Vindkraft på Åland. Linus Bergström. En uppskattning av produktion och ekonomi

Storlek: px
Starta visningen från sidan:

Download "Vindkraft på Åland. Linus Bergström. En uppskattning av produktion och ekonomi"

Transkript

1 Vindkraft på Åland En uppskattning av produktion och ekonomi Linus Bergström Civilingenjörsprogrammet i energiteknik vid Umeå universitets tekniska högskola. (löpnr. som tilldelas)

2 Sammanfattning En vindkraftsetablering innebär en investering på miljontals euro. För att kunna bedöma investeringens lönsamhet måste den förväntade produktionen kunna uppskattas med hög noggrannhet. Med den uppskattade produktionen som grund kan sedan de ekonomiska förutsättningarna undersökas. För att uppskatta produktionen med hög noggrannhet krävs uppmätta vinddata som grund. Om dessa data inte upptagits på den plats och den höjd där verket skall uppföras måste dessa på nått sätt extrapoleras till verksplats och -höjd. För att möjliggöra en sådan extrapolering används datamodeller som med fysikens och matematikens hjälp åstadkommer detta. Syftet med detta examensarbete är att utifrån upptagna vinddata simulera produktionen och medelvindarna på 14 specificerade platser på Åland som godkänts för vindkraftsetablering. Uppdraget har utförts åt WSP Environmental i Vasa, Finland. Beställare av uppdraget är Ålands Elandelslag. Med den simulerade produktionen som grund skall även en ekonomisk utvärdering göras, då tre olika tillverkare konkurrerar om upprättandet. Den ekonomiska utvärderingen kommer att avgöra vilken av tillverkarna som ger bäst avkastning på investerat kapital. Även den teoretiska grund som datorsimuleringen vilar på skall skildras. Slutligen skall en statistik analys på tillgängliga driftsdata utföras, med syftet att undersöka om skillnader i tillgänglighet finns mellan verk som drivs med respektive utan växellåda. Rapporten är uppdelad i två delar, där den första delen innefattar den teoretiska studien, som fokuserar på datorprogrammen WindPRO och WAsP, då dessa är de som funnits tillgängliga för simuleringen. Även andra konkurrerande program finns beskrivna översiktligt. Den andra delen fokuserar på det aktuella fallet, 14 verk på Åland, den simulerade produktionen och det ekonomiska utfallet. För att kvalitetskontrollera resultatet simulerades även befintliga verk i närheten av de planerade, då deras produktion finns tillgänglig för jämförelse. Detta visade att de befintliga verken simulerades med en godhet på mellan -17 % och +20 % relativt den simulerade produktionen, för att överrensstämma med den verkliga. En förklaring till de överskattade kontrollverken var att dessa ligger i skogsområden, vilket innebär att modellen överskattar vindhastigheterna då ingen hänsyn togs till nollplansförskjutningen som beror av trädens höjd och täthet. Med detta som grund konstaterades att produktionen hos de planerade verken inte bör understiga -10 % relativt den simulerade. Resultatet av den statistiska analysen mellan verk med respektive utan växellåda visade att små skillnader fanns, men att det är svårt att dra några slutsatser då bara en tillverkare för direktdrivna verk finns representerad i Sverige och Finland. För att uppskatta om specifika avkastningskrav kunde nås antogs ett framtida elpris på 45 /MWh. Därefter beräknades ett nettonuvärde för hela investeringen där etableringskostnader, ledningsförluster och årliga kostnader och intäkter beaktades. Vidare varierades den simulerade produktionen med ±20 % och elpriset mellan /MWh. Detta för att studera hur investeringen påverkas beroende på skillnader i långtidsproduktionen och elpriset. Resultatet visar att avkastningskraven inte kan nås för någon tillverkare med grundantagandet. Dock kan kravet nås med realistiska framtida elpriser för en av tillverkarna. För de andra två kommer med stor sannolikhet kraven ej att nås, då både ett högt elpris och en högre produktion än den beräknade krävdes. Del II av denna rapport finns i två versioner, en intern, där tillverkarnas namn, effektkurvor, beräknad produktion och det ekonomiska utfallet finns redovisat. I den externa versionen, är denna information dold p.g.a. sekretesskäl. II

3 Abstract Wind power on Åland a prediction of production and economy An establishment of wind power is synonymous with an investment of millions of euros. To be able to predict the return of such an investment, the production of those turbines has to be estimated with high accuracy. That estimation can then be used to predict the economical outcome of the investment. The basis of such estimations is measured wind data. If these have not been measured at the exact location and hub height of the planned turbine, some sort of computational model is required to make the extrapolation needed to predict the conditions at the correct place and height. The purpose of this master s thesis is to estimate the production and mean wind speeds at 14 specific locations on Åland which have been approved for wind power establishment. The task has been carried out for WSP Environmental in Vaasa, Finland. The customer is Ålands Elandelslag. Since three different manufacturers are competing for the establishment, an economical evaluation with the estimated production as basis will be concluded, to be able to determine which manufacturer gives the highest rate of return. Finally a statistical analysis of available operating data will be concluded to try to determine if there is any difference in availability between turbines that use a gearbox compared to ones that doesn t. This report is split into two parts. Part I contains the theoretical basis of wind simulation. Focus has been on the programs WindPRO and WAsP since these are the programmes that have been available for the simulation. Part II of the report focuses on the actual case, 14 turbines to be erected on Åland, the predicted production and the economical turnout. Existing wind turbines close to the planned ones were also predicted, which enabled a comparison between the real production and the predicted one. This showed that the existing ones were predicted with a goodness between -17 % to +20 % relative to the predicted production, to agree with the real one. One reason for the over prediction of the existing turbines was that they were located in forested areas, which means that the model will overestimate the wind speeds since no compensation was made because of the zero plane displacement, depending on tree height and spacing. It was then concluded that the production of the planned turbