre påverkan såsom pumpar, fläktar, vind etc. 7

8 Dimensionslösa tal Det är extremt svårt att lösa de ekvationer som beskriver den konvektiva värmetransporten. Den konvektiva värmeövergången studerats därför ofta experimentellt och resultaten återgivits i form av empiriska ekvationer (vilka innehåller dimensionslösa grupper). Fördelen med att använda dimensionslösa grupper är att ett stort antal variabler kan kombineras till ett fåtal dimensionslösa tal. 8

9 Dimensionslösa tal mer ingående Kommer inte att krävas på examen (s.9 - s. 13) De flesta fenomen beror av många variabler och om man utan att göra begränsningar försöker att experimentellt analysera beroendet blir antalet mätningar och mängden resultat lätt oöverskådliga. En vätskas stighöjd i en kapillär berodde t.ex. av fem variabler. Utan reduktion av antalet variabler behövs fem experimentserier där var enskild variabel varieras med de övriga fixerade. 9

10 Dimensionslösa tal mer ingående Det kan ibland vara omöjligt att genomföra fem experimentellaserier med tillräcklig noggrannhet, och det ger alltid en svåröverskådlig mängd resultat. Genom en enkel dimensionsanalys reduceras både det experimentella arbetet och den följande analysen. Ett sätt att angripa ett problem med många variabler är att arrangera variablerna i dimensionslösa grupper. Antalet sådana grupper blir mindre än antalet ursprungliga variabler. Varje grupp betraktas sedan som en variabel. 10

11 Dimensionslösa tal - Exempel som illustrera tekniken r l Arean av en rät cirkulär kon: Konens yttre begränsningsyta är: A = π 2 + p rl Exemplet har tre variabler A, r och l. Grafiskt, vilket är det mest överskådliga sättet att framställa ett experimentellt resultat, kan arean framställas som en kurvfamilj enligt följande figurer: 11

12 Dimensionslösa tal - Exempel som illustrera tekniken Om man "avdimensionerar" sambandet mellan A, r och l t.ex genom division med p r 2 (eller p r l, r l, l 2, A) blir sambandet: eller A / ( π r 2 ) = 1 + l / r A / (π r l) = r / l + 1 Grafiskt kan det framställas: 12

13 Dimensionslösa tal - Exempel som illustrera tekniken Kurvfamiljen har ersatts med en enda rät linje som kan beskriva alla typer av koner. Känner man l och r kan l/r beräknas och A/π r 2 avläsas därefter kan A beräknas. Observera också att alla koner med samma kvot l/r representeras av samma punkt på den räta linjen. För att det skall vara en kon så måste l vara större än r l/r varierar mellan 1 och oändligheten för olika koner medan r/l varierar mellan 0 och 1 för att täcka olika koner. 13

14 Dimensionslösa tal Reynoldstal (Re) beskriver förhållandet mellan inerta och viskösa krafter i ett system vid påtvingad konvektion, d.v.s. Re bestämmer om flödet är laminärt eller turbulent. Nusseltstal (Nu) beskriver förhållandet mellan konduktion och konvektion i en fluid. Nusselstal är en funktion av värmeöverförningstalet h. Prandtls tal (Pr) beskriver förhållandet mellan transporttermen för kinetisk energi respektive värme, d.v.s. Pr beskriver om hastighetsgränsskiktet är större än det termiska gränsskiktet. Grashofs tal (Gr) motsvarar Re för naturlig konvektion. 14

15 Reynoldstal (Re) Enligt Reynolds likformighetslag beror strömningsfältets utseende enbart på Reynoldstal, vilket även innebär att strömningar vid likformiga kroppar blir lika om Reynoldstal är lika. Reynoldstal förutsätter en påtvingad konvektion och ges av följande samband: Re = L u ρ μ där L = karakteristiska längd, t.ex. inner diametern i ett rör eller i en kanal, längden på en platta eller ytterrörets halva omkrets [m] u = genomsnittliga hastigheten i mediet [m/s] ρ = densitet [kg/m 3 ] μ = dynamisk viskositet [kg/m s] 15

16 Reynoldstal (Re) L u ρ m kg m s Re = Enhetsanalys: m = 1 3 μ s m kg Med hjälp av Raynoldstal kan det avgöras om den påtvingade strömningen är laminär eller turbulent. 16

17 Nusseltstal (Nu) Ett annat dimensionslöst tal som definierar temperaturfältet i det strömmande mediet kallas Nusselstal (Nu) och ges av följande samband: Nu h L = k där h = värmeövergångstalet [W/m 2 K] L = karakteristiska längd, t.ex. inner diametern i ett rör eller i en kanal, längden på en platta eller ytterrörets halva omkrets [m] k = värmeöverförningskoefficienten [W/m K] Enhetsanalysen ger: W m K m m K W 2 = 1 17

18 Prandtls tal (Pr) Prandtlstal (Pr) karakteriserar mediet som strömmar och ges av följande samband: Pr = C p k μ där C p = specifika värmekapacitet vid konstant tryck [J/kg K = W s/kg K] μ = dynamisk viskositet [kg/m s] k = värmeöverförningskoefficienten [W/m K] Enhetsanalysen ger: W s kg K kg m s m K W = 1 18

19 Prandtls tal (Pr) Prandtlstal kan även skrivas som följande: Pr = ν α där ν = kinematisk viskositet [m 2 /s] α = värmediffusiviteten [m 2 /s] Värmediffusiviteten är en mycket viktig parameter då det gäller icke-stationär värmeströmning och definieras av materialegenskaperna k, ρ och C p enligt följande: α = k ρ C p där k = värmeöverförningskoefficienten [W/m K] ρ = densitet [kg/m 3 ] C p = specifik värmekapacitet (för fluider (vätskor och gaser) skall C p användas) [J/kg K] 19

