Station 1: Tiobasmaterial

Storlek: px
Starta visningen från sidan:

Download "Station 1: Tiobasmaterial"

Transkript

1 Station 1: Tiobasmaterial Med hjälp av sk. tiobasmaterial kan egenskaperna hos vårt decimala positionssystem illustreras. Er uppgift är att undersöka hur tal kan konkretiseras med hjälp av tiobasmaterial tusenkub, hundraplattor, tiostavar och enkuber samt med annat material, till exempel 10-äggs kartonger. 1. Konkretisera följande tal med äggkartonger och enkuber: 8, 13 och a) Konkretisera följande tal med tiobasmaterialet: 38, 426 och b) Visa de tal som fås då varje position i ovanstående tal minskas med två enheter. 3. Konkretisera turvis ett valbart tre- eller fyrsiffrigt tal. Låt de andra beskriva talen. 4. Diskutera möjligheter och begränsningar hos ovanstående material!

2 Station 2: Multilink och plockmaterial Taluppfattningen kan tränas med hjälp av olika slags plockmaterial såsom knappar och stenar eller klossar av typen multilink eller unifix (bilden visar unifix-klossar). a) Välj tre tal inom talområdet Konkretisera dessa på olika sätt med knappar respektive multilink. b) Jämför och diskutera likheter och skillnader mellan knappar och multilink-klossar som konkretionsmaterial.

3 Station 3: Kulramen Abacusen eller kulramen är ett av många räknehjälpmedel som uppfunnits för att göra det lättare att räkna med stora tal. Den äldsta abacusen man känner till är en typ av räknebord som användes i Babylonien runt 300 f.kr (se bild!). Modernare abacustyper består av metalltrådar monterade i en ram och med fritt rörliga kulor. Det finns även sk öppna abacusar där varje position i talet markeras med en pinne.(en utmärkt källa för den som vill läsa om abacusens historia mm. är Ni skall studera två moderna kulramar; den horisontella ryska abacusen och den vanliga lodräta skolabacusen. Den senare liknar de abacusar som använts i Japan och Kina. 1. Konkretisera talen 7, 13, 95, 107, 299 och 7009 med hjälp av både den horisontella och den lodräta abacusen. 2. Konkretisera turvis ett tresiffrigt tal på den lodräta abacusen och låt de övriga i gruppen förklara vilket tal som visas. 3. Visa talet 625 på den lodräta abacusen. Illustrera stegvis de tal som erhålles då det ursprungliga talet ökas, först med 7 ental, sedan med 8 tiotal och ytterligare med 8 hundratal. Vilka tal bildas? Diskutera slutligen utveckling av taluppfattning med den horisontella och lodräta abacusen som konkretion. Vilka insikter behöver eleven?

4 Station 4: Pengar Eurosedlar och mynt är bra material för träning av taluppfattning. Alla har behov av att lära sig om pengar och deras värde. Laborationer med pengar blir matematik i funktion. Passar pengar som material även vid undervisning om positionssystemet egenskaper? Varför kan det bli en besvärlig omväg att tänka "i pengar" vid begreppsutveckling och lärande av positionssystemet? Illustrera följande tal med pengar på olika sätt Lägg parallellt med detta ut sifferkort som illustration för respektive tal. Jämför pengar och sifferkort som konkretionsmaterial för tal! Vad kan ni säga om graden av abstraktion?

5 Station 5: Undersök tal 1.. ( 4 9 är exempel på sifferkort) a) Tag tre sifferkort Vilka tal kan du symbolisera med hjälp av korten? b) Tag fem sifferkort. Skriv det största talet du kan bilda i utvecklad form. c) Illustrera sambandet mellan det största talet och dess utvecklade form med hjälp av de tomma talkorten. (Skriv på korten med taveltusch, sudda sedan ut) d) Vad är skillnaden mellan antal och tal? 2. Lägg ut med hjälp av sifferkorten: a) en talföljd av alla jämna tal inom talområdet 0-30 b) en talföljd av alla udda tal inom talområdet 0-30 c) en talföljd av alla primtal inom talområdet 0-30 (Ett primtal är ett heltal > 1 (större än ett) som inte kan skrivas som produkten av två heltal som båda är > 1) 3. Vilket tal inom talområdet 0-25 har den största siffersumman? 4. Illustrera med hjälp av multilink alla tal av följande typer, som finns inom talområdet 0-30: a) triangeltal b) kvadrattal Triangeltal och kvadrattal kallas även FIGURATIVA tal eftersom de kan illustreras som trianglar respektive kvadrater. (Talet 1 kan räknas som både triangeltal och kvadrattal)

