Kontroll 13. Uppgift 1. Uppgift 2. Uppgift 3. Uppgift 4. Uppgift 5. Uppgift 6. Uppgift 7

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Kontroll 13. Uppgift 1. Uppgift 2. Uppgift 3. Uppgift 4. Uppgift 5. Uppgift 6. Uppgift 7"

Transkript

1 Kontroll 13 Uppgift 1 Avståndet, r parsec, till en stjärna kan bestämmas med formeln M = m lgr där M =stjärnans absoluta ljusstyrka och m =stjärnans skenbara ljusstyrka. (1 parsec= 3.26 ljusår= km). Beräkna avståndet i km till Sirius, då M = 1.4 och m = Uppgift 2 En vara kostade 123 kr när dess pris plötsligt höjdes med 18%. Med hur många procent ska det nya priset sänkas, för att varan ska återfå sitt ursprungliga pris? Uppgift 3 Sedan 1979 har oljetillförseln minskat med i genomsnitt 5% per år. Efter hur många år var oljetillförseln halverad? Uppgift 4 Kalle började ett nytt jobb och fick en månadslön på 18000, med löfte om 4% löneförhöjning varje halvår. Pelle skrattade åt detta, eftersom han själv just börjat ett jobb där han får i månadslön och med löfte om 5% påökt, visserligen per år, men ändå. När kan Kalle börja skratta åt Pelle? Det vill säga efter hur lång tid kommer Kalle att ha en högre månadslön än Pelle? Eller kommer han aldrig att få det? Uppgift hade jorden cirka 2.98 miljarder invånare. Folkmängden har sedan dess vuxit exponentiellt med 2%/år, ett uttalande som gällde hade jorden cirka 6.52 miljarder invånare. Hur väl tycker du att modellen gäller? Uppgift 6 Hur mycket pengar ska jag sätta in på banken idag om jag om 6 år ska har ett sparkapital på kr till 10.5% ränta? Uppgift 7 En kärnreaktor är omgiven av ett strålskydd av järnmalmsbetong. Strålningens intensitet avtar exponentiellt med den väg strålningen går genom skyddet. Efter 6 cm har intensiteten gått ned till hälften Håkan Strömberg 1 KTH Syd Haninge

2 av den ursprungliga. Efter hur lång passage genom skyddet har intensiteten gått ned till 0.1 promille av det ursprungliga värdet? Uppgift 8 Här en annan prognos för antalet människor på jorden var antalet invånare på jorden cirka miljarder. Den tillväxte då på ett sätt som innebar en fördubbling på år. Vid vilket år skulle, med denna modell, antalet invånare vara 6.52 miljarder? Uppgift 9 Herr Svenssons månadslön har en exponentiell utveckling. För 10 år sedan tjänade han 000 kr/månad. Idag tjänar han kr/månad. Vilken månadslön kommer han att ha när han går i pension om 7 år? Uppgift 10 Bestäm den exponentialfunktion vi söker, på vars kurva två punkter är kända: P1(4, ) och P2(6, ). The hard way. Håkan Strömberg 2 KTH Syd Haninge

3 Lösningar till Kontroll 13 Uppgift 1 Antag: Avståndet är r parsec 1.4 = lgr = 5 lgr 5 lgr = 2.15 lgr = lg r = 0.43 r = r 2.69 Avståndet blir då km Svar: km Uppgift 2 Priset p 2 efter höjning är p 2 = För att priset p 1 = 123 ska återfås måste tillväxtfaktorn vara a. Vi får 123 = ( )a ger a = = Svaret får man genom att invertera den första tillväxtfaktorn. Priset har förstås inget med saken att göra. Uppgift 3 a 2 = a 0.95 x 0.95 x = 1 2 ln0.95 x = ln 1 2 x ln0.95 = ln 1 2 x = ln 1 2 ln Håkan Strömberg 3 KTH Syd Haninge

4 Uppgift 4 Kalles lön stiger efter L K (x) = x och Pelles efter L P (x) = x. Genom ekvationen nedan får vi reda på vid vilken tidpunkt de har samma månadslön x = x x 1.05 x = ( ) x = ( ) x ln = ln ( ) x ln = ln x = ln x 3.55 / ln ( ) 1.05 Redan efter fyra år har Kalle en högre månadslön än Pelle. Efter har fortfarande Pelle lite högre lön. Så här kan man lösa problemet med ett C-program 1 #include <stdio.h> 2 int main(void){ 3 float kalle=18000,pelle=20000; 4 int halvar=1; 5 while (pelle>kalle){ 6 kalle=kalle 1.04; 7 if(halvar%2==0) 8 pelle=pelle 1.05; 9 halvar++; 10 } 11 printf("efter %d halvår\n",halvar); 12 } Programmet svarar att det behövs 8 halvår. Uppgift 5 Med hjälp av uttrycket kan vi se vad den prognosen hade förväntat sig Nästan en miljard färre och det är kanske skönt. Håkan Strömberg 4 KTH Syd Haninge

5 Uppgift 6 Hur mycket pengar ska jag sätta in på banken idag om jag om 6 år ska har ett sparkapital på kr till 10.5% ränta? Antag att det startkapitalet är x kr och vi får följande ekvation = x x = x Uppgift 7 Antag att det har skett efter x cm. Vi får ekvationen = 0.5 x 6 lg10 4 = lg0.5 x 6 4lg10 = x 6 lg = x lg0.5 x = x lg0.5 Svar: Efter 80 cm Uppgift 8 Antag att det kommer att dröja x år efter Vi får då ekvationen 6.52 = 2 x 6.52 lg 6.52 lg 6.52 lg 6.52 lg2 = 2 x = lg2 x = x lg2 = x x 21 Håkan Strömberg 5 KTH Syd Haninge

6 = Det skulle alltså ha inträffat för 9 år sedan. Uppgift 9 Vi ska använda oss av exponentialfunktionen f(t) = C 10 k t C och k är konstanter och t är tiden. Först måste vi då bestämma C och k. Detta kan vi göra genom de två givna punkterna P1(0,000) och P2(10,30000). När vi har bestämt funktionens konstanter ska vi ta reda på f(17) Nu över till att bestämma k Vi får Funktionen får till sist följande utseende f(0) = C 10 k 0 f(0) = C men också f(0) = 000 C = 000 f(10) = k Vi ska lösa ekvationen k = k = k = lg10 10k = lg 30 10k lg 10 = lg 30 10k = lg 30 k = lg k f(t) = t Vi kan nu använda den för att bestämma f(17) och med det får man väl nöja sig. En enklare lösning Uppgiften kan lösas på ett mycket enklare sätt. Vi antar att tillväxtfaktorn är x och skriver ekvationen = 000 x 10 ( x = 000 x ) 1 10 Vi använder oss nu av faktorn för att få svaret = kr Håkan Strömberg 6 KTH Syd Haninge

7 Uppgift 10 Vi ansätter f(x) = C a x och ska alltså bestämma C och a med hjälp av f(4) = och f(6) = Vi får ett ekvationssystem: { C a 4 = C a 6 = Från första ekvationen får vi C a 4 = C = a 4 Vi substituerar C i den andra ekvationen och får a 4 a 6 = a 2 = a 2 = a = ± Vi vet nu att a = 1.10 och kan använda det för att bestämma C. Vi tecknar till sist funktionen f(x) = x C = Håkan Strömberg 7 KTH Syd Haninge

52 = 1041. 1040 1.00096 Vi kan nu teckna hur mycket pengar han har, just när han har satt in sina 280 kr den tredje måndagen + 280 1040

52 = 1041. 1040 1.00096 Vi kan nu teckna hur mycket pengar han har, just när han har satt in sina 280 kr den tredje måndagen + 280 1040 Tillämpningar på främst geometriska, men även aritmetiska summor och talföljder. Att röka är ett fördärv. Förutom att man kan förlora hälsan går en mängd pengar upp i rök. Vi träffar Cigge, som röker 20

Läs mer

KOKBOKEN. Håkan Strömberg KTH STH

KOKBOKEN. Håkan Strömberg KTH STH KOKBOKEN Håkan Strömberg KTH STH Hösten 2007 Håkan Strömberg 2 KTH Syd Innehåll Genomsnittlig förändringshastighet...................... 5 Uppgift 1................................. 5 Uppgift 2.................................