20 Viskositet Dynamisk viskositet är en fysikalisk egenskap hos vätskor och gaser som betecknar deras "tjockhet" eller interna motstånd mot flöden, och kan ses som ett mått på friktion i vätskor. Pr = C p k μ Kinematiska viskositeten anger hur snabbt en vätska sprider sig i förhållande till sin massa om den hälls ut på en plan yta. Pr = ν α 20

21 Grashofs tal (Gr) Grashoftal definierar strömningsfältet vid naturlig konvektion där temperaturdifferensen mellan mediet och ytan ger upphov till en strömning som grundar sig i Archimedes princip (ett lättare media lägger sig ovanför ett tyngre media). Grashoftal ges av följande samband: L Gr = där L = karakteristiska längd [m] ρ = densitet [kg/m 3 ] g = jordgravidationen (9.81 [m/s 2 ]) 3 ρ 2 g β ΔT 2 μ β = volymutvidgningskoefficient [1/K] ΔT = temperaturdifferensen mellan mediet och den betraktade formationen [K] μ = dynamisk viskositet [kg/m s] 21

22 22 Grashofs tal (Gr) T g L Gr μ Δ β ρ = Enhetsanalys: 1 kg s m K K 1 s m m kg m = Man kan lätt förvissa sig om att Grashofstal är dimensionslöst eftersom det är uppbyggt som ett Reynolds tal i kvadrat där man i stället för den genomsnittliga hastigheten i mediet (u) ireynoldstal använder tyngdkraftens arbete (L g β ΔT) igrashofstal T g L u T g L u L u T g L Re Gr μ Δ β ρ = Δ β μ ρ = Δ β =

23 Sammanfattning Dimensionslösa tal En dimensionslös storhet är en skalär storhet som saknar enhet och därför är ett rent tal. Vanligtvis är ett dimensionslöst tal en kvot/produkt av andra storheter med dimension där enheterna tar ut varandra. 23

24 Sammanfattning Dimensionslösa tal Reynoldstal: Re = L u ρ μ OSBOURNE REYNOLDS Strömningskriterium vid påtvingad konvektion Nusseltstal: Nu = h L k WILHELM NUSSELT Temperaturfältskriterium Pr C Prandtltal: ; = p k μ Pr = ν α LUDWIG PRANDTL Mediekriterium Grashofstal: Gr = L 3 ρ 2 g β ΔT 2 μ FRANZ GRASHOF Drivkraftkriterium vid naturlig konvektion 24

25 Frågor? 25

26 Formelsamling Dimentionslösa tal Följande samband är tillgängliga i formelsamlingen: 26

27 Rayleighs tal (Ra) I strömningsmekaniken är Rayleighs tal ett dimensionslöst tal som beskriver övergången mellan konduktion och konvektion vid naturlig konvektion. Under ett visst kritiskt värde på Rayleights tal så är värmeöverföringen främst i form av konduktion, när det överstiger det kritiska värdet är värmeöverföringen främst i form av konvektion (det kritiska värdet beror på den aktuella geometrien som beaktas). LORD RAYLEIGH Ra = Gr Pr 27

28 Rayleighs tal (Ra) Ra = Gr Pr = L 3 g β ΔT ν α där L = karakteristiska längd [m] g = jordgravidationen [m/s 2 ] β = volymutvidgningskoefficient [1/K] ΔT = temperaturdifferensen [K] ν = kinematisk viskositet [m 2 /s] α = värmediffusiviteten [m 2 /s] LORD RAYLEIGH m 1 s s Enhetsanalys: m K = s K m m 28

29 Biots tal (Bi) Biots tal är ett dimensionslöst tal som används vid icke-stationär värmeledning från ytan på ett fast material och ut i den omgivande fluiden. JEAN BAPTISTE BIOT Bi = h L k där h = värmeövergångstalet [W/m 2 K] L = karakteristiska längd [m] k = värmeöverförningskoefficienten [W/m K] Enhetsanalysen ger: W m K m m K W 2 = 1 29

30 Skillnaden - Nusseltstal (Nu) och Biots tal (Bi) Nu = h L k Bi = h L k Både Nusselts tal och Biots tal har samma form. Vad är skillnaden på dem m.a.p. deras fysikaliska betydelse? Biots tal är ett mått på förhållandet mellan temperaturminskningen i det fasta materialet, och i det fasta materialet och fluiden (i gränsskiktet). Nusselts tal beskriver temperaturgradienten på ytan mellan fluiden och det fasta materialet är ett mått på konvektionen från ytan. 30

31 Frågor? 31

32 Värmeövergång vid påtvingad konvektion För geometriskt likformiga system ger grundekvationerna som beskriver temperatur- och hastighetsfältet vid påtvingad konvektion att temperaturfältet kan uttryckas som en funktion av de två storheterna Reynolds tal (Re) och Prandtls tal (Pr). Det värmeövergångstal som är förknippat med temperaturfältet kring en yta kan således beskrivas med ett funktionssamband av typen: Nu = f(re, Pr) där funktionen gäller för alla geometriskt likformiga system. 32

33 Värmeövergång vid naturlig konvektion Vid naturlig konvektion modifieras likformighetslagarna för påtvingad konvektion (Nu = f(re,pr)) så att strömningssättet lämpligen kan karakteriseras med hjälp av Grashofs tal (Gr). Vid naturlig konvektion gäller således att värmeövergången kan beskrivas med ett funktionssamband av typen: Nu = f(gr, Pr) där funktionen gäller för alla geometriskt likformiga system. Den väsentligaste skillnaden i mekanismen mellan värmeövergång vid naturlig konvektion och vid påtvingad konvektion är att drivkraften för strömningen är olika. 33

34 Värmeövergång vid påtvungen/naturlig konvektion Likformighetslagarna Vid fullständig likformighet kan alla variabler i ett strömningsfall sättas i direkt samband med motsvarande variabler i ett annat strömningsfall. Både geometrisk likformighet (samma geometriska form och vinklar gentemot omgivningen t.ex. tyngdkraftsfältet, strömningsriktning) och dynamisk likformighet (samma utseende på kraftpolygoner i homologa punkter vid homologa tider) krävs. 34

35 Beräkning av Nusselts tal Om en yta har 0.1 C övertemperatur kan ett vist medium strömma laminärt förbi ytan, men om övertemperaturen är 200 C blir strömningen turbulent trots att det i båda fallen rör sig om naturlig konvektion. Det har visats att vid naturlig/påtvingad konvektion gäller följande två likformighetslagar: Naturlig konvektion: Nu = f(gr, Pr) Påtvingad konvektion: Nu = f(re, Pr) Med utgångspunkt i detta har man teoretiskt och experimentellt fastställt samband för Nusselts tal för olika geometrier. 35

36 Formler för beräkning av Nusselts tal Några samband som gäller för påtvingad konvektion (turbulent då Re > 2300): 36

37 Formler för beräkning av Nusselts tal Några samband som gäller för naturlig konvektion (turbulent då (Gr Pr > 10 9 ): 37

38 Formler för beräkning av Nusselts tal Några approximativa formler som KUNN skall användas då inga andra formler passar den aktuella geometrin: Sambanden kan finnas i ett flertal olika varianter för en och samma geometri. 38

39 Beräkning av värmeövergångstalet Eftersom värmeövergångstalet ingår i ekvationen för Nusselts tal inses att: h = Nu k L Värmeöverförningstalet kan beräknas med hjälp av dimensionslösa tal enligt beräkningsgången 1-7 (se nästa sida) 39

40 Beräkningsgång för värmeövergångstalet 1) Bestäm vilken geometri som beskriver ditt system på bästa möjliga sätt. 2) Beräkna medeltemperaturen för systemet och ta fram nödvendig information om det aktuella materialet och/eller fluiden vid denna temperatur (använd formelsamlingen). 3) Avgöra om det är påtvingad eller naturlig konvektion. 4) Beräkna om det är turbulent eller laminärt flöde (påtvingad konvektion med hjälp av Re och naturlig konvektion med hjälp av Gr Pr) 5) Gå in i formelsamlingen på rätt geometri och hämta ekvationen för Nu 6) Beräkna Nu (för påtvingad konvektion är Nu = f(re,pr) och för naturlig konvektion är Nu = f(gr,pr)) 7) Beräkna h 40

41 Flödesschema för beräkning av värmeövergångstalet h vid naturligoch påtvingad konvektion. Påtvingad konvektion Medium, geometri, temperatur Re Pr Konvektion Naturlig konvektion Medium, geometri, temperatur Pr Gr Laminär strömning Turbulent strömning Laminär strömning Turbulent strömning Geometri Geometri h L h L Nu = = f (Re, Pr) Nu = = f ( Gr, Pr) k k Värmeövergångskoefficient (h) 41

42 Värmeövergång vid naturlig/påtvingad konvektion Övning 9 En tunn plåt kyls i ett vattenbad genom att sänkas lodrätt ned i det. Beräkna vilken lufthastighet som behövs för att få samma kyleffekt med luft som med vattenbadet. T vatten = 20 C, T luft =0 C, T plåt = 80 C, x vatten =0.4m. Svar: u = 405 m/s 42

43 Värmeövergång vid naturlig/påtvingad konvektion Övning 10 Ett värmeväxlarrör har diametern 5 cm och längden 1 m. Yttemperaturen är 90 C. Röret är placerat i ett strömmande vattenbad vars temperatur är 30 C och strömningshastighet 2 m/s. Röret kan placeras på två sätt, tvärs eller parallellt med strömriktningen. Beräkna kvoten mellan värmeövergångstalen för de båda placeringarna. Svar: h 1 /h 0 =1.4 43

44 Värmeövergång vid naturlig/påtvingad konvektion Övning 11 Hur kyler man en pilsner på bästa sätt? Jämför kylning i en hink och en kylväska. Beräkna kyleffekten P för de olika fallen och beräkna kvoten q vatten /q kylvaska. Burkens diameter är 65 mm och höjd 165 mm. Burken står upp och påverkas inte av andra burkar. T burk = 22 C, T kyl =-2 C, T vatten =8 C. Svar: q vatten /q kylvaska =

45 Formler för beräkning av Nusselts tal Några samband som gäller för påtvingad konvektion (turbulent då Re > 2300): 45

46 Formler för beräkning av Nusselts tal Några samband som gäller för naturlig konvektion (turbulent då (Gr Pr > 10 9 ): 46

47 Formler för beräkning av Nusselts tal Några approximativa formler som KUNN skall användas då inga andra formler passar den aktuella geometrin: 47

48 Frågor? 48

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 2: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Metaller är kända för att kunna leda värme, samt att överföra värme från en hög temperatur till en lägre. En kombination

Läs mer

PTG 2015 Övning 4. Problem 1

PTG 2015 Övning 4. Problem 1 PTG 015 Övning 4 1 Problem 1 En frys avger 10 W värme till ett rum vars temperatur är C. Frysens temperatur är 3 C. En isbricka som innehåller 0,5 kg flytande vatten vid 0 C placeras i frysen där den fryser

Läs mer

Värmeöverföringens mysterier (1)

Värmeöverföringens mysterier (1) Värmeöverföringens mysterier (1) av professor Dan Loyd, LiTH i samarbete med Pentronic 1998-2001 De engelska komikerna Michael Flanders och Donald Swahn har tonsatt termodynamikens lagar. En del av sången

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16

CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16 CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg TME055 Strömningsmekanik 2015-01-16 Tentamen fredagen den 16 januari 2015 kl 14:00-18:00 Ansvarig lärare: Henrik Ström Ansvarig lärare besöker

Läs mer

Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta

Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta TENTAMEN I FYSIK FÖR V1, 18 AUGUSTI 2011 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR

DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR DIMENSIONSANALYS Dimensionsanalys är en metod att reducera antalet variabler (och därmed komplexiteten) i ett givet problem. Ger möjlighet att uttrycka teoretiska

Läs mer

Tentamen i Värmetransporter (4A1601)

Tentamen i Värmetransporter (4A1601) Tentamen i Värmetransporter (4A1601) 2005-12-15, kl. 14.00 19.00 Hjälpmeel: Uppgift 1-7: Inga hjälpmeel (enast papper och penna, ej räknare). Uppgift 8-10: Lärobok (Holman), formelsamling (Granry), räknare,

Läs mer

Kan hagel bli hur stora som helst?

Kan hagel bli hur stora som helst? Lennart.wern@smhi.se 2010-03-12 Kan hagel bli hur stora som helst? Det dök upp ett ärende här på vår avdelning "Information och Statistik" på SMHI angående ett hagel som skulle ha vägt 600 gram och fallit

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 10: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Värmestrålning är en av de kritiska komponent vid värmeöverföring i en rad olika förbränningsprocesser. Ragnhild

Läs mer

HYDRAULIK (ej hydrostatik) Sammanfattning

HYDRAULIK (ej hydrostatik) Sammanfattning HYDRAULIK (ej hydrostatik) Sammanfattning Rolf Larsson, Tekn Vattenresurslära För VVR145, 4 maj, 2016 NASA/ Astronaut Photography of Earth - Quick View VVR145 Vatten/ Hydraulik sammmanfattning 4 maj 2016

Läs mer

p + ρv ρgz = konst. [z uppåt] Speciellt försumbara effekter av gravitation (alt. horisontellt):

p + ρv ρgz = konst. [z uppåt] Speciellt försumbara effekter av gravitation (alt. horisontellt): BERNOULLIS EKVATION Vid inkompressibel, stationär strömning längs strömlinjer samt längs röravsnitt med homogena förhållanden över tvärsnitt, vid försumbara effekter av friktion, gäller Bernoullis ekvation:

Läs mer

Planering Fysik för V, ht-11, lp 2

Planering Fysik för V, ht-11, lp 2 Planering Fysik för V, ht-11, lp 2 Kurslitteratur: Häfte: Experimentell metodik, Kurslaboratoriet 2011, Fysik i vätskor och gaser, Göran Jönsson, Teach Support 2010 samt föreläsningsanteckningar i Ellära,

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 9: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Värme kan överföras från en kropp till en annan genom strålning (värmestrålning). Det är därför vi kan känna solens

Läs mer

Varje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren för kontroll.

Varje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren för kontroll. Strömning Förberedelser Läs i "Fysik i vätskor och gaser" om strömmande gaser och vätskor (sid 141-160). Titta därefter genom utförandedelen på laborationen så att du vet vilka moment som ingår. Om du

Läs mer

Vingprofiler. Ulf Ringertz. Grundläggande begrepp Definition och geometri Viktiga egenskaper Numeriska metoder Vindtunnelprov Framtid

Vingprofiler. Ulf Ringertz. Grundläggande begrepp Definition och geometri Viktiga egenskaper Numeriska metoder Vindtunnelprov Framtid Vingprofiler Ulf Ringertz Grundläggande begrepp Definition och geometri Viktiga egenskaper Numeriska metoder Vindtunnelprov Framtid Vingprofiler Korda Tjocklek Medellinje Läge max tjocklek Roder? Lyftkraft,

Läs mer

MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter

MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter TERMODYNAMIK MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter T1 En behållare med 45 kg vatten vid 95 C placeras i ett tätslutande, välisolerat rum med volymen 90 m 3 (stela väggar)

Läs mer

Om-Tentamen Inledande kurs i energiteknik 7,5hp. Lösningsförslag. Tid: , Kl Plats: Östra paviljongerna

Om-Tentamen Inledande kurs i energiteknik 7,5hp. Lösningsförslag. Tid: , Kl Plats: Östra paviljongerna UMEÅ UNIVERSITET Tillämpad Fysik & Elektronik A Åstrand Mohsen Soleimani-Mohseni 2014-11-15 Om-Tentamen Inledande kurs i energiteknik 7,5hp Lösningsförslag Tid: 141115, Kl. 09.00-15.00 Plats: Östra paviljongerna

Läs mer

Grundläggande aerodynamik, del 4

Grundläggande aerodynamik, del 4 Grundläggande aerodynamik, del 4 Gränsskiktet Definition/uppkomst Friktionsmotstånd Avlösning/stall Gränsskiktets inverkan på lyftkraften Gränsskiktskontroll Höglyftsanordningar 1 Bakgrund Den klassiska

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll. Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

Hur man förhindrar naturlig konvektion från att förorsaka extra värmeförlust och fuktproblem i tjocka isoleringslager

Hur man förhindrar naturlig konvektion från att förorsaka extra värmeförlust och fuktproblem i tjocka isoleringslager Hur man förhindrar naturlig konvektion från att förorsaka extra värmeförlust och fuktproblem i tjocka isoleringslager Sivert Uvsløkk 1,*, Hans Boye Skogstad 1, Steinar Grynning 1 1 SINTEF Byggforsk, Norge

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 1: Introduktion TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring All materia består av atomer och molekyler som ständigt vibrerar (fasta material) eller är i rörelse (vätskor och gaser).

Läs mer

T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på?

T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på? TENTAMEN I FYSIK FÖR V1, 11 JANUARI 2011 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

p + ρv ρgz = konst. Speciellt försumbara effekter av gravitation (alt. horisontellt): Om hastigheten ökar minskar trycket, och vice versa.

p + ρv ρgz = konst. Speciellt försumbara effekter av gravitation (alt. horisontellt): Om hastigheten ökar minskar trycket, och vice versa. BERNOULLIS EKVATION Vid inkompressibel, stationär strömning längs strömlinjer samt längs röravsnitt med homogena förhållanden över tvärsnitt, vid försumbara effekter av friktion, gäller Bernoullis ekvation:

Läs mer

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta

Läs mer

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

Observera att uppgifterna inte är ordnade efter svårighetsgrad! TENTAMEN I FYSIK FÖR V1, 14 DECEMBER 2010 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Kapitel 3. Standardatmosfären

Kapitel 3. Standardatmosfären Kapitel 3. Standardatmosfären Omfattning: Allmänt om atmosfären Standardatmosfären Syfte med standardatmosfären Definition av höjd Lite fysik ISA-tabeller Tryck-, temp.- och densitetshöjd jonas.palo@bredband.net

Läs mer

LEONARDO DA VINCI ( )

LEONARDO DA VINCI ( ) LEONARDO DA VINCI (1452 1519) En kropp som rör sig med en viss hastighet i stillastående luft erfar samma strömningsmotstånd som om kroppen vore stillastående och utsatt för en luftström med samma hastighet.

Läs mer

Sensorer, effektorer och fysik. Mätning av flöde, flödeshastighet, nivå och luftföroreningar

Sensorer, effektorer och fysik. Mätning av flöde, flödeshastighet, nivå och luftföroreningar Sensorer, effektorer och fysik Mätning av flöde, flödeshastighet, nivå och luftföroreningar Innehåll Volymetriska flödesmätare Strömningslära Obstruktionsmätare Mätning av massflöde Mätning av flödeshastighet

Läs mer

Energieffektivisering, Seminare 2 2010-02-05, verision 1. Tunga byggnader och termisk tröghet En energistudie

Energieffektivisering, Seminare 2 2010-02-05, verision 1. Tunga byggnader och termisk tröghet En energistudie Energieffektivisering, Seminare 2 2010-02-05, verision 1 Tunga byggnader och termisk tröghet En energistudie Robert Granström Marcus Hjelm Truls Langendahl robertgranstrom87@gmail.com hjelm.marcus@gmail.com

Läs mer

Kursprov i matematik, kurs E ht Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5

Kursprov i matematik, kurs E ht Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5 freeleaks NpMaE ht1997 för Ma4 1(6) Innehåll Förord 1 Kursprov i matematik, kurs E ht1997 2 Del I: Uppgifter utan miniräknare Del II: Uppgifter med miniräknare 5 Förord Kom ihåg Matematik är att vara tydlig

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 8: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Den gul-orange färgen i den smidda detaljen på bilden visar den synliga delen av den termiska strålningen. Värme

Läs mer

DELPROV 2/TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR OKTOBER 2003, 08:00-11:00 (Delprov), 08:00-13:00 (Tentamen)

DELPROV 2/TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR OKTOBER 2003, 08:00-11:00 (Delprov), 08:00-13:00 (Tentamen) Joakim Malm Teknisk Vattenresurslära LTH DELPROV /TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR0 4 OKTOBER 003, 08:00-:00 (Delprov), 08:00-3:00 (Tentamen) Tillåtna hjälpmedel: Kom ihåg: För samtliga uppgifter: Rättning:

Läs mer

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna. Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.

Läs mer

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2 Lina Rogström linro@ifm.liu.se Lösningar till tentamen 150407, Fysik 1 för Basåret, BFL101 Del A A1. (2p) Eva kör en bil med massan 1500 kg med den konstanta hastigheten 100 km/h. Längre fram på vägen

Läs mer

Laboration 6. Modell av energiförbrukningen i ett hus. Institutionen för Mikroelektronik och Informationsteknik, Okt 2004

Laboration 6. Modell av energiförbrukningen i ett hus. Institutionen för Mikroelektronik och Informationsteknik, Okt 2004 Laboration 6 Modell av energiförbrukningen i ett hus Institutionen för Mikroelektronik och Informationsteknik, Okt 2004 S. Helldén, E. Johansson, M. Göthelid 1 1 Inledning Under större delen av året är

Läs mer

12) Terminologi. Brandflöde. Medelbrandflöde. Brandskapat flöde avses den termiska expansionen av rumsvolymen per tidsenhet i rum där brand uppstått.

12) Terminologi. Brandflöde. Medelbrandflöde. Brandskapat flöde avses den termiska expansionen av rumsvolymen per tidsenhet i rum där brand uppstått. 12) Terminologi Brandflöde Brandskapat flöde avses den termiska expansionen av rumsvolymen per tidsenhet i rum där brand uppstått. Medelbrandflöde Ökningen av luftvolymen som skapas i brandrummet när rummet

Läs mer

Värmepump/kylmaskin vs. ventilationsaggregat

Värmepump/kylmaskin vs. ventilationsaggregat 2012-04-28 Värmepump/kylmaskin vs. ventilationsaggregat VX VX VX Rickard Berg 2 Innehåll Inledning 3 Värmepump 3 Värmepumps exempel 4 Ventilationsaggregat 4 Ventilations exempel 4 Fastighet exempel 5 Total

Läs mer

Grundläggande aerodynamik, del 6

Grundläggande aerodynamik, del 6 Grundläggande aerodynamik, del 6 Motstånd Laminära profiler Minskning av inducerat motstånd Förhållande mellan C D,0 och C D,i Höghastighetsströmning 1 Laminära profiler Enl. tidigare: Typen av gränsskikt

Läs mer

Experimentell metodik

Experimentell metodik Experimentell metodik Storheter, mätetal och enheter En fysikalisk storhet är en egenskap som kan mätas eller beräknas. En storhet är produkten av mätetal och enhet. Exempel 1: Elektronens massa är m =

Läs mer

WALLENBERGS FYSIKPRIS 2013

WALLENBERGS FYSIKPRIS 2013 WALLENBERGS FYSIKPRIS 2013 Tävlingsuppgifter (Kvalificeringstävlingen) Riv loss detta blad och häfta ihop det med de lösta tävlingsuppgifterna. Resten av detta uppgiftshäfte får du behålla. Fyll i uppgifterna

Läs mer

Linköpings Universitet 2010-12-14 IFM - Kemi Yt- och Kolloidkemi - NKEC21 NOP/Kontaktvinkel_10.doc. Lab. 1 Mätning av ytspänning och kontaktvinkel

Linköpings Universitet 2010-12-14 IFM - Kemi Yt- och Kolloidkemi - NKEC21 NOP/Kontaktvinkel_10.doc. Lab. 1 Mätning av ytspänning och kontaktvinkel Linköpings Universitet 2010-12-14 IFM - Kemi Yt- och Kolloidkemi - NKEC21 NOP/Kontaktvinkel_10.doc Lab. 1 Mätning av ytspänning och kontaktvinkel Mätning av ytspänning. Många olika metoder finns för att

Läs mer

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 5 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer

Läs mer

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j.

τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j. Föreläsning 4. 1 Eulers ekvationer i ska nu tillämpa Newtons andra lag på en materiell kontrollvolym i en fluid. Som bekant säger Newtons andra lag att tidsderivatan av kontrollvolymens rörelsemängd är

Läs mer

Appendix i instruktionen

Appendix i instruktionen Appendix i instruktionen Läs även Appendix A och Appendix B i instruktionerna till laboration 2 2010-10-05 Fysikexperiment, 7.5 hp 1 1 Linearisering genom logaritmering Ofta förekommer samband av typen:

Läs mer

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom

Läs mer

Teknisk beskrivning Primex Matilda, E

Teknisk beskrivning Primex Matilda, E Teknisk beskrivning Primex Matilda, E 2012-03 Vägghängd V1-R2 t. om V2-R2 Golvmonterad V2-R3 t. om V2-R4 (Nedre bilden visar central med termostatisk varmvattenreglering) 1 (9) Primex Matilda Allmänt:

Läs mer

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare

Läs mer

Aerodynamik. Swedish Paragliding Event november Ori Levin. Monarca Cup, Mexico, foto Ori Levin

Aerodynamik. Swedish Paragliding Event november Ori Levin. Monarca Cup, Mexico, foto Ori Levin Aerodynamik Swedish Paragliding Event 2008 1-2 november Ori Levin Monarca Cup, Mexico, foto Ori Levin Behöver man förstå hur man flyger för att kunna flyga? 2008-10-31 www.offground.se 2 Nej 2008-10-31

Läs mer

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14 Tentamen i Fysik TEN 1: Tekniskt basår 009-04-14 1. En glaskolv med propp har volymen 550 ml. När glaskolven vägs har den massan 56, g. Därefter pumpas luften i glaskolven bort med en vakuumpump. Därefter

Läs mer

6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105)

6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) 6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) Termodynamikens nollte huvudsats säger att temperaturskillnader utjämnas i isolerade system. Med andra ord strävar system efter termisk jämvikt

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

Värmeöverföring i bergvärmesystem

Värmeöverföring i bergvärmesystem UPTEC-ES12016 Examensarbete 30 hp Juni 2012 Värmeöverföring i bergvärmesystem En numerisk analys av den ringformade koaxiala borrhålsvärmeväxlaren Rasmus Westin Abstract Värmeöverföring i bergvärmesystem

Läs mer

MATEMATISKT BEVIS AV ANTAGANDEN I SPIRALFLÄKT RAPPORT AV Bengt-Olof Drugge

MATEMATISKT BEVIS AV ANTAGANDEN I SPIRALFLÄKT RAPPORT AV Bengt-Olof Drugge MATEMATISKT BEVIS AV ANTAGANDEN I SPIRALFLÄKT RAPPORT AV Bengt-Olof Drugge 1998-02-24 1 INLEDNING I rapporten Spiralfläkten (1993-03-28) så hänvisar jag till ett par antaganden för att konstruera Spiralfläktar.

Läs mer

8-1 Formler och uttryck. Namn:.

8-1 Formler och uttryck. Namn:. 8-1 Formler och uttryck. Namn:. Inledning Ibland vill du lösa lite mer komplexa problem. Till exempel: Kalle är dubbelt så gammal som Stina, och tillsammans är de 33 år. Hur gammal är Kalle och Stina?

Läs mer

Hydraulikcertifiering

Hydraulikcertifiering Grundkurs 1 Facit till Självtest sid. 1:5 UPPGIFT 1 Stryk under de påståenden som Du anser vara riktiga. (Flera alternativ kan vara rätt) a/ Flödet från en hydraulpump bestäms av: (ev förändring i volymetrisk

Läs mer

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära Tentamen Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära, miniräknare.

Läs mer

TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR120 8 JANUARI 2005, 08:00-13:00

TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR120 8 JANUARI 2005, 08:00-13:00 Joakim Malm Teknisk Vattenresurslära LTH TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR0 8 JANUARI 00, 08:00-:00 Tillåtna hjälpmedel: Kom ihåg: För samtliga uppgifter: Rättning: Betyg: Lärobok, föreläsningsanteckningar

Läs mer

Fysik. Laboration 1. Specifik värmekapacitet och glödlampas verkningsgrad

Fysik. Laboration 1. Specifik värmekapacitet och glödlampas verkningsgrad Fysik Laboration 1 Specifik värmekapacitet och glödlampas verkningsgrad Laborationens syfte: Visa hur man kan med enkla experimentella anordningar studera fysikaliska effekter och bestämma i) specifik

Läs mer

Studie av åtgärder för att öka värmefaktorn för bergvärme till en villa

Studie av åtgärder för att öka värmefaktorn för bergvärme till en villa Studie av åtgärder för att öka värmefaktorn för bergvärme till en villa Genom forcerad konvektion över värmekälla samt flödesoptimering i borrhålskrets Frida Andersson André Sahlsten Kandidatexamensarbete

Läs mer

Lösningar/svar till tentamen i MTM119 Hydromekanik Datum:

Lösningar/svar till tentamen i MTM119 Hydromekanik Datum: Lösningar/svar till tentamen i MTM9 Hydromekanik Datum: 005-03-8 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas

Läs mer

Grundläggande aerodynamik, del 5

Grundläggande aerodynamik, del 5 Grundläggande aerodynamik, del 5 Motstånd Totalmotstånd Formmotstånd Gränsskiktstypens inverkan på formmotstånd 1 Motstånd Ett flygplan som rör sig genom luften (gäller alla kroppar) skapar ett visst motstånd,

Läs mer

Prov Fysik 1 Värme, kraft och rörelse

Prov Fysik 1 Värme, kraft och rörelse Prov Fysik 1 Värme, kraft och rörelse För samtliga uppgifter krävs om inte annat står antingen en tydlig och klar motivering eller fullständig lösning och att det går att följa lösningsgången. Fråga 1:

Läs mer

- Rörfriktionskoefficient d - Diameter (m) g gravitation (9.82 m/s 2 ) 2 (Tryckform - Pa) (Total rörfriktionsförlust (m))

- Rörfriktionskoefficient d - Diameter (m) g gravitation (9.82 m/s 2 ) 2 (Tryckform - Pa) (Total rörfriktionsförlust (m)) Formelsamling för kurserna Grundläggande och Tillämpad Energiteknik Hydromekanik, pumpar och fläktar - Engångsförlust V - Volymflöde (m 3 /s) - Densitet (kg/m 3 ) c - Hastighet (m/s) p - Tryck (Pa) m Massa

Läs mer

1 Cirkulation och vorticitet

1 Cirkulation och vorticitet Föreläsning 7. 1 Cirkulation och vorticitet Ett mycket viktigt teorem i klassisk strömningsmekanik är Kelvins cirkulationsteorem, som man kan härleda från Eulers ekvationer. Teoremet gäller för en inviskös

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

Rapport av projektarbete Kylskåp

Rapport av projektarbete Kylskåp Rapport av projektarbete Kylskåp Klass: Mi1a Gruppnummer: Mi1a 6 Datum för laboration: 1/10 4/10 2014 Datum för rapportinlämning: 2014 10 12 Labbhandledare: Joakim Wren Namn Personnumer E postadress Taulant

Läs mer

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60. Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

Linnéuniversitetet Institutionen för fysik och elektroteknik

Linnéuniversitetet Institutionen för fysik och elektroteknik Linnéuniversitetet Institutionen för fysik och elektroteknik Ht2015 Program: Naturvetenskapligt basår Kurs: Fysik Bas 1 delkurs 1 Laborationsinstruktion 1 Densitet Namn:... Lärare sign. :. Syfte: Träna

Läs mer

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH TERMODYNAMIK? Termodynamik är den vetenskap som behandlar värme och arbete samt de tillståndsförändringar som är förknippade med dessa energiutbyten. Centrala tillståndsstorheter är temperatur, inre energi,

Läs mer

Konvektorsdimensionering för kallrasmotverkning En metod för att motverka kallras för stora fönster

Konvektorsdimensionering för kallrasmotverkning En metod för att motverka kallras för stora fönster AKADEMIN FÖR TEKNIK OCH MILJÖ Konvektorsdimensionering för kallrasmotverkning En metod för att motverka kallras för stora fönster Mohammad Parchami Juni 2012 Examensarbete,15 hp, C-nivå Energisystem Energisystemingenjörprogrammet

Läs mer

Uppvärmning, avsvalning och fasövergångar

Uppvärmning, avsvalning och fasövergångar Läs detta först: [version 141008] Denna text innehåller teori och korta instuderingsuppgifter som du ska lösa. Under varje uppgift finns ett horisontellt streck, och direkt nedanför strecket finns facit

Läs mer

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13. Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 7 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Seminarium: När fryser nötkreatur Tid och plats: Måndagen 8 maj kl. 13.00 Nya Aulan, Alnarpsgården Alnarp

Seminarium: När fryser nötkreatur Tid och plats: Måndagen 8 maj kl. 13.00 Nya Aulan, Alnarpsgården Alnarp Seminarium: När fryser nötkreatur Tid och plats: Måndagen 8 maj kl. 13.00 Nya Aulan, Alnarpsgården Alnarp Detta seminarium avser ge en vetenskaplig belysning av hur nötkreatur påverkas av och hanterar

Läs mer

04/03/2011. Ventilerade kläder. Ventilerade kläder. Värmeförluster vid olika luftflöden: skillnad med betingelse utan flöde i torr tillstånd

04/03/2011. Ventilerade kläder. Ventilerade kläder. Värmeförluster vid olika luftflöden: skillnad med betingelse utan flöde i torr tillstånd Ventilerade kläder Ventilerade kläder Kalev Kuklane Användning av luftgenomsläppliga kläder Öka möjligheter för ventilation (designlösningar) Aktiv ventilation Ventilation i skyddsklädsel (t.ex. CBRN)

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 3/9 2009 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning del 2 i Fysik A för Basåret Tisdagen den 10 april 2012 kl. 9.00-13.00 (Denna tentamen avser andra halvan av Fysik A, kap 2 och 7-9 i Heureka. Fysik A)

Läs mer

Repetitionsuppgifter i Fysik 1

Repetitionsuppgifter i Fysik 1 Repetitionsuppgifter i Fysik 1 Uppgifterna i detta häfte syftar till att kort repetera några begrepp från fysiklektionerna i höstas. Det är inte på något sätt ett komplett repetionsmaterial, utan tanken

Läs mer

Hjälpmedel: Kungakrona, bägare, vatten, dynamometer, linjal, våg, snören och skjutmått

Hjälpmedel: Kungakrona, bägare, vatten, dynamometer, linjal, våg, snören och skjutmått Uppgift 1. De flesta vet ju att Archimedes sprang runt naken på de grekiska gatorna ropandes "Heureka!" Vad som ledde till denna extas var naturligtvis en vetenskaplig upptäckt. Meningen med denna uppgift

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Ten01 TT051A Årskurs 1 Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2012-06-01 9.00-13.00

Läs mer

Experimentella metoder 2013, Räkneövning 3

Experimentella metoder 2013, Räkneövning 3 Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.

Läs mer

yttervägg 5,9 5,9 3,6 4,9 - - Golv 10,5 10,5 24 10,5 7 7 Tak 10,5 10,5 24 10,5 7 7 Fönster 2 2 4 3 - - Radiator 0,5 0,5 0,8 0,5 0,3 -

yttervägg 5,9 5,9 3,6 4,9 - - Golv 10,5 10,5 24 10,5 7 7 Tak 10,5 10,5 24 10,5 7 7 Fönster 2 2 4 3 - - Radiator 0,5 0,5 0,8 0,5 0,3 - B Lägenhetsmodell B.1 Yttre utformning Lägenheten består av tre rum och kök. Rum 1 och 2 används som sovrum, rum 3 som vardags rum, rum 4 som kök, rum 5 som badrum och slutligen rum 6 som hall. Lägenheten

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik Provmoment: Ten0 Ladokkod: TT05A Tentamen ges för: Årskurs Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 202-08-30 Tid: 9.00-3.00 7,5 högskolepoäng

Läs mer

WALLENBERGS FYSIKPRIS 2014

WALLENBERGS FYSIKPRIS 2014 WALLENBERGS FYSIKPRIS 2014 Tävlingsuppgifter (Finaltävlingen) Riv loss detta blad och lägg det överst tillsammans med de lösta tävlingsuppgifterna i plastmappen. Resten av detta uppgiftshäfte får du behålla.

Läs mer

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9: Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en

Läs mer

Brandsäker rökkanal. Skorstensfolkets guide till en trygg stålskorsten 2008-06-16 1

Brandsäker rökkanal. Skorstensfolkets guide till en trygg stålskorsten 2008-06-16 1 Brandsäker rökkanal Skorstensfolkets guide till en trygg stålskorsten 2008-06-16 1 1 Introduktion Det är bra att anpassa skorstenen efter eldstadens behov. Risken för överhettning till följd av för stora

Läs mer

Den traditionella typen av tätning för roterande axlar är packboxen. Den har dock ett antal nackdelar:

Den traditionella typen av tätning för roterande axlar är packboxen. Den har dock ett antal nackdelar: 1Mekaniska tätningar 1.1 Inledning och kort historik Den traditionella typen av tätning för roterande axlar är packboxen. Den har dock ett antal nackdelar: Kräver läckage för att fungera Relativt hög effektförlust

Läs mer

1 Dimensionsanalys och π-satsen.

1 Dimensionsanalys och π-satsen. Dimensionsanalys och π-satsen. Då man örsöker ställa upp en matematisk modell ör något ysikaliskt enomen skall man alltid göra dimensionsanalys. Dimensionsanalys handlar om att undersöka hur givna ysikaliska

Läs mer

TEXTILBASERADE HÖGIMPULSSYSTEM

TEXTILBASERADE HÖGIMPULSSYSTEM H ögimpulssystem TEXTILBASERADE HÖGIMPULSSYSTEM KE Fibertec marknadsför två produkter för textilbaserad högimpulsventilation, KE-Inject-systemet respektive KE-DireJet-systemet. Båda dessa system kan utföras

Läs mer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna

Läs mer

Lokala mål i matematik

Lokala mål i matematik Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal

Läs mer

CFD-simulering av kallras från fönster

CFD-simulering av kallras från fönster UPTEC ES 14027 Examensarbete 30 hp Juni 2014 CFD-simulering av kallras från fönster Konvektorers och nischdjupets inverkan på lufthastigheter i rummet Emil Svensson I Uppsala universitet, 2014 Abstract

Läs mer

5. Värmeöverföring Heat transfer

5. Värmeöverföring Heat transfer Åbo Akademi University 440 Processteknikens Grunder Introduction to Process Engineering by/av: Ron Zevenhoven 5. Värmeöverföring Heat was defined in chapter 3 as transfer of energy as a result of a temperature

Läs mer

B1 Vatten strömmar i ett rör som är 100 m långt och har en diameter på 50 mm. Rörets ytråhet, e, är mm. Om tryckfallet i röret inte får

B1 Vatten strömmar i ett rör som är 100 m långt och har en diameter på 50 mm. Rörets ytråhet, e, är mm. Om tryckfallet i röret inte får B1 Vatten strömmar i ett rör som är 100 m långt och har en diameter å 50 mm. Rörets ytråhet, e, är 0.01 mm. Om tryckallet i röret inte år överstiga 50 kpa, vad är då den högst tillåtna vattenhastigheten?

Läs mer

4. Allmänt Elektromagnetiska vågor

4. Allmänt Elektromagnetiska vågor Det är ett välkänt faktum att det runt en ledare som det flyter en viss ström i bildas ett magnetiskt fält, där styrkan hos det magnetiska fältet beror på hur mycket ström som flyter i ledaren. Om strömmen

Läs mer