6 Station 6: Exakt eller ungefär?? 1. På bordet finns 15 sifferkort. Hur utläses a) det minsta tal du kan bilda b) det största tal du kan bilda med dessa 15 siffror. 2. Är talen i texterna nedan exakta eller närmevärden? Diskutera! Gör upp en tabell. a) USA-vännerna i Vasa firade 60-års jubileum. b) statliga jobb skall bort. c) Tre städer använde två tredjedelar av vårdresurserna. d) SOK köper sex badhotell. e) Föreningen skall donera euro för att skaffa mat till de värst drabbade. f) Leitner fortsätter tre år till som alpina landslagets tränare. g) 7000 saknar bostad i Helsingfors stad. Staden skulle bygga 1130 bostäder i år och många tyckte det var väl njuggt. h) Uthyres 2 rum och kök, 57 kvadratmeter. i) Säljes Scoda Octavia, km, kvalitetsbil vars värde består. j) I övermorgon väljer 12 miljoner tyskar tre delstatsparlament utan att landets två stora partier varit särskilt kritiska. 3. a) Vad är en avrundningssiffra? b) Vilka regler gäller för avrundning?

7 Konkret material, ex. Tiobas Unifix Kulram TU H TI E

Arbetsblad 1:10. Avrundning. 1 a) 17,8 b) 156,3 c) 19,09 2 a) 30,49 b) 6,85 c) 49,64

Arbetsblad 1:10. Avrundning. 1 a) 17,8 b) 156,3 c) 19,09 2 a) 30,49 b) 6,85 c) 49,64 Arbetsblad 1:10 Avrundning Avrunda till heltal 1 a) 17,8 b) 156,3 c) 19,09 2 a) 30,49 b) 6,85 c) 49,64 Avrunda till tiotal 3 a) 88 b) 19 c) 164 4 a) 144,8 b) 347,5 c) 29,39 5 a) 43,5 b) 163,99 c) 496,1

Läs mer

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå

Läs mer

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

Gleerups Utbildning AB Box 367, 201 23 Malmö Kundservice tfn 040-20 98 10 Kundservice fax 040-12 71 05 e-post info@gleerups.se www.gleerups.

Gleerups Utbildning AB Box 367, 201 23 Malmö Kundservice tfn 040-20 98 10 Kundservice fax 040-12 71 05 e-post info@gleerups.se www.gleerups. Lärarhandledning I din hand håller du ett läromedel från Gleerups. Gleerups författare är lärare med erfarenhet från klassrummet. Lärare och elever hjälper till att utveckla våra läromedel genom värdefulla

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Matte. Safari. Direkt. Lärarhandledning B O N N I E R S. Andra upplagan, reviderade sidor

Matte. Safari. Direkt. Lärarhandledning B O N N I E R S. Andra upplagan, reviderade sidor Matte Direkt Siw Elofsdotter Meijer Margareta Picetti Pernilla Falck Safari 2B Lärarhandledning B O N N I E R S 6 Tal K6 Kapitlet tar upp tal till och med 500 och inleds med att eleverna räknar 100 i taget.

Läs mer

Lässvårigheter och räknesvårigheter pedagogiska förslag och idéer

Lässvårigheter och räknesvårigheter pedagogiska förslag och idéer Lässvårigheter och räknesvårigheter pedagogiska förslag och idéer Görel Sterner Artikel ur Svenska Dyslexiföreningens och Svenska Dyslexistiftelsens tidskrift Dyslexi aktuellt om läs- och skrivsvårigheter

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Matematik Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven

Läs mer

En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden.

En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden. En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden. Man ser en jämn ström av uppseendeväckande scenarier. Man undviker nog

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

Matte med fingerkänsla

Matte med fingerkänsla Matte med fingerkänsla Åk 2 Konkret matematik i nybörjarundervisningen Författare: Janne Junttila och Kerttu Ristola Oulun Matikkamaa (Mattelandet i Uleåborg) 2012 Lärmiljöprojekt 1 Matte med fingerkänsla

Läs mer

Matematik klass 3 lärarhandledning

Matematik klass 3 lärarhandledning Matematik klass 3 lärarhandledning Aritmetik höstterminen åk 3 Sidan 3-10 Aritmetik vårterminen åk 3 sidan 11-19 Problemlösning nummer 3 sidan 20-24 Laborativt materiel Sidan 25 Litteratur sidan 26 Anneli

Läs mer

Talmönster och algebra. TA

Talmönster och algebra. TA Talmönster och algebra. TA Diagnoserna i området avser att kartlägga om eleverna kan upptäcka talmönster samt på olika sätt bearbeta algebraiska uttryck och ekvationer. Förståelse av koordinatsystem och