Läs mer

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1:

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1: Som en inledning till begreppet derivata, ska vi här diskutera genomsnittlig förändingshastighet. Utan att veta vad som hänt mellan två givna tider t 1 och t 2 kan vi läsa av temperaturen, beloppet, hastigheten,

Läs mer

Lösningar och kommentarer till uppgifter i 2.3

Lösningar och kommentarer till uppgifter i 2.3 Lösningar och kommentarer till uppgifter i 2.3 2303 d) TB: Jaha, nu gäller det att kunna sina deriveringsregler. Polynom kommer man alltid ihåg hur de ska deriveras. f(x) = 4x 2 + 5x 3 ger derivatan f

Läs mer

Lösningar och kommentarer till uppgifter i 2.2

Lösningar och kommentarer till uppgifter i 2.2 Lösningar och kommentarer till uppgifter i 2.2 2202 Beräkna Detta ger f(3 + h) f(3) då f(x) x 2 (3 + h) 2 3 2 h 2 + 6h 6 + h 6 h 0 Vi har därmed bestämt riktningskoefficienten (k-värdet) för tangenten

Läs mer

y y 1 = k(x x 1 ) f(x) = 3 x

y y 1 = k(x x 1 ) f(x) = 3 x Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för

Läs mer

Lästal från förr i tiden

Lästal från förr i tiden Lästal från förr i tiden Nedan presenteras ett antal problem som normalt leder till ekvationer av första graden. Inled din lösning med ett antagande. Teckna sedan ekvationen. Då ekvationen är korrekt uppställt

Läs mer

Ingen ny teori denna dag. Istället koncentrerar vi oss på att lösa två tränings-ks:ar.

Ingen ny teori denna dag. Istället koncentrerar vi oss på att lösa två tränings-ks:ar. Ingen ny teori denna dag. Istället koncentrerar vi oss på att lösa två tränings-ks:ar. 1 Bestäm med jälp av derivatans definition f () då f(x) = x + x + Funktionen f(x) = x 4x + 8 ar en minpunkt. Bestäm

Läs mer

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner. Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)?

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)? I figuren ser vi grafen till funktionen f(x) x + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7) oc (4, ). Dessutom finns en tangent som tangerar kurvan i (, 10) Sekantens riktningskoefficient

Läs mer

Vi tolkar det som att beloppet just vid denna tidpunkt stiger med 459 kr/år, alltså en sorts hastighet. Vi granskar graferna till b(x) och b (x)

Vi tolkar det som att beloppet just vid denna tidpunkt stiger med 459 kr/år, alltså en sorts hastighet. Vi granskar graferna till b(x) och b (x) Ett person sätter in 0000 kr på banken vid nyår 000 till 4% ränta. Teckna en funktion för beloppets utveckling. b(t) = 0000.04 t Skriv om funktionen med basen e istället för.04. Derivera denna funktion

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Sidor i boken KB 7-15 Linjära ekvationssystem Exempel 1. Kalle och Pelle har tillsammans 00 kulor. Pelle har dubbelt så många som Kalle. Hur många kulor har var och en? Lösning: Antag att Kalle har x kulor.

Läs mer

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor. Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att

Läs mer

Belopp Belopp > procent

Belopp Belopp > procent Dagens problem Försäljarprovision Lönen för en försäljare är helt grundad på provision, direkt kopplad till den omsättning han lyckas skapa under en månad. Tabellen nedan anger procentsatser för olika

Läs mer

Lite extramaterial i anslutning till boken

Lite extramaterial i anslutning till boken Lite extramaterial i anslutning till boken Kapitel 1 Elementär algebra Prioritetsregler för räknesätten Det är av avgörande betydelse i vilken ordning räkneoperationer utförs. För att på ett otvetydigt

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna

Läs mer

Matematik CD för TB = 5 +

Matematik CD för TB = 5 + Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:

Läs mer

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd I föreläsning 18 bekantade vi oss med talföljder, till exempel eller 3, 6, 9, 1, 15, 18 1,, 4, 8, 16, 3 Nu är stunden inne, då vill vill summera talen i en talföljd och 3 + 6 + 9 + 1 + 15 + 18 1 + + 4

Läs mer

1 Förändingshastigheter och derivator

1 Förändingshastigheter och derivator Förändingsastigeter oc derivator. Dagens Teori Som en inledning till begreppet derivata, ska vi är diskutera genomsnittlig förändingsastiget. Utan att veta vad som änt mellan två givna tider t oc t 2 kan

Läs mer

1, 2, 3, 4, 5, 6,...

1, 2, 3, 4, 5, 6,... Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte

Läs mer

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Moment 5.1-5.5 Viktiga exempel 5.1-5.10 Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Kvadratiska linjära ekvationssystem Vi startar vår utredning med det vi känner bäst till, ekvationssystem

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

Moment Viktiga exempel Övningsuppgifter I

Moment Viktiga exempel Övningsuppgifter I Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter

Läs mer

Exponentialfunktioner och logaritmer

Exponentialfunktioner och logaritmer Eponentialfunktioner och logaritmer Tidigare i kurserna har du gått igenom potenslagarna, hur man räknar med potenser och potensfunktioner av typen y. En potens- funktion är en funktion som innefattar

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

KOKBOKEN 1. Håkan Strömberg KTH STH

KOKBOKEN 1. Håkan Strömberg KTH STH KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................

Läs mer

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1:

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1: Som en inledning till begreppet derivata, ska vi här diskutera genomsnittlig förändingshastighet. Utan att veta vad som hänt mellan två givna tider t 1 och t kan vi läsa av temperaturen, beloppet, hastigheten,

Läs mer

Övningstenta 6. d b = 389. c d a b = 1319 b a

Övningstenta 6. d b = 389. c d a b = 1319 b a Övningstenta 6 Problem 1. Vilket är det största antalet olika element en symmetrisk matris A(n n kan ha? Problem. Bestäm de reella talen a,b,c och d då man vet att a b d c = 109 a c d b = 389 c d a b =

Läs mer

Lösningar och kommentarer till uppgifter i 3.1

Lösningar och kommentarer till uppgifter i 3.1 Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man

Läs mer

Logaritmer. Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos

Logaritmer. Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos Logaritmer Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos 24 september 2003 Innehåll 1 Introduktion 2 2 Naturliga logaritmer 3 2.1 Talet e................................. 3 2.2 Den naturliga

Läs mer

DOP-matematik Copyright Tord Persson. Logövningar. Slumpad ordning. Uppgift nr 10 Lös ekvationen 10 y = 0,001. Uppgift nr 13 Lös ekvationen lg x = 4

DOP-matematik Copyright Tord Persson. Logövningar. Slumpad ordning. Uppgift nr 10 Lös ekvationen 10 y = 0,001. Uppgift nr 13 Lös ekvationen lg x = 4 Logövningar Uppgift nr 1 lg y -2 Uppgift nr 2 Huvudräkna lg200 + lg5 Uppgift nr 3 71 z 70 Uppgift nr 4 Ange derivatan till y e x Uppgift nr 5 Skriv 3 lg5 som en logaritm utan faktor framför. Uppgift nr

Läs mer

polynomfunktioner potensfunktioner exponentialfunktioner

polynomfunktioner potensfunktioner exponentialfunktioner Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,

Läs mer

f (a) sin

f (a) sin Hur kan datorn eller räknedosan känna till värdet hos till exempel sin0.23 eller e 2.4? Denna fråga är berättigad samtidigt som ingen tror att apparaterna innehåller en gigantisk tabell. Svaret på frågan

Läs mer

Karolina Klü ft (4/2/0)

Karolina Klü ft (4/2/0) Karolina Klü ft (4/2/0) Klüft tävlade i sjukamp och var en av Sveriges främsta medaljkandidater i VM i friidrott 2005. I sjukamp tävlar deltagarna i olika grenar. För att kunna summera resultaten från

Läs mer

Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner.

Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. 1 (Bokens nr 3204) Ett straffkast i basket följer ekvationen h(x)

Läs mer

1. Amanda tänker på ett femsiffrigt heltal. Talet börjar med 1 och slutar med 8. Vilket är talet?

1. Amanda tänker på ett femsiffrigt heltal. Talet börjar med 1 och slutar med 8. Vilket är talet? 2 1. Amanda tänker på ett femsiffrigt heltal. Talet börjar med 1 och slutar med 8. Vilket är talet? (1) Tiotalssiffran är dubbelt så stor som tusentalssiffran. (2) Hundratalssiffran är hälften så stor

Läs mer

Moment Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.52, P 0 P = t v OP och OP 0 är ortsvektorer för punkterna P och P 0, så

Moment Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.52, P 0 P = t v OP och OP 0 är ortsvektorer för punkterna P och P 0, så Tisdagen september kl 10:15, Sal 093, Moment 4.3.1 Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.5, 4.55 Räta linjen i rummet En rät linje l i rummet är bestämd då en punkt P 0 på linjen och en riktningsvektor

Läs mer

Funktioner. Räta linjen

Funktioner. Räta linjen Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter

Läs mer

Sammanfattningar Matematikboken Y

Sammanfattningar Matematikboken Y Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller

Läs mer

Tal Repetitionsuppgifter

Tal Repetitionsuppgifter epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Är talet a) 5 ett heltal b) 9 ett naturligt tal c) π ett rationellt tal d) 5 ett reellt tal 6 2 Rita av figuren och placera in talen rätt talmängd. naturliga tal hela tal rationella

Läs mer

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium.

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium. Så här hittar man extrempunkter, max-, min eller terrasspunkter, till en kurva y = f(x) med hjälp av i första hand f (x) 1 Bestäm f (x) och f (x) 2 Lös ekvationen f (x) = 0. Om ekvationen saknar rötter

Läs mer

Algebra, exponentialekvationer och logaritmer

Algebra, exponentialekvationer och logaritmer Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2 Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.

Läs mer

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden PROVET I MATEMATIK, KORT LÄROKURS.9.013 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll som ges här är inte bindande för studentexamensnämndens

Läs mer

Problemlösning Lösningar

Problemlösning Lösningar Problemlösning Lösningar Lösning Problemlösning. Julpromenaden (2) Vi antar först att sträckan på slät mark är km och att backen är y km lång. Från det kända sambandet får vi t = s/v och kan nu teckna

Läs mer

M0038M Differentialkalkyl, Lekt 7, H15

M0038M Differentialkalkyl, Lekt 7, H15 M0038M Differentialkalkyl, Lekt 7, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 21 Tentamen M0038M Tentamensdatum 2015-10-28 Sista anmälningsdag 2015-10-08 Tentamensanmälan

Läs mer

a) Ange ekvationen för den räta linjen L. (1/0/0)

a) Ange ekvationen för den räta linjen L. (1/0/0) Delprov B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. Ange det uttryck som ska stå i parentesen för att likheten ska gälla. ( ) ( x 5) = x 5 (1/0/0).

Läs mer

Problemlösning Lösningar

Problemlösning Lösningar Problemlösning Lösningar Lösning Problemlösning 1. Dela bröd och pengar (0) Luffarna åt 8/3 bröd var. Luffare A gav bort 3 8/3 = 1/3 bröd till C och luffare B gav bort 5 8/3 = 7/3 bröd till C. Alltså ska

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2 Kapitel.1 101, 102 Exempel som löses i boken 10 a) x= 1 11+ x= 11+ 1 = 2 c) x= 11 7 x= 7 11 = 77 b) x= 5 x 29 = 5 29 = 6 d) x= 2 26 x= 26 2= 1 10 a) x= 6 5+ 9 x= 5+ 9 6= 5+ 5= 59 b) a = 8a 6= 8 6= 2 6=

Läs mer

Trigonometri. Sidor i boken 26-34

Trigonometri. Sidor i boken 26-34 Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor

Läs mer

f(x) = x 2 g(x) = x3 100

f(x) = x 2 g(x) = x3 100 När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare.

Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Dina lösningar på denna del görs på separat papper som ska lämnas in innan du får tillgång till din miniräknare. Observera

Läs mer

c) a) b) c) tre och en halv miljon

c) a) b) c) tre och en halv miljon REPETITION 1 A 1 Hur många procent av figurerna är gula a) b) c) 2 Hur mycket är a) 10 % av 7 kr b) 30 % av 600 kr c) 7 % av 20 000 kr 3 Skriv bråken i enklaste form. a) 4 28 b) 1 2 c) 16 40 4 Skriv i

Läs mer

Repetition inför kontrollskrivning 2

Repetition inför kontrollskrivning 2 Sidor i boken Repetition inför kontrollskrivning 2 Problem 1. I figuren ser du två likformiga trianglar. En sida i den större och motsvarande i den mindre är kända. Beräkna arean av den mindre triangeln.

Läs mer

Helsingfors universitet, Agrikultur-forstvetenskapliga fakulteten Skoglig ekologi och resurshushållning

Helsingfors universitet, Agrikultur-forstvetenskapliga fakulteten Skoglig ekologi och resurshushållning Helsingfors universitet, 18.5.2015 Agrikultur-forstvetenskapliga fakulteten Skoglig ekologi och resurshushållning DEL 2 Matematik (max 0 p.) 7. a) Matti och Maija börjar vandra från samma punkt i motsatta

Läs mer

Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 120 minuter för Delprov B och Delprov C tillsammans.

Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 120 minuter för Delprov B och Delprov C tillsammans. Delprov B Delprov C Provtid Hjälpmedel Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 10 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal. Kravgränser

Läs mer

9.1 Mer om differentialekvationer

9.1 Mer om differentialekvationer 9.1 Mer om differentialekvationer 9.1.1 Olika typer Ordinär differentialekvationer.ode innehåller derivator med avseende på endast en variabel. Partiella differentialekvationer.pde innehåller (partiella)

Läs mer

lim 1 x 2 lim lim x x2 = lim

lim 1 x 2 lim lim x x2 = lim Moment 8.-8. Viktiga eempel 8.,8.4-6,8.8,8.-,8.5,8.0 Övningsuppgifter Ö8.a, Ö8.cdef,Ö8.a,e,f, Ö8.4cde, Ö8.5d, Ö8.0- Gränsvärden Definition. Funktionen f har gränsvärdet G då går mot om vi kan få f) att

Läs mer

3-7 Procentuella förändringar

3-7 Procentuella förändringar Namn: 3-7 Procentuella förändringar Inledning Du har arbetat mycket med procent, rabatter och påslag. Nu skall du lära dig konsten att beräkna procentuella förändringar. Som alltid gäller att du måste

Läs mer

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till

Läs mer

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 02 10 25. RÄNTA 1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Matematik A Testa dina kunskaper!

Matematik A Testa dina kunskaper! Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer

Läs mer

Ekonomi betyder hushållning. Att hushålla med pengarna på bästa sätt

Ekonomi betyder hushållning. Att hushålla med pengarna på bästa sätt Ekonomi betyder hushållning Att hushålla med pengarna på bästa sätt Familjeekonomi Det är många saker man behöver i en familj, t ex kläder, men hyran höjs! Kanske kommer företaget att dra ner på skiftarbete

Läs mer

b) (A+B)(2m 3)=6m2 5:c 6 3/0/0 3) Förenkla uttrycket (3œ 2)2 + 4(3œ - 1) sä längt sommôjligt. O/l/O

b) (A+B)(2m 3)=6m2 5:c 6 3/0/0 3) Förenkla uttrycket (3œ 2)2 + 4(3œ - 1) sä längt sommôjligt. O/l/O " í*4 r Del A: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 1) Förenkla: 20102 (æ + 1)(ac 1) 2/0/0 2) Ange A och B så att likheterna stämmer. Observera a2 ta och B är olika i de

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Kapitel , 2102 Exempel som löses i boken a) Löneökning per månad: 400 kr. b) Skattehöjning per månad: 5576 kr 5376 kr = 200 kr.

Kapitel , 2102 Exempel som löses i boken a) Löneökning per månad: 400 kr. b) Skattehöjning per månad: 5576 kr 5376 kr = 200 kr. Kompletterande lösningsförslag oc ledningar, Matematik 000 kurs C, kapitel Kapitel.1 101, 10 Eempel som löses i boken. 10 Löneökning per månad: 400 kr Förändring i årslön = 1 400 kr = 4800 kr OBS! Fel

Läs mer

Övningstenta 8. ax+2y+z = 2a 2x (a+2)y = 4 2(a+1)x 13y 2z = 16. Problem 3. Lös matrisekvationen AX BX = C. då A = 0 1

Övningstenta 8. ax+2y+z = 2a 2x (a+2)y = 4 2(a+1)x 13y 2z = 16. Problem 3. Lös matrisekvationen AX BX = C. då A = 0 1 Övningstenta 8 Problem 1. Bestäm avståndet mellan planen 2x 3y+z+1 = 0 och 4x+6y 2z+13 = 0 Problem 2. Lös ekvationssystemet för de värden på a där det finns en lösning ax+2y+z = 2a 2x (a+2y = 4 2(a+1x

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

Sidor i boken Figur 1:

Sidor i boken Figur 1: Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 5 2008-04-05 Högskoleprovet Svarshäfte nr. DELPROV 9 NOGf Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR MATEMATIKPROV, KORT LÄROKURS 8..05 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte bindande för studentexamensnämndens bedömning. Censorerna beslutar

Läs mer

Din allmänna pension en del av din totala pension

Din allmänna pension en del av din totala pension Pensionsmyndigheten Din allmänna pension en del av din totala pension Det här årsbeskedet handlar om den allmänna pensionen. Utöver den får de flesta löntagare tjänstepension från sin arbetsgivare. Det

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del

NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT

Läs mer

3. Hur snabbt förändras diametern av en cirkel med avseende på cirkelns area?

3. Hur snabbt förändras diametern av en cirkel med avseende på cirkelns area? Dagens 30 aug: a, 2, 3, 5, 6.. Låt Q vara antalet producerade enheter. Bestäm a. Marginalvinsten för vinstfunktionen π(q) = 3Q + Q + 2. Marginalintäkten för intäktsfunktionen R(Q) = ( + 2Q) 3/2. c. Marginalkostnaden

Läs mer

TENTAMEN. Rättande lärare: Sara Sebelius & Håkan Strömberg Examinator: Niclas Hjelm Datum:

TENTAMEN. Rättande lärare: Sara Sebelius & Håkan Strömberg Examinator: Niclas Hjelm Datum: TENTAMEN Kursnummer: HF0021 Matematik för basår I Moment: TEN1 Program: Tekniskt basår Rättande lärare: Sara Sebelius & Håkan Strömberg Examinator: Niclas Hjelm Datum: 2015-03-10 Tid: 13:15-17:15 Hjälpmedel:

Läs mer

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22 Moment 5.3, 4.2.9 Viktiga exempel 5.13, 5.14, 5.15, 5.17, 4.24, 4.25, 4.26 Handräkning 5.35, 5.44a, 4.31a, 4.34 Datorräkning Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom

Läs mer

Kan du det här? Geometrisk summa och linjär optimering

Kan du det här? Geometrisk summa och linjär optimering Kan du det här? Geometrisk summa och linjär optimering o Vad menas med en geometrisk talföljd? o Vad menas med geometrisk summa? Kan du beräkna geometrisk summa? o Hur kan geometrisk talföljd tillämpas

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Övningstentammen 1. 3x 2 3x+a = 0 ax 2 2ax+5 = 0

Övningstentammen 1. 3x 2 3x+a = 0 ax 2 2ax+5 = 0 Övningstentammen 1 Här kommer den första av en mängd övningstentor. Lösningarna är exempel på hur du ska formulera dina lösningar på den riktiga tentamen. Lösningarna ska alltså bifogas på papper. Inga

Läs mer

Högskoleprovet. Block 4. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 4. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 4 2009-10-24 Högskoleprovet Svarshäfte nr. DELPROV 7 NOGa Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

y = x x = Bestäm ekvationen för en linje där k = 2 och som går genom punkten ( 1, 3). 2/0/0

y = x x = Bestäm ekvationen för en linje där k = 2 och som går genom punkten ( 1, 3). 2/0/0 Del A: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 1) En TV reparatörs arbete kostar kronor, där antalet arbetstimmar. y = 200 + 150x x = a) Ange och tolka den linjära funktionens

Läs mer

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R} Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att

Läs mer

Vektorn w definieras som. 3. Lös ekvationssystemet algebraiskt: (2p) 4. Förenkla uttrycket så långt det går. (2p)

Vektorn w definieras som. 3. Lös ekvationssystemet algebraiskt: (2p) 4. Förenkla uttrycket så långt det går. (2p) 1. Linjerna y=2x+4, y=4 och x=3 innesluter tillsammans en triangel. Linjen y=5,5 skär triangeln i två punkter. Beräkna sträckan mellan dessa två punkter. 2. Vektorn w definieras som w = 2u v där u = (7,1)

Läs mer

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73 Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar

Läs mer

VÄSTERNORRLAND OCH SKATTERNA SÅ MYCKET HAR VÄSTERNORRLANDS LÄN TJÄNAT PÅ SÄNKT SKATT PÅ ARBETE, KOMMUN FÖR KOMMUN OCH SKATT FÖR SKATT

VÄSTERNORRLAND OCH SKATTERNA SÅ MYCKET HAR VÄSTERNORRLANDS LÄN TJÄNAT PÅ SÄNKT SKATT PÅ ARBETE, KOMMUN FÖR KOMMUN OCH SKATT FÖR SKATT VÄSTERNORRLAND OCH SKATTERNA SÅ MYCKET HAR VÄSTERNORRLANDS LÄN TJÄNAT PÅ SÄNKT SKATT PÅ ARBETE, KOMMUN FÖR KOMMUN OCH SKATT FÖR SKATT SAMMANFATTNING AV VÅRA RESULTAT Skatt är den klart största utgiften

Läs mer

1.1 MATLABs kommandon för matriser

1.1 MATLABs kommandon för matriser MATLABs kommandon för matriser Det finns en mängd kommandon för att hantera vektorer, matriser och linjära ekvationssystem Vi ger här en kort sammanfattning av dessa kommandon För en mera detaljerad diskussion

Läs mer

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61 Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska

Läs mer

ARBETSBLAD 1. 2 Procent. 1. Hur stor del är färgad? Bråkform Decimalform Procentform

ARBETSBLAD 1. 2 Procent. 1. Hur stor del är färgad? Bråkform Decimalform Procentform ARBETSBLAD 1 Procent i olika form 1. Hur stor del är färgad? Bråkform Decimalform Procentform a) b) c) d) 2. Skriv i procentform. a) 0,06 b) 0,19 c) 0,024 d) 0,801 e) 1,07 f) 0,003 3. Skriv i decimalform.

Läs mer

Grafen till funktionen z = x y.

Grafen till funktionen z = x y. Frågor och svar om ln x, e x och 1/x i anslutning till grafen finns på nästa sida och framåt. 1 (6) Grafen till funktionen z = x y. plot3d(x^y, x=-3..3, y=-1..2, axes=frame, grid=[25,25], title="z=x^y");

Läs mer