2 NEWTONS LAGAR. 2.1 Inledning. Newtons lagar 2 1

Storlek: px
Starta visningen från sidan:

Download "2 NEWTONS LAGAR. 2.1 Inledning. Newtons lagar 2 1"

Transkript

1 Newtons lagar NEWTONS LAGAR 2.1 Inledning Ordet kinetik används ofta för att beteckna läranom kroppars rörelse under inflytande av krafter. Med dynamik betcknar vi ett vidare område där även kinematiken ingår. I kinematiken i föregående avsnitt presenterades några metoder att matematiskt beskriva rörelse. Vi definierade begreppen hastighet och acceleration, och beskrev dessa m h a vektorer. De grundläggande begreppen för kinematiken var tiden, rummet och punkten. I detta avsnitt skall vi introducera Newtons lagar och besvara frågor som Varför rör sig kroppen som den gör? ur rör sig kroppen när den påverkas av krafter? Att förstå Newtons lagar är en ganska lätt uppgift. Dessa är enkla att skriva upp och är inte särskilt komplexa. Deras enkelhet är emellertid skenbar. De kombinerar definitioner, observationer från naturen, delvis intuitiva begrepp, och några antaganden om rummets och tidens egenskaper. Newtons lagar är inte självklara. I Aristoteles idevärld, antogs att man behövde en kraft för att få en kropp i likformig rörelse. Denna idé accepterades i tusentals år eftersom den ansågs intuitivt korrekt. Det är viktigt att förstå vilka delar av Newtons lagar som är baserade på experiment och vilka delar som är definitioner Newtons första lag Newtons första lag kallas även tröghetslagen och kan formuleras på följande sätt: 1. Tröghetslagen En kropp förblir i sitt tillstånd av vila eller likformig rörelse om den inte av verkande krafter tvingas att ändra detta tillstånd. För att beskriva rörelse måste vi introducera ett koordinatsystem, och tröghetslagen kan även uttryckas m h a begreppet inertialsystem. Med ett inertialsystem förstås ett koordinatsystem i vilket en isolerad kropp (vilken ej påverkas av några krafter) rör sig med konstant hastighet längs en rät linje. Valet av inertialsystem beror på problemet. Ibland kan ett system fixt i jorden tjäna som ett inertialsystem. För astronomiska objekt kan man använda ett system fixt i universums tyngdpunkt. Ett inertialsystem kan röra sig med konstant hastighet i förhållande till ett annat system. Det är alltid möjligt att finna koordinatsystem i vilket en isolerad kropp rör sig längs en rät linje Newtons andra lag Antag att vi drar en kropp med ett snöre längs ett friktionsfritt bord. Kroppen kommer då att accelerera, med konstant acceleration. Om vi ersätter kroppen med en annan större eller mindre kropp kommer accelerationen att ändras. Accelerationen beror på en egenskap hos kroppen, vilket vi kallar massa. m - S Om vi antar att den första kroppen har massan m 1 såfår vi m 2 = m 1 a 1 /a 2 För andra kroppar med olika massor får vi m k = m 1 a 1 /a k

2 Newtons lagar 2 2 Det visar sig experimentellt att a 1 /a k blir oberoende av hur vi åstadkommer accelerationen dvs m k /m 1 är också lika. Massa definierad på detta sätt är alltså en inneboende egenskap hos den kropp vi accelererar. Massan hos en kropp är ett mått på motståndet hos kroppen för rörelseändring. När vi drar i snöret påverkar vi kroppen med en kraft och detta leder till en acceleration a. Accelerationen vilken är följden av flera krafter är vektorsumman av accelerationerna producerade av varje enskild kraft separat. Newtons andra lag, eller accelerationslagen, uttrycker proportionalitet mellan kraft och acceleration 2. Accelerationslagen En kropp som påverkas av kraften F får en acceleration a sådan att F = m a där konstanten m är kroppens (tröga) massa. Om kroppen påverkas av flera krafter har vi m a = m a i = F i = F i i Krafter uppstår från växelverkan mellan system eller kroppar. Det är denna växelverkan vilken är fysikaliskt relevant och orsakar krafter. En isolerad kropp växelverkar inte med andra kroppar och påverkas inteavnågra krafter. Ipraktikenavtarväxelverkan med avståndet r mellan kropparna. Gravitationskraften och Coulombkraften dör ut som 1/r 2. De flesta krafter avtar mycket fortare t ex som 1/r Newtons tredje lag Att en kraft är resultatet av växelverkan mellan två system uttrycks explicit i Newtons tredje lag (reaktionslagen), vilken lyder: 3. Reaktionslagen Två kroppars ömsesidiga verkningar på varandra är alltid lika stora och riktade åt motsatt håll. Detta innebär att krafter mellan kroppar uppträder alltid parvis. Om en kropp b utövar en kraft F ab påen kropp a dåmåste det finnas en kreft F ba vilken verkar på kroppbfrån a. Newtons tredje lag säger att F ba = F ab. a - F ab F ba '$ b &% En kraft utan en motsvarande motkraft existerar inte. Detta uttrycker egentligen konservering av rörelsemängd. Newtons tredje lag kan användas för att utröna om en kropp är isolerad eller inte. Om en kropp accelereras av en yttre kraft, då måste det finnas en lika och motriktad kraft på en annan kropp. Newtons andra lag F = ma gäller endast i ett inertialsystem. Existensen av inertialsystem är ej trivialt. Låt oss betrakta två olika koordinatsystem och låt r(t) och r (t) beteckna lägevektorerna till en kropp. z 6 Y r (t) r(t) z 6 1 x - R(t) y x Dåär r(t) =r (t)+r(t) - y

3 Newtons lagar 2 3 antag att xyz-systemet är ett inertialsystem där Newtons andra lag gäller, dvs ma(t) =F. Men från sambandet mellan koordinaterna får vi a(t) =a (t)+a(t) där A(t) betecknar accelerationen för det primade systemets origo, dvs ma (t) =F ma(t) Om A(t) = 0 ser vi att även x y z är ett inertialsystem, dvs ett system vilket rör sig likformigt m a p ett annat inertialsystem är också ett inertialsystem. Ibland vill vi använda ett icke-inertialsystem. Vi kan då införa fiktivkrafter där F app = F +F fiktiv med F fiktiv = ma(t) Fiktiva krafter är användbara i vissa fall, men måste användas med försiktighet. Att inertialsystem existerar där Newtons lag håller bevisas av att dessa lagar kan förutsäga planeters banor i solsystemet med hög precision. Koordinatsystemet i detta fall är Kopernikus system med solen och stjärnorna som fixa referenspunkter. Framgången med den mekaniska teorin för planetbanorna är ett av det bästa beviset på att Newtons lagar är korrekta. Vi säger därför att systemet med origo i solens centrum är ett inertialsystem. Astronomiska tester av mekanikens lagar är överlägsna laboratorieexperiment. Dels kan planeternas rörelsefastslåsmed hög precision, dels är kraftlagen känd, och dels har planeterna observerats under 4000 år. Nu vet vi att vår galax roterar kring sitt centrum. Det innebär att solen är accelererad m a p galaxcentrat. Denna acceleration är ca 10 7 av jordens acceleration relativt solen. Om vi därför är intresserade av rotationen i vår galax måste vi lägga ett koordinatsystem i galaxens centrum, vilket då blir ett inertialsystem för denna rörelse. Speciellt gäller att för att förstårörelser i planetsystemet kan jordens yta inte användas som referenspunkt. Däremot gäller att för fenomen på jordytanär ett koordinatsystem fixt i jordytan approximativt ett inertialsystem. 2.2 Tillämpningar på Newtons lagar. För att lösa problem med användning av Newtons lagar bör man arbeta enligt följande schema. 1. Frilägg ett system i sina beståndsdelar, dvs behandla varje kropp som ingår i problemet för sig. 2. Rita ut alla krafter vilka verkar på de olika kropparna. 3. Inför ett koordinatsystem, och ställ upp rörelseekvationerna. 4. Identifiera krafter och motkrafter 5. Inför eventuella tvång och randvillkor. Enligt Newtons lagar är det endast krafter vilka verkar på en kropp vilka påverkar dess rörelse. Krafter från en kropp på andra kroppar påverkar de senares rörelse, men inte kroppen själv. Ex 2.3 Tre godsvagnar med massan M dras med en kraft F av ett tåg. Friktionen är försumbar. Finn krafterna på varje vagn. För system vilka består av flera kroppar är accelerationerna ofta relaterade av tvångsvillkor. Tvångsekvationerna kan ofta finnas genom inspektion, men ofta måste man göra ett geometriskt resonemang. Ex 2.4 Två massor är förbundna med ett rep över en trissa vilken accelerar uppåt med accelerationen A. Beräkna accelerationen för de båda massorna.

4 Newtons lagar Fysikens kraftlagar. Att förutsäga rörelsen från kända kraftlagar är en viktig del av fysiken och dess tillämpningar. Det är också väsentligt att härleda den kraft vilken orsakar en viss rörelse. Ett exempel är Newtons härledning av gravitationslagen från Keplers lagar för planetrörelserna. Så vitt vi vet finns det endast fyra fundamentalt skilda typer av växelverkan i universum: gravitation elektromagnetisk växelverkan svag växelverkan stark växelverkan Gravitationen och den elektromagnetiska växelverkan kan verka över långa avstånd eftersom de avtar som 1/r 2. Gravitationen är emellertid alltid attraktiv medans elektriska krafter kan vara både attraktiva och repulsiva. I stora system tar de elektriska krafterna ut varandra och endast gravitationen återstår. Av detta skäl dominerar gravitationen den kosmiska skalan i universum. I motsats till detta är världen i vår närhet dominerad av elektriska krafter, eftersom de är mycket starkare än gravitationen på en atomistisk skala. Elektriska krafter bestämmer atomernas och molekylernas och mera komplexa systems struktur. Den svaga och starka växelverkan har sådan kort räckvidd att de är betydelsefulla endast på kärnavstånd m. De är försumbara på atomavstånd m. Den starka växelverkan är starkare än den elektromagnetiska växelverkan på kärnavstånd. Den är det klister vilken binder samman atomkärnan Gravitation, tyngd Gravitationen är den mest kända av de fundamentala kraftlagarna, och är nära förbunden till mekanikens utveckling. Denna lag upptäcktes av Newton år Betrakta två partiklar a och b med massor M a och M b påavståndet r från varandra. Låt F ba vara kraften på b från a och F ab kraften på a från b, dåär F ab = F ba och F ab = F ba = GM am b r 2 där G är gravitationskonstanten G = Nm 2 /kg 2 Gravitationskraften är en centralkraft dvs riktad längs sammanbindningslinjen mellan massorna F ba = GM am b ; ˆr ba = r ba /r r ba = r b r a ; r = r ba Betrakta nu partikel b. Dess rörelseekvation blir M b a b = GM am b ; a b = GM a dvs accelerationen för partikel b är oberoende av dess massa. Detta följer av antagandet att m trög = m tung dvs att massan i Newtons andra lag är densamma som i gravitationslagen. Man kan visa att för kraften från jorden på en kropp utanför jordytanpå avståndet r från jordens centrum gäller F = GM em r 2 ˆr ; r>r e där M e är jordens massa och R e dess radie. På jordens yta är r = R e och accelerationen på kroppen blir i detta fall a = F /m = GM e R 2 ˆr = gˆr = g e där g är tyngdaccelerationen g = 9.8m/s 2. Tyngdaccelerationen minskar med höjden över jordytan, och vi har g(r) =GM e /r 2. Vi definierar tyngden (weight) av en kropp nära jordytan som den gravitationskraft vilken utövas av jorden. På jordytan blir tyngden W = mg

5 Newtons lagar Gravitationsfält Gravitationskraften påpartikelbfrån partikel a är F ba = GM am b Kvoten F ba /M b kallas gravitationsfältet från M a.vihar G= F ba M b = GM a I allmänhet om gravitationsfältet i en punkt i rummet är G, så blir gravitationskraften på en massa M i den punkten F = MG. Gravitationsfältet har dimension acceleration, dvs accelerationen på en massa M blir Ma = MG, eller a = G. Påjordenär gravitationsfältet g Elektrostatisk kraft. Den elektrostatiska kraften F ba på en laddning q b från en laddning q a ges av Coulombs lag F ba = k q aq b Om q a och q b har samma tecken är kraften repulsiv och om de har olika tecken är kraften attraktiv. Analogt med gravitationsfältet kan vi definiera det elektriska fältet E som den elektriska kraften på en kropp delat med dess laddning. Det elektriska fältet i punkten r p g a en laddning q iorigoär alltså E = k q r 2 ˆr Kontaktkrafter Med kontaktkrafter menar vi krafter vilka överförs mellan kroppar via kortverkande atomistiska eller molekylära växelverkningar. Exempel är snörkrafter, friktionskrafter vid glidning viskositet mellan en kropp och en vätska. Dessa krafter kan nu förklaras via fundamentala egenskaper hos materien. Ex 2.10 Betrakta ett block med massa M vilket dras av ett snöre med massa m, med en kraft F. Vilken kraft påverkar blocket från snöret? M - F 1 F 1 F m - Vi börjar med att frilägga blocket och snöret och ritar ut alla krafter på dessa. Rörelsen sker i en dimension. Vi har då Newtons ekvationer för blocket och snöret Ma M = F 1 ; ma s = F F 1 Eftersom snöret och massan rör sig som en kropp måste a M = a s = a, ochfrån Newtons tredje lag gäller F 1 = F 1. Vilket ger accelerationen a = F/(M + m). Detta ger F 1 = M/(M + m)f F om m 0. Vi tänker oss snöret som sammansatt av små sektioner vilka växelverkar via kontaktkrafter. Varje del drar de närliggande delarna och dras själv av dessa. Storleken på krafterna mellan de olika delarna kallas spänning. Ett rep kan vara under stark spänning. Om spänningen är likformig så blir kraften på varje del noll och delen är i jämvikt. I allmänhet kan spänningen variera längs repet, om detta t ex är accelererat Spänning och atomistiska krafter Kraften på varje element av repet är i jämvikt noll. Om spänningen blir för stor kommer repet att brista. Vi kan kvalitativt förstå detta genom att betrakta repet från en atomistisk utgångspunkt. I en idealiserad modell av repet har vi en endimensionell kedja av molekyler. Antag att

6 Newtons lagar 2 6 kraften F verkar på molekyl 1 i ena ändan av repet. Kraftdiagrammet för molekyl 1 och 2 blir F - F F F F F Ijämvikt är F = F, F = F dvs F = F, F = F etc. Vi ser att snöret förmedlar kraften F. För att förstå hur detta sker, behöver vi titta på naturen hos de interatomistiska krafterna. Kvalitativt beror kraften på avståndet r mellan två atomerellermolekyler. För små avstånd är kraften repulsiv. Den blir noll för r = r 0 och är attraktiv för r>r 0. För stora värden på r avtar kraften till noll. är är r m. När det inte finns någon yttre kraft F så ligger molekylerna påavståndet r 0 från varandra. I annat fall skulle de intermolekylära krafterna leda till att repet tänjes eller drar ihop sig. När vi drar i repet till r = r 2 blir kraften attraktiv och balanserar precis den yttre kraften så att den totala kraften på varje molekyl blir noll. Om snöret vore stelt som en metallstång kunde vi trycka ihop det till r = r 1 där kraften blir repulsiv, och åter balanserar den yttre kraften. Ändringen i längden beror på lutningen av kurvan i r 0. Den attraktiva intermolekylära kraften har ett maximum vid F max. Om den yttre kraften är större än F max kommer snöret att brista Normal- och friktionskrafter Kraften från en yta på en kropp i kontakt med ytan kan delas upp i tvåkomponenter,en vinkelrät mot ytan och en tangentiell till ytan. Den vinkelräta kraften kallas normalkraft och den tangentiella friktionskraft. Normalkraften har samma ursprung som spänningen i ett snöre. När vi lägger en kropp på en yta, t ex ett bord, kommer molekylerna F(r) r 1 r 0 r i kroppen att utöva en nedåtriktad kraft på molekylerna i bordet. Molekylerna i bordet rör sig nedåt tills repulsionen från molekylerna i lagren nedanför balanserar den yttre kraften. Normalkraften N är motriktad till resultanten till alla krafter på ytan. Friktion uppkommer när ytan av en kropp rör sig över ytan av en annan kropp. Storleken på friktionenberorpå ytans egenskaper och den relativa hastigheten. Friktionen är alltid motriktad den rörelse vilken skulle äga rum om friktionen inte fanns. För många ytor får man F fn där N är normalkraften och f är friktionskoefficienten eller friktionstalet. När en kropp rör sig över en yta är friktionskraften riktad motsatt den instantana hastigheten och har storleken fn ookes lag, fjäderkraft Utsträckningen av en fjäder är proportionell mot kraften F s = kx där k är en konstant kallad fjäderkonstanten och x är fjäderns förlängning från jämviktsläget. Det negativa tecknet innebär att F s alltid försöker återställa fjädern till jämvikt. En kraft vilken uppfyller ookes lag kallas en linjärt elastisk kraft. ookes lag bryter samman vid stora förlängningar av fjädern. r

7 Newtons lagar Viskositet En kropp vilken rör sig genom en vätska eller en gas bromsas av krafter från viskositeten hos vätskan. Till skillnad från friktionskrafter har viskösa krafter ett enkelt hastighetsberoende och är proportionella mot kroppens hastighet. Viskositet uppstår eftersom en kropp vilken rör sig i ett medium påverkar detta med krafter vilka försöker motverka rörelsen. Från Newtons tredje lag utövar vätskan en reaktionskraft på kroppen. Vi kan skriva den viskösa kraften som F v = Cv där C är en konstant vilken beror på vätskan och kroppens form. Rörelseekvationen blir Nu är eller m dv dt = Cv dv dt = dv dˆv ˆv + v dt dt m dv dt = dv dˆv ˆv + mv dt dt = Cvˆv Eftersom ˆv är en enhetsvektor är ˆv vinkelrät mot ˆv, dvs m dv dt = Cv vilket ger lösningen v(t) =v 0 e (C/m)t

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Läsåret 11/12 Utförliga lärandemål SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Richard Hsieh Huvudsakligt innehåll: Vektoralgebra och dimensionsbetraktelser. Kraft och kraftmoment. Kraftsystem; kraftpar,

Läs mer

Grundläggande om krafter och kraftmoment

Grundläggande om krafter och kraftmoment Grundläggande om krafter och kraftmoment Text: Nikodemus Karlsson Original character art by Esa Holopainen, http://www.verikoirat.com/ Krafter - egenskaper och definition Vardaglig betydelse Har med påverkan

Läs mer

Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar.

Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar. öreläsning 2,dynamik Partikeldynamik handlar om hur krafter påverkar partiklar. Exempel ges på olika typer av krafter, dessa kan delas in i mikroskopiska och makroskopiska. De makroskopiska krafterna kan

Läs mer

NEWTONS 3 LAGAR för partiklar

NEWTONS 3 LAGAR för partiklar wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir

Läs mer

" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar

 e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------

Läs mer

Mekanik FK2002m. Kraft och rörelse I

Mekanik FK2002m. Kraft och rörelse I Mekanik FK2002m Föreläsning 4 Kraft och rörelse I 2013-09-05 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 4 Introduktion Hastighet Langt under 3x10 8 Nara : 3x10 8 Storlek 10 9 Langt over : 10 9 Klassisk

Läs mer

14. Elektriska fält (sähkökenttä)

14. Elektriska fält (sähkökenttä) 14. Elektriska fält (sähkökenttä) För tillfället vet vi av bara fyra olika fundamentala krafter i universum: Gravitationskraften Elektromagnetiska kraften, detta kapitels ämne Orsaken till att elektronerna

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)

Läs mer

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande

Läs mer

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från

Läs mer

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11 Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd

Läs mer

6.2 Partikelns kinetik - Tillämpningar Ledningar

6.2 Partikelns kinetik - Tillämpningar Ledningar 6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste

Läs mer

Mer Friktion jämviktsvillkor

Mer Friktion jämviktsvillkor KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning

Läs mer

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten.

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten. Tentamen 1, Mekanik KF HT2011 26:e November. Hjälpmedel: Physics handbook alt. Formelblad, Beta mathematics handbook, pennor, linjal, miniräknare. Skrivtid: 5 timmmar. För godkänt krävs minst 18/36 på

Läs mer

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning). STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när

Läs mer

Planetrörelser. Lektion 4

Planetrörelser. Lektion 4 Planetrörelser Lektion 4 Äldre tiders astronomer utvecklade geocentriska (jorden i centrum) modeller för att förklara planeternas rörelser retrograd rörelse direkt rörelse Liksom solen och månen så rör

Läs mer

Krafter och Newtons lagar

Krafter och Newtons lagar Mekanik I, Laboration 2 Krafter och Newtons lagar Newtons andra lag är det viktigaste hjälpmedel vi har för att beskriva vad som händer med en kropp och med kroppens rörelse när den påverkas av andra kroppar.

Läs mer

Mekanik FK2002m. Repetition

Mekanik FK2002m. Repetition Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r

Läs mer

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt i fysik åk 9, VT03 och kompletterande teorimateriel Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt, VT 03 Antal lektioner: fem st. (9 jan, 16 jan, 3 jan, 6 feb,

Läs mer

# o,too 26L 36o vq. Fy 1-mekaniken i sammandrag. 1 Rörelsebeskrivning (linjebunden rörelse) )-'f* 1.1 Hastighet och acceleration, allmänt

# o,too 26L 36o vq. Fy 1-mekaniken i sammandrag. 1 Rörelsebeskrivning (linjebunden rörelse) )-'f* 1.1 Hastighet och acceleration, allmänt Fy 1-mekaniken i sammandrag version 0.3 [140820] Christian Karlsson En del saker nedan tas inte upp i Fy 1-kursen, men är bra att med sig inför Fy 2. Dessa saker är markerade med [NYTT!]. 1 Rörelsebeskrivning

Läs mer

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen 2015-06-12 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar

Läs mer

Definitioner: hastighet : v = dr dt = r fart : v = v

Definitioner: hastighet : v = dr dt = r fart : v = v KOMIHÅG 8: --------------------------------- Jämvikten kan rubbas: stjälpning, glidning Flexibla system- jämvikt bara i jämviktslägen ---------------------------------- Föreläsning 9: PARTIKELKINEMATIK

Läs mer

Inre krafters resultanter

Inre krafters resultanter KOMIHÅG 6: --------------------------------- Torr friktion: F " µn Normalkraftens angrepp?? Risk för glidning eller stjälpning ---------------------------------- Föreläsning 7: Inre krafters resultanter

Läs mer

Mekanik FK2002m. Kinetisk energi och arbete

Mekanik FK2002m. Kinetisk energi och arbete Mekanik FK2002m Föreläsning 6 Kinetisk energi och arbete 2013-09-11 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 6 Introduktion Idag ska vi börja prata om energi. - Kinetisk energi - Arbete Nästa gång

Läs mer

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14 Tentamen i Fysik TEN 1: Tekniskt basår 009-04-14 1. En glaskolv med propp har volymen 550 ml. När glaskolven vägs har den massan 56, g. Därefter pumpas luften i glaskolven bort med en vakuumpump. Därefter

Läs mer

Krafter och Newtons lagar

Krafter och Newtons lagar Mekanik I, Laboration 2 Krafter och Newtons lagar Fysiska föremål, kroppar, kan påverka varandra ömsesidigt, de kan växelverka. För att förklara hur denna växelverkan går till har fysikvetenskapen uppfunnit

Läs mer

Lösningar Kap 11 Kraft och rörelse

Lösningar Kap 11 Kraft och rörelse Lösningar Kap 11 Kraft och rörelse Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik 1 Heureka: kapitel 11 11.1.-11.2 Se facit eller figurerna nedan. 1 11.3 Titta på figuren. Dra linjer parallella

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v

Läs mer

Mekanikens historia. Aristoteles och Galilei

Mekanikens historia. Aristoteles och Galilei Kraft och dynamik 8 Vad innebär Newtons lagar? Hur kan en krockkudde rädda liv? Är det sant att en bil som kör med konstant fart inte påverkas av några krafter? Mekanikens historia Aristoteles och Galilei

Läs mer

Lärarhandledning. Kraftshow. Annie Gjers & Felix Falk 2013-10-22

Lärarhandledning. Kraftshow. Annie Gjers & Felix Falk 2013-10-22 Lärarhandledning Kraftshow Annie Gjers & Felix Falk 2013-10-22 Innehållsförteckning 1 Inledning... 3 2 Experiment med förklaringar... 4 2.1 Månen och gravitationen... 4 2.2 Blyplankan... 4 2.3 Dubbelkon

Läs mer

Föreläsning 17: Jämviktsläge för flexibla system

Föreläsning 17: Jämviktsläge för flexibla system 1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla

Läs mer

Föreläsning 5, clickers

Föreläsning 5, clickers Föreläsning 5, clickers Gungbrädan 1 kg 2 kg A. Kommer att tippa åt höger B. Kommer att tippa åt vänster ⱱ C. Väger jämnt I en kastparabel A. är accelerationen störst alldeles efter uppkastet B. är accelerationen

Läs mer

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar.

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Mekanik KF, Moment 1 Datum: 2012-08-25 Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Del 1 (Lämna in denna del med dina

Läs mer

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna.

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna. Fysik 1 övningsprov 1-13 facit Besvara 6 frågor. Återlämna uppgiftspappret! 1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna..

Läs mer

" e n och Newtons 2:a lag

 e n och Newtons 2:a lag KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar

Läs mer

Repetitionsuppgifter i Fysik 1

Repetitionsuppgifter i Fysik 1 Repetitionsuppgifter i Fysik 1 Uppgifterna i detta häfte syftar till att kort repetera några begrepp från fysiklektionerna i höstas. Det är inte på något sätt ett komplett repetionsmaterial, utan tanken

Läs mer

Laboration: Krafter och Newtons lagar

Laboration: Krafter och Newtons lagar Institutionen för fysik och astronomi Laboration: Krafter och Newtons lagar Instruktionen består av två delar: 1. Laborationsinstruktion (detta häfte) 2. Svarshäfte Laborationsinstruktionen, detta häfte,

Läs mer

Biomekanik, 5 poäng Kinetik

Biomekanik, 5 poäng Kinetik Teori: F = ma Dessutom gäller, som i statien, Newtons 3: lag! Newtons lagar 1. Tröghetslagen: En ropp utan yttre raftpåveran förblir i sitt tillstånd av vila eller liformig, rätlinjig rörelse.. Accelerationslagen:

Läs mer

9.1 Kinetik Rotation kring fix axel Ledningar

9.1 Kinetik Rotation kring fix axel Ledningar 9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn

Läs mer

Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft.

Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft. Kraft Allmänt om kraft * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft. * Det finns olika krafter t ex; tyngdkraft, friktionskraft, motkraft. * Krafter kan

Läs mer

Einstein's Allmänna relativitetsteori. Einstein's komplexa Allmänna relativitetsteori förklaras så att ALLA kan förstå den

Einstein's Allmänna relativitetsteori. Einstein's komplexa Allmänna relativitetsteori förklaras så att ALLA kan förstå den Einstein's Allmänna relativitetsteori Einstein's komplexa Allmänna relativitetsteori förklaras så att ALLA kan förstå den Allmänna relativitetsteorin - Fakta Einsten presenterade teorin 10 år efter den

Läs mer

Laboration 2 Mekanik baskurs

Laboration 2 Mekanik baskurs Laboration 2 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Friktionskraft är en förutsättning för att våra liv ska fungera på ett mindre omständigt sätt. Om friktionskraften

Läs mer

Basala kunskapsmål i Mekanik

Basala kunskapsmål i Mekanik Basala kunskapsmål i Mekanik I kunskapsmålen nedan används termerna definiera, förklara och redogöra återkommande. Här följer ett försök att klargöra vad som avses med dessa. Definiera Skriv ner en definition,

Läs mer

1 Den Speciella Relativitetsteorin

1 Den Speciella Relativitetsteorin 1 Den Speciella Relativitetsteorin På tidigare lektioner har vi studerat rotationer i två dimensioner samt hur vi kan beskriva föremål som roterar rent fysikaliskt. Att från detta gå över till den speciella

Läs mer

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform. Van der Waals gas Introduktion Idealgaslagen är praktisk i teorin men i praktiken är inga gaser idealgaser Den lättaste och vanligaste modellen för en reell gas är Van der Waals gas Van der Waals modell

Läs mer

. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt:

. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt: KOMIHÅG 19: ------------------------------------------------------ Dämpade vibrationer: Fria fallet Kritisk dämpningsrörelse x(t) = e "# nt ( B + Ct) + x j Svag dämpningsrörelse x(t) = e "#$ nt ( Bcos(

Läs mer

Krafter och moment. mm F G (1.1)

Krafter och moment. mm F G (1.1) 1 Krafter och moment 1.1 Inledning örståelsen för hur olika typer av krafter påverkar strukturer i vår omgivning är grundläggande för ingenjörsvetenskapen inom byggnadskonsten. Gravitationskraften är en

Läs mer

Mekanikens historia. Aristoteles och Galilei

Mekanikens historia. Aristoteles och Galilei Kraft och dynamik 9 Vad innebär Newtons lagar? Hur kan en krockkudde rädda liv? Är det sant att en bil som kör med konstant fart inte påverkas av några krafter? Mekanikens historia Aristoteles och Galilei

Läs mer

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2 Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π

Läs mer

1.5 Våg partikeldualism

1.5 Våg partikeldualism 1.5 Våg partikeldualism 1.5.1 Elektromagnetisk strålning Ljus uppvisar vågegenskaper. Det är bland annat möjligt att åstadkomma interferensmönster med ljus det visades av Young redan 1803. Interferens

Läs mer

Datum: , , , ,

Datum: , , , , RR:1 Instruktion till laborationen ROTERANDE REFERENSSYSTEM Författare: Lennart Selander, Svante Svensson Datum: 2000-02-21, 2004-12-02, 2006-12-01, 2012-02-03, 2013-01-22 Mål Att få erfarenhet av de fenomen

Läs mer

Övningar till datorintroduktion

Övningar till datorintroduktion Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)

Läs mer

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13. Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Det finns olika typer av krafter och alla mäts med enheten newton. Enheten newton förkortas med stort N.

Det finns olika typer av krafter och alla mäts med enheten newton. Enheten newton förkortas med stort N. Ugglans NO Fysik - Mekanik Mekanik är en av fysikens äldsta vetenskaper. Den handlar om rörelse och jämvikt och vad som händer när föremål utsätts för krafter. Kunskap om mekanik är nödvändig och grundläggande

Läs mer

Massa och vikt Mass and weight

Massa och vikt Mass and weight Massa och vikt Mass and weight Massa beskriver hur mycket materia e> föremål innehåller, det är ju konstant oavse> vilken tyngdkraeen är. Kapitel 4: Newtons 2:a lag Vikten beror enbart på hur tyngdkraeen

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

1. Stela kroppars mekanik

1. Stela kroppars mekanik 1. Stela kroppars mekanik L1 Med en stel kropp menas ett föremål som inte böjer sig eller viker sig på något sätt. (Behandlingen av icke stela kroppar hör inte till gymnasiekursen) 1.1 Kraftmoment, M Ett

Läs mer

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta

Läs mer

Sammanfattning Fysik A - Basåret

Sammanfattning Fysik A - Basåret Sammanfattning Fysik A - Basåret Martin Zelan, Insitutionen för fysik 6 december 2010 1 Inledning: mätningar, värdesiffror, tal, enheter mm 1.1 Värdesiffror Avrunda aldrig del uträkningar, utan vänta med

Läs mer

Övningsuppgifter till Originintroduktion

Övningsuppgifter till Originintroduktion UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft

Läs mer

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation ANDREA REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se oulombs lag och Maxwells första ekvation oulombs lag och Maxwells första ekvation Inledning Två punktladdningar q 1 samt q 2 i rymden

Läs mer

Fysik 1 kapitel 6 och framåt, olika begrepp.

Fysik 1 kapitel 6 och framåt, olika begrepp. Fysik 1 kapitel 6 och framåt, olika begrepp. Pronpimol Pompom Khumkhong TE12C Laddningar som repellerar varandra Samma sorters laddningar stöter bort varandra detta innebär att de repellerar varandra.

Läs mer

Prov Fysik 2 Mekanik

Prov Fysik 2 Mekanik Prov Fysik 2 Mekanik Instruktion för elevbedömning: Efter varje fråga finns tre rutor. Rutan till vänster ska ha en lösning på E-nivå. Om det går att göra en lösning som är klart bättre - på C-nivå - då

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2 Lina Rogström linro@ifm.liu.se Lösningar till tentamen 150407, Fysik 1 för Basåret, BFL101 Del A A1. (2p) Eva kör en bil med massan 1500 kg med den konstanta hastigheten 100 km/h. Längre fram på vägen

Läs mer

Kapitel extra Tröghetsmoment

Kapitel extra Tröghetsmoment et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

Lufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss.

Lufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Repetition, del II Lufttryck Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Med samma resonemang som för vätskor kommer vi fram till att lufttrycket på en viss yta ges av tyngden

Läs mer

Biomekanik, 5 poäng Jämviktslära

Biomekanik, 5 poäng Jämviktslära Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande

Läs mer

Relativitetsteori, introduktion

Relativitetsteori, introduktion Relativitetsteori, introduktion En av bristerna med den klassiska fysiken är att alla observatörer antas ha samma tidsuppfattning, oavsett sin egen rörelse. Einstein kunde visa att så inte kunde vara fallet.

Läs mer

5.9 Fysik. Mål för undervisningen

5.9 Fysik. Mål för undervisningen 5.9 Fysik Undervisningen i fysik ska hjälpa den studerande att utveckla ett naturvetenskapligt tänkande och en naturvetenskaplig världsbild som en del av en mångsidig allmänbildning. Undervisningen ska

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 1 september 2012 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

Repetition Mekanik, grundkurs

Repetition Mekanik, grundkurs Repetition Mekanik, grundkurs Kraft är en vektor och beskrivs med storlek riktning och angreppspunkt F= Fe + F e + Fe x x y y z z Kraften kan flytta längs sin verkninglinje Addera krafter Moment i planet

Läs mer

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft

Läs mer

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer

Läs mer

Basåret, Fysik 2 25 februari 2014 Lars Bergström

Basåret, Fysik 2 25 februari 2014 Lars Bergström Basåret, Fysik 2 25 februari 2014 Lars Bergström Alla bilder finns på kursens hemsida www.physto.se/~lbe/bas_fysik_2_lbe.html (nås via Mondo - Fysik 2) Del 1 byte byte Kursens innehåll, från hemsidan:

Läs mer

1. Kinematik (läran om rörelse)

1. Kinematik (läran om rörelse) 1. Kinematik (läran om rörelse) L1 Kinematik är det område inom fysiken som behandlar rörelse hos olika objekt. Vi definierar här rörelse som begrepp, och hur vi kan beskriva rörelse hos föremål. 1.1 Position

Läs mer

Mer om E = mc 2. Version 0.4

Mer om E = mc 2. Version 0.4 1 (6) Mer om E = mc Version 0.4 Varifrån kommer formeln? För en partikel med massan m som rör sig med farten v har vi lärt oss att rörelseenergin är E k = mv. Denna formel är dock inte korrekt, även om

Läs mer

Laboration 2 Mekanik baskurs

Laboration 2 Mekanik baskurs Laboration 2 Mekanik baskurs Utförs av: William Sjöström Oskar Keskitalo Uppsala 2014 12 11 1 Introduktion När man placerar ett föremål på ett lutande plan så kommer föremålet att börja glida längs med

Läs mer

ARBETE VAD ÄR DET? - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

ARBETE VAD ÄR DET? - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. Inledning ARBETE VAD ÄR DET? När vi till vardags pratar om arbete är det en helt annan sak än begreppet arbete i fysikens värld. Ett lönearbete är t ex att arbeta som vaktpost utanför Buckingham Palace.

Läs mer

Kursupplägg Vecka 11-19

Kursupplägg Vecka 11-19 Kursupplägg Vecka 11-19 Det gäller att lista ut hur ni ska släppa ett rått ägg från 10 meter utan att det går sönder. Till hjälp har vi undervisning i fysik gällande kraft, tryck och rörelse. Antar ni

Läs mer

Innehåll. Förord...11. Del 1 Inledning och Bakgrund. Del 2 Teorin om Allt en Ny modell: GET. GrundEnergiTeorin

Innehåll. Förord...11. Del 1 Inledning och Bakgrund. Del 2 Teorin om Allt en Ny modell: GET. GrundEnergiTeorin Innehåll Förord...11 Del 1 Inledning och Bakgrund 1.01 Vem var Martinus?... 17 1.02 Martinus och naturvetenskapen...18 1.03 Martinus världsbild skulle inte kunna förstås utan naturvetenskapen och tvärtom.......................

Läs mer

Gunga med Galileo matematik för hela kroppen

Gunga med Galileo matematik för hela kroppen Ann-Marie Pendrill Gunga med Galileo matematik för hela kroppen På en lekplats eller i en nöjespark finns möjlighet att påtagligt uppleva begrepp från fysik och matematik med den egna kroppen. Med hjälp

Läs mer

Karl Björk ELEMENTÄR. Tredje upplagan

Karl Björk ELEMENTÄR. Tredje upplagan Karl Björk ELEMENTÄR Tredje upplagan Förord till första upplagan Föreliggande bok i elementär mekanik är tänkt som stöd i undervisningen i huvudmomentet mekanik i blockämnet teknologi. Det förutsätts att

Läs mer

MEKANIKENS GYLLENE REGEL

MEKANIKENS GYLLENE REGEL MEKANIKENS GYLLENE REGEL Inledning Det finns olika sätt att förflytta föremål och om du ska flytta en låda försöker du säkert komma på det enklaste sättet, det som är minst jobbigt för dig. Newton funderade

Läs mer

FINALTÄVLING SVENSKA FYSIKERSAMFUNDET

FINALTÄVLING SVENSKA FYSIKERSAMFUNDET FYSIKTÄVLINGEN FINALTÄVLING 24 april 1999 SVENSKA FYSIKERSAMFUNDET 1. Estimate, by using generally known properties of a typical car, the energy content of one litre of petrol. Some typical data for a

Läs mer

Uppgifter till KRAFTER

Uppgifter till KRAFTER Uppgifter till KRAFTER Peter Gustavsson Per-Erik Austrell 1 Innehåll 1 Introduktion till statiken... 3 A-uppgifter...3 2 Krafter... 5 A-uppgifter...5 B-uppgifter...5 3 Moment... 7 A-uppgifter...7 B-uppgifter...9

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 006-08-8 Tentaen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen Ett glatt hoogent klot ed assan vilar ot två plana, hårda och glatta

Läs mer

Inlämningsuppgift 1. 1/ Figuren visar ett energischema för Ulla som går uppför en trappa. I detta fall sker en omvandling av energi i Ullas muskler.

Inlämningsuppgift 1. 1/ Figuren visar ett energischema för Ulla som går uppför en trappa. I detta fall sker en omvandling av energi i Ullas muskler. Inlämningsuppgift 1 1/ Figuren visar ett energischema för Ulla som går uppför en trappa. I detta fall sker en omvandling av energi i Ullas muskler. Oftast använder vi apparater och motorer till att omvandla

Läs mer

Kraft, tryck och rörelse

Kraft, tryck och rörelse Kraft, tryck och rörelse Kraft En kraft kan ändra form, fart och rörelseriktning hos föremål. Kraft mäts i Newton, N. Enheten är uppkallad efter fysikern Isaac Newton som levde på 1600- talet. 1 N är ungefär

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 3/9 2009 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

1 Den Speciella Relativitetsteorin

1 Den Speciella Relativitetsteorin 1 Den Speciella Relativitetsteorin Den speciella relativitetsteorin är en fysikalisk teori om lades fram av Albert Einstein år 1905. Denna teori beskriver framför allt hur utfallen (dvs resultaten) från

Läs mer

9.2 Kinetik Allmän plan rörelse Ledningar

9.2 Kinetik Allmän plan rörelse Ledningar 9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,

Läs mer

FRÅN MASSA TILL TYNGD

FRÅN MASSA TILL TYNGD FRÅN MASSA TILL TYNGD Inledning När vi till vardags pratar om vad något väger använder vi orden vikt och tyngd på likartat sätt. Tyngd associerar vi med tung och söker vi på ordet tyngd i en synonymordbok

Läs mer

elektrostatik: laddningar I vila eller liten rörelse utan acceleration

elektrostatik: laddningar I vila eller liten rörelse utan acceleration Ellära 1 Elektrostatik, kap 22 Eleonora Lorek Begrepp elektricitet (franska électricité, till nylatin ele ctricus, till latin ele ctrum, av grekiska ē lektron 'bärnsten'), ursprungligen benämning på den

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 7 januari 0 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG. (a) Falltiden fås ur (positiv riktning nedåt) s v 0 t + at t s 0 a s,43 s. 9,8 (b) Välj origo

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 8 januari 1 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. Ballongens volym är V = πr h = 3,14 3 1,5 m 3 = 4,4 m 3. Lyftkraften från omgivande luft är

Läs mer

Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar

Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar elativitetsteorins grunder, våren 2016 äkneövning 6 Lösningar 1. Gör en Newtonsk beräkning av den kritiska densiteten i vårt universum. Tänk dig en stor sfär som innehåller många galaxer med den sammanlagda

Läs mer