Läs mer

MATEMATIK I FAMILJEN

MATEMATIK I FAMILJEN MATEMATIK I FAMILJEN Matematik i skolan Lärostoffet i matematik har under årens lopp genomgått endast små förändringar. Det brukar därför vara lätt för föräldrarna att känna igen innehållet i lärokurserna

Läs mer

Konkretisering av matematiska begrepp i skolan

Konkretisering av matematiska begrepp i skolan Karin Kairavuo Konkretisering av matematiska begrepp i skolan Den kinesiska författaren och nobelpristagaren i litteratur, Gao Xingjian, använder en spännande metod i sitt arbete. Han talar in sina blivande

Läs mer

Känguru 2013 Ecolier sida 1 / 6 (åk 4 och 5) i samarbete med Pakilan ala-aste och Jan-Anders Salenius vid Brändö gymnasium

Känguru 2013 Ecolier sida 1 / 6 (åk 4 och 5) i samarbete med Pakilan ala-aste och Jan-Anders Salenius vid Brändö gymnasium Känguru 2013 Ecolier sida 1 / 6 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal!

Läs mer

Den kinesiska abakusen - ett möjligt mattelyft! Abakus på gång i Sverige

Den kinesiska abakusen - ett möjligt mattelyft! Abakus på gång i Sverige Den kinesiska abakusen - ett möjligt mattelyft! Jag som skriver detta, arbetar som speciallärare på gymnasiet och inom vuxenutbildning. Jag håller också kurser för pedagoger som vill lära sig hantera abakusen

Läs mer

Kängurutävlingen Matematikens hopp

Kängurutävlingen Matematikens hopp Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt

Läs mer

18 Eldorado 5 A Lärarbok Undervisning att skapa förutsättningar för elevers lärande

18 Eldorado 5 A Lärarbok Undervisning att skapa förutsättningar för elevers lärande Undervisning att skapa förutsättningar för elevers lärande I Kommentarmaterialets inledning står att läsa: Avsikten med materialet är att ge en bredare och djupare förståelse för de urval och ställningstaganden

Läs mer

Veckomatte åk 4 med 10 moment

Veckomatte åk 4 med 10 moment Veckomatte åk 4 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik 3 Grundläggande struktur i Veckomatte - Åk 4 4 Veckomatte och det centrala innehållet i

Läs mer

UPPGIFT 1 FORTSÄTT TALFÖLJDEN

UPPGIFT 1 FORTSÄTT TALFÖLJDEN UPPGIFT 1 FORTSÄTT TALFÖLJDEN Att fortsätta en påbörjad talföljd är en vanlig sorts uppgift i såväl matteböcker som IQ-tester. Men det smartaste måste väl ändå vara att skriva ett datorprogram som löser

Läs mer

STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år.

STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. STYRANDE SATSER 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. Vilket år är du född? 1971 Då har du bara 35 år kvar

Läs mer

Kommunövergripande Mål i matematik, åk 1-9

Kommunövergripande Mål i matematik, åk 1-9 Kommunövergripande Mål i matematik, åk 1-9 Många skolor har lagt ner mycket tid på att omforma de mål som anges på nationell nivå till undervisningsmål på den egna skolan. Tanken är att vi nu ska kunna

Läs mer

Labora&v matema&k - för en varierad undervisning

Labora&v matema&k - för en varierad undervisning Labora&v matema&k - för en varierad undervisning Per Berggren & Maria Lindroth 2012-02- 23 Lgr11- Matema&ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar

Läs mer

Matematik klass 2. lärarhandledning

Matematik klass 2. lärarhandledning Matematik klass 2 lärarhandledning Aritmetik höstterminen åk 2 sidan 2-14 Aritmetik vårterminen åk 2 sidan 15-30 Problemlösning nummer 2 sidan 31-37 Laborativt materiel sidan 38 Litteratur sidan 39 Anneli

Läs mer

Sociala strävansmål. De två övergripande områdena är: Normer och värderingar Ansvar och inflytande

Sociala strävansmål. De två övergripande områdena är: Normer och värderingar Ansvar och inflytande Skolans kunskapsmål I läroplanen, Lpo 94, finns kunskapsmålen för grundskolans undervisning beskrivna. Läroplanen anger dessa mål för år 5 och 9, men visar inte vilka detaljkunskaper eleverna ska uppnå.

Läs mer

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.

Läs mer

Lära och utvecklas tillsammans!

Lära och utvecklas tillsammans! Lära och utvecklas tillsammans! Studiematerial Att sätta ord på sin matematik Solveig Eriksson Kompetensutveckling för sfi lärare Lärarhögskolan i Stockholm Myndigheten för skolutveckling www.lhs.se/ruc/sfi

Läs mer

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK RÖDA TRÅDEN MATEMATIK F-KLASS ÅK 5 F-KLASS TALUPPFATTNING ALGEBRA Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas Matematiska likheter och likhetstecknets

Läs mer

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje.

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje. En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 7 = + + 7 Siffran 6 betyder 6 tusental = 6 tusental hundratal 4 8 7 6 9 tiotal ental Siffran 9 betyder 9 tiotal

Läs mer

Matematikundervisningen har under

Matematikundervisningen har under bengt aspvall & eva pettersson Från datorernas värld Hur kan vi stimulera elever i matematik, och hur kan vi genom matematiken visa delar av datorns funktioner? Författarna visar hur man kan introducera

Läs mer

Målet med undervisningen är att eleverna ges förutsättningar att:

Målet med undervisningen är att eleverna ges förutsättningar att: Matematik Målet med undervisningen är att eleverna ges förutsättningar att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska

Läs mer

UPPGIFT 1 EURO. Utdata: Två rader, som för indata ovan, ser ut som följer: Före resan: bank 1 Efter resan: bank 3

UPPGIFT 1 EURO. Utdata: Två rader, som för indata ovan, ser ut som följer: Före resan: bank 1 Efter resan: bank 3 UPPGIFT 1 EURO Harry ska åka till Portugal och behöver växla till sig 500 Euro från svenska kronor. När han kommer tillbaka från Portugal kommer han att ha 200 Euro över som han vill växla tillbaka till

Läs mer

Förstå tal i bråkform

Förstå tal i bråkform Förstå tal i bråkform Förstå tal i bråkform Erfarenheter i förskoleålder och sedan? Kursplan 2008 Skolan ska i sin undervisning sträva efter att eleven inser värdet av och använder matematikens uttrycksformer

Läs mer

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10 Namn: Hela och halva tusental till 00 000 Addera och subtrahera. 000+ 000= 000 000+ 00 = 00 000-000= 000 000-00 = 00 Skriv talen i fallande ordningsföljd. 000 0 00 0 00 0 00 00 0 000 0 00 0 00 0 00 0 00

Läs mer

Maria Österlund. Klassresan. Mattecirkeln Subtraktion 2

Maria Österlund. Klassresan. Mattecirkeln Subtraktion 2 Maria Österlund Klassresan Mattecirkeln Subtraktion 2 MatteCirkel Subtraktion 2 04 02 18 21.45 Sida 2 KLASSRESAN MATTECIRKELN SUBTRAKTION 2 NAMN: Ett annat förslag är att cykla på Gotland. Klass 5B planerar

Läs mer

subtraktion addition division multiplikation 366 4 = 362 362 + 4 = 366 7 4 = 28 28 4 = 7 term term summa term term differens faktor faktor produkt

subtraktion addition division multiplikation 366 4 = 362 362 + 4 = 366 7 4 = 28 28 4 = 7 term term summa term term differens faktor faktor produkt OCH 2a I din hand håller du ett läromedel från Gleerups. Gleerups utvecklar alltid läromedel tillsammans med lärare och elever. Gleerups läromedel skrivs av lärare, bedöms och utvecklas tillsammans med

Läs mer

Veckobrev för Opalen 1 v 16-18

Veckobrev för Opalen 1 v 16-18 Veckobrev för Opalen 1 v 16-18!!! Hej alla barn och föräldrar! 23 april 2015 Så underbart att våren är här! Det är härligt att se hur glada barnen är ute på rasterna när det inte regnar eller blåser. Det

Läs mer

Klara målen i 3:an - undervisa i matematik!

Klara målen i 3:an - undervisa i matematik! Klara målen i 3:an - undervisa i matematik! Att få chans att lyckas i matematik De flesta elever älskar matte under sitt första skolår. Allas vår önskan är att eleverna ska få en fortsatt intressant och

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

Svenska Finska Estniska. Ryska Engelska Koreanska. Franska Tyska Italienska. Grekiska Danska Norska. Isländska Ungerska Spanska

Svenska Finska Estniska. Ryska Engelska Koreanska. Franska Tyska Italienska. Grekiska Danska Norska. Isländska Ungerska Spanska Kapitel 4 - Nationalitet och språk Aktivering 4.1. Vilka språk talar Åsa och Jens? Vi undersöker vilka språk som talas i gruppen och i världen. Material: språkplansch på väggen med olika språk. Affisch

Läs mer

Aktiviteter förskolan

Aktiviteter förskolan Aktiviteter förskolan Äggkartongsuppdrag Du behöver: Äggkartonger Typ av aktivitet: par Tränar följande: - att bilda par - hälften och dubbelt - geometriska former och talföljder - jämförelseord - antal

Läs mer

Mål som eleverna skall ha uppnått i slutet av år 5 enligt nationella kursplanen

Mål som eleverna skall ha uppnått i slutet av år 5 enligt nationella kursplanen MATEMATIK Mål att sträva mot enligt nationella kursplanen Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den

Läs mer

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter. M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per

Läs mer

18 Eldorado 4 A Lärarbok Undervisning att skapa förutsättningar för elevers lärande

18 Eldorado 4 A Lärarbok Undervisning att skapa förutsättningar för elevers lärande Undervisning att skapa förutsättningar för elevers lärande Eleverna behöver få möta aktiviteter där de får möjlighet att konkret uppleva ett nytt begrepp eller en ny metod, reflektera gemensamt och med

Läs mer

Gemensam presentation av matematiskt område: Ekvationer Åldersgrupp: år 5

Gemensam presentation av matematiskt område: Ekvationer Åldersgrupp: år 5 Gemensam presentation av matematiskt område: Ekvationer Åldersgrupp: år 5 Mål för lektionen: Eleven skall laborativt kunna lösa en algebraisk ekvation med en obekant. Koppling till strävansmål: - Att eleven

Läs mer

Lärarhandledning. Har du som användare frågor eller åsikter, kontakta oss gärna på telefon 040-20 98 00 eller via www.gleerups.se

Lärarhandledning. Har du som användare frågor eller åsikter, kontakta oss gärna på telefon 040-20 98 00 eller via www.gleerups.se Lärarhandledning I din hand håller du ett läromedel från Gleerups. Gleerups författare är lärare med erfarenhet från klassrummet. Lärare och elever hjälper till att utveckla våra läromedel genom värdefulla

Läs mer

Laborativa läromedel

Laborativa läromedel Laborativa läromedel www.lar-lek.se Lär & Lek 2012 Förskoleklass Skolår 1-9 Fritidshem Gymnasium Specialundervisning Habilitering Förskola Innehåll MATEMATIK 3-71 Positionssystemet 4-10 Bas 10 6,7,10 Vågar

Läs mer

Studiehandledning. kurs Matematik 1b

Studiehandledning. kurs Matematik 1b Studiehandledning kurs Matematik 1b Innehållsförteckning Inledning och Syfte... 1 Ämnesplan för ämnet matematik... 1 Ämnets syfte... 1 Centralt innehåll... 2 Problemlösning... 2 Taluppfattning, aritmetik

Läs mer

Laborativa läromedel. Lär & Lek. Förskoleklass Skolår 1-9 Fritidshem Gymnasium Specialundervisning Habilitering Förskola

Laborativa läromedel. Lär & Lek. Förskoleklass Skolår 1-9 Fritidshem Gymnasium Specialundervisning Habilitering Förskola 2011 Laborativa läromedel Lär & Lek Förskoleklass Skolår 1-9 Fritidshem Gymnasium Specialundervisning Habilitering Förskola Innehåll MATEMATIK 3-66 Geometri 4-8 Tangram 9 Positionssystemet 10-13 Bas 10

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

ATT UNDERVISA MULTIPLIKATION OCH DIVISION MED 10, 100 OCH 1000

ATT UNDERVISA MULTIPLIKATION OCH DIVISION MED 10, 100 OCH 1000 EN UTVECKLINGSARTIKEL PUBLICERAD FÖR PEDAGOG STOCKHOLM ATT UNDERVISA MULTIPLIKATION OCH DIVISION MED 10, 100 OCH LEARNING STUDY I PRAKTIKEN Författare: Tina Edner E-post: tina.edner@stockholm.se Skola:

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Matematikens historia (3hp) Vladimir Tkatjev

Matematikens historia (3hp) Vladimir Tkatjev Matematikens historia (3hp) Vladimir Tkatjev Dagens program Introduktion och kursens översikt Talbegreppets utveckling Den äldsta matematiken - EGYPTEN och BABYLON Obligatorisk kurslitteratur Tord Hall

Läs mer

En okänd graf. Förkunskaper Elever behöver ha en grundläggande förståelse för att alla förändringar sker över tid.

En okänd graf. Förkunskaper Elever behöver ha en grundläggande förståelse för att alla förändringar sker över tid. strävorna 6D 9E En okänd graf kreativ verksamhet tolka en situation statistik förändring Avsikt och matematikinnehåll Förr förmedlades information muntligt. När tidningar och senare radio och tv blev allmän

Läs mer

Microsoft Office Excel, Grundkurs 2. Funktioner

Microsoft Office Excel, Grundkurs 2. Funktioner Dokumentation - Kursmaterial Innehåll 2. Funktioner Övningar Kursövning E2.xlsx Egna Övningar E2E.xlsx - OnePRO IT, Bengt Nordström - 1 - www.onepro.se 2.1 Funktioner Funktioner i Excel är ett samlingsbegrepp

Läs mer

Matematik- Geometri och taluppfattning

Matematik- Geometri och taluppfattning Matematik- Geometri och taluppfattning Skolprogram att utföra på egen hand eller tillsammans med handledare från Aeroseum. Lärarhandledning På de nästföljande sidorna finns ett antal uppdrag eller uppgifter

Läs mer

868-797= 737-688= 558-475= 5 675-5 598= +3 +3 6. 1 927-697 8. 967-498. Silverspiran Grundbok B FACIT, KAPITEL 6

868-797= 737-688= 558-475= 5 675-5 598= +3 +3 6. 1 927-697 8. 967-498. Silverspiran Grundbok B FACIT, KAPITEL 6 Subtrahera. Räkna framåt på tallinjen. 90 00 0 0 0 8-99= 9 0 0 0 0 0-8= Subtrahera. -9= - 099= - 96= - 99= 9 6 9 6 868-797= 77-688= 8-7= 67-98= 7 9 8 77 6-87= 0-= 76-97= -89= 78 79 6 Subtrahera. Öka termerna

Läs mer

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK KRAVNIVÅER Åtvidabergs kommuns grundskolor MATEMATIK Reviderade april 2009 Förord Välkommen att ta del av Åtvidabergs kommuns kravnivåer och bedömningskriterier för grundskolan. Materialet har tagits fram

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Kommentarmaterial till kunskapskraven i matematik

Kommentarmaterial till kunskapskraven i matematik Kommentarmaterial till kunskapskraven i matematik Skolverket Stockholm 2012 www.skolverket.se ISBN: 978-91-87115-68-4 Innehåll 1. Inledning... 4 Vad materialet är och inte är...4 Materialets disposition...5

Läs mer

1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik

1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik 1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik Beskriver några projekt, laborationer och alternativa arbetsformer som gett goda resultat. Diskussion om tillvägagångssätt

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v.

Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v. TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det nionde skolåret: Eleven skall ha förvärvat sådana kunskaper i matematik som behövs för att kunna beskriva och hantera situationer samt lösa

Läs mer

3-3 Skriftliga räknemetoder

3-3 Skriftliga räknemetoder Namn: 3-3 Skriftliga räknemetoder Inledning Skriftliga räknemetoder vad är det? undrar du kanske. Och varför behöver jag kunna det? Att det står i läroplanen är ju ett klent svar. Det finns miniräknare,

Läs mer

Kommentarmaterial till kursplanen i matematik

Kommentarmaterial till kursplanen i matematik Kommentarmaterial till kursplanen i matematik Kommentarmaterial till kursplanen i matematik Beställningsadress: Fritzes kundservice 106 47 Stockholm Tel: 08-598 191 90 Fax: 08-598 191 91 E-post: order.fritzes@nj.se

Läs mer

Alla elever bör få möta en variation av arbetssätt i matematikundervisningen,

Alla elever bör få möta en variation av arbetssätt i matematikundervisningen, lena trygg Undervisning med laborativa material Att använda laborativa material i matematikundervisningen är på intet sätt något nytt. Det mest väsentliga för att material ska komma till verklig nytta

Läs mer

Wiggo Kilborn. Om tal i bråkoch decimalform en röd tråd

Wiggo Kilborn. Om tal i bråkoch decimalform en röd tråd Wiggo Kilborn Om tal i bråkoch decimalform en röd tråd Tal i bråkoch decimalform en röd tråd Wiggo Kilborn Nationellt centrum för matematikutbildning Göteborgs universitet 20 Detta verk är licensierad

Läs mer

Fira Pi-dagen med Liber!

Fira Pi-dagen med Liber! Fira Pi-dagen med Liber! Specialuppdrag från Uppdrag: Matte o Kul-diagram o Geometri med färg UPPDRAG: MATTE Mattedetektiverna Mattespanarna Hej! Den 14 mars är det Pi-dagen (3.14). Det är värt att uppmärksammas

Läs mer

STOR KLASSRUMSKALENDER

STOR KLASSRUMSKALENDER STOR KLASSRUMSKALENDER magnetisk Lärarhandledning Detta verk är skyddat av upphovsrättslagen, vilket bl a innebär att reproduktion av verket, i sin helhet eller i delar, är förbjuden. Marknadsförs i Sverige

Läs mer

MATTE MED FINGERKÄNSLA

MATTE MED FINGERKÄNSLA MATTE MED FINGERKÄNSLA Konkret matematik i nybörjarundervingen Författare och bilder: Janne Junttila och Kerttu Ristola, Oulun Matikkamaa (Mattelandet i Uleåborg) Översättning till svenska: Christel Forsblom

Läs mer

Lokala arbetsplaner Stoby skola

Lokala arbetsplaner Stoby skola Lokala arbetsplaner Stoby skola Rev. 080326 Innehållsförteckning Lokala arbetsplaner Stoby skola... 1... 1 Lokal arbetsplan Engelska... 3 År 1...3 År 2...3 År 3...3 År 4-5...4 Lokal arbetsplan Matematik...

Läs mer

MATEMATIK. Läroämnets uppdrag

MATEMATIK. Läroämnets uppdrag MATEMATIK Läroämnets uppdrag Syftet med undervisning i matematik är att utveckla ett logiskt, exakt och kreativt matematisk tänkande hos eleven. Undervisningen skapar en grund för förståelsen av matematiska

Läs mer

Förverkliga dina drömmar på. Einar Hansen. gymnasiet! Natur och Estet1

Förverkliga dina drömmar på. Einar Hansen. gymnasiet! Natur och Estet1 Förverkliga dina drömmar på Einar Hansen gymnasiet! Natur och Estet1 Grattis! Du har tre fantastiska år framför dig Gymnasietiden är speciell. För första gången har du möjlighet att välja skola och program

Läs mer

Svenska hushåll 1960 och 1975

Svenska hushåll 1960 och 1975 DELPROV DTK DIAGRAM, TABELLER OCH KARTOR Svenska hushåll 1960 och 1975 Antalet hushåll i olika storlekar 1960 (streckad linje) och 1975 (heldragen linje). Andelen hushåll i olika storlekar 1960 och 1975.

Läs mer

Matematik Åk 3 Tal och räkning

Matematik Åk 3 Tal och räkning FA C I T Lgr 11 Matematik Åk 3 Tal och räkning Catherine Bergman Maria Österlund Kan du använda och beskriva tal? Hur långt kan du räkna framåt? Jag kan räkna till: Hur långt kan du räkna bakåt? Jag kan

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Är talet a) 5 ett heltal b) 9 ett naturligt tal c) π ett rationellt tal d) 5 ett reellt tal 6 2 Rita av figuren och placera in talen rätt talmängd. naturliga tal hela tal rationella

Läs mer

Schildts Laboration Beställningslista 2011

Schildts Laboration Beställningslista 2011 Schildts Laboration Beställningslista 2011 Gäller från 1.2.2011 Beställare Telefon Leveransadress Faktureringsadress Önskat leveranssätt Önskat leveransdatum Beställningsdatum Underskrift Beställningar

Läs mer

Matematikens historia 3000 BC 1500 AC. Av Catarina Johansson Vt 2009 L0001M

Matematikens historia 3000 BC 1500 AC. Av Catarina Johansson Vt 2009 L0001M Matematikens historia 3000 BC 1500 AC Av Catarina Johansson Vt 2009 L0001M Varför matematik? Den tidiga matematiken utvecklades för att användas till att lösa problem inom Astronomi, Bokföring, Konstruktion

Läs mer

Modersmålslärarens roll i den pedagogiska kartläggningen

Modersmålslärarens roll i den pedagogiska kartläggningen Modersmålslärarens roll i den pedagogiska kartläggningen Sektionen för resurs och stödverksamhet Flerspråkighet Snezana Arsenovic Nero, verksamhetschef (modersmålsstöd i förskola, förskoleklass) Åsa Svensson,

Läs mer

Mål. > läsa och skriva tal inom talområdet 0 1 000 000. A Det kan vara svårt att läsa ut stora tal. Tipsa om att

Mål. > läsa och skriva tal inom talområdet 0 1 000 000. A Det kan vara svårt att läsa ut stora tal. Tipsa om att Sid. 6 7 Stora tal Mål Matteord När du har arbetat med kapitlet ska du kunna tiotusental hundratusental rimligt romerska siffror > läsa och skriva tal inom talområdet 0 1 000 000 Kapitel 1 Stora tal I

Läs mer

Halvera 4. 89 000-47 000 5. 35 000-6 000 6. 63 000-7 000. Silverspiran Grundbok A FACIT, KAPITEL 1

Halvera 4. 89 000-47 000 5. 35 000-6 000 6. 63 000-7 000. Silverspiran Grundbok A FACIT, KAPITEL 1 Fyll i talraderna. Räkna med i taget. 9 9 Addera och subtrahera. + = 9 - = + = - = + = -9 = Öka talserien med i taget. 9 Minska talserien med i taget. Dubblera Halvera Dubblera 9 Beräkna följande uttryck..

Läs mer

Föra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar.

Föra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar. Sparsörskolan Lokal pedagogisk planering Klass: 6A Ansvarig lärare: Fanny Olausson och Linda Wahlberg Ämne/område: Ja mfo relse, uppskattning och ma tning av vikt och volym samt avrundning och o verslagsra

Läs mer

Malmö 25/10 2014. Tjugofemte oktober tvåtusenfjorton. Gunne Bergström

Malmö 25/10 2014. Tjugofemte oktober tvåtusenfjorton. Gunne Bergström Räkna med dem som räknar på fingrarna. Malmö 25/10 2014 Tjugofemte oktober tvåtusenfjorton Gunne Bergström Svårigheten känd i mer än 100 år Europaparlamentet 2007 Vändning 2008 Dyskalkyli finns det? Ingvar

Läs mer

Roligt, lustfyllt, diskret

Roligt, lustfyllt, diskret KRISTIN DAHL Roligt, lustfyllt, diskret Så här kan du jobba. Tips, idéer och fakta som gör matematiken meningsfull. En vägledning till böckerna Matte med mening, tänka tal och söka mönster Kvadrater, hieroglyfer

Läs mer

Gefle Montessoriskolas. plan för studie-och yrkesvägledning. Läsåret 2015/2016

Gefle Montessoriskolas. plan för studie-och yrkesvägledning. Läsåret 2015/2016 Gefle Montessoriskolas plan för studie-och yrkesvägledning Läsåret 2015/2016 Kunskap är glädje Planen är framtagen i september 2015 och omfattar förskoleklass och skola åk 1-6. Planen revideras i augusti

Läs mer

Bostadsbidrag. till barnfamiljer. Vilka barnfamiljer kan få bostadsbidrag? Hemmaboende barn. Barn som bor hos dig ibland

Bostadsbidrag. till barnfamiljer. Vilka barnfamiljer kan få bostadsbidrag? Hemmaboende barn. Barn som bor hos dig ibland Fk 4062-4 Fa Bostadsbidrag till barnfamiljer Uppdaterad 060101 Den ekonomiska familjepolitiken omfattar ett antal förmåner, bl.a. barnbidrag, föräldrapenning, tillfällig föräldrapenning, vårdbidrag, underhållsstöd

Läs mer

M=matte - Handledning

M=matte - Handledning Fingris Fingerräkning Grunden för matematik är taluppfattning. I detta spel parar du ihop tal med fingrarnas antal. Finns det fler fingrar än talet anger? Eller färre? Lika många? Det finns många frågor

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

IUSA har matematik och begåvning två. Begåvade elever behöver också hjälp RITA BARGER

IUSA har matematik och begåvning två. Begåvade elever behöver också hjälp RITA BARGER RITA BARGER Begåvade elever behöver också hjälp Vad, om något, kan och skall lärarna göra för matematiskt begåvade barn? Eller är det så att eftersom de eleverna uppenbarligen förstår matematiken på egen

Läs mer

Montessori och matematik

Montessori och matematik Malmö högskola Grundskollärarutbildningen Examensarbete 10 poäng Montessori och matematik Ann Lagergren & Jenny Sten Genom detta arbete har vi fördjupat oss i matematikundervisningen inom montessoripedagogiken.

Läs mer

Öppna frågor (ur Good questions for math teaching)

Öppna frågor (ur Good questions for math teaching) Här är öppna frågor som jag hämtat från boken Good questions for math teaching som jag läste i våras när jag gick Lärarlyftet. Frågorna är sorterade efter ämne/tema och förhoppningsvis kan fler ha nytta

Läs mer

Innehållsförteckning. Installation Inledning Pedagogisk bakgrund Arbeta med Matematik Screening Basnivå Kalkylator Inställningar Namn Period.

Innehållsförteckning. Installation Inledning Pedagogisk bakgrund Arbeta med Matematik Screening Basnivå Kalkylator Inställningar Namn Period. 2 Resultat Innehållsförteckning Installation Inledning Pedagogisk bakgrund Arbeta med Matematik Screening Basnivå Kalkylator Inställningar Namn Period Screeningmoment Talserier Jämnt - udda Tal och obekanta

Läs mer

Exempelvis 7. Vad är egentligen ett tekniskt hjälpmedel, som har utvecklats för att stödja lärande och undervisning i matematik?

Exempelvis 7. Vad är egentligen ett tekniskt hjälpmedel, som har utvecklats för att stödja lärande och undervisning i matematik? 1 Lärande och Undervisning i matematik med hjälp av tekniska hjälpmedel forskning, resultat, trender och nya verktyg Göteborgs Universitet Thomas.Lingefjard@ped.gu.se Vad är egentligen ett tekniskt hjälpmedel,

Läs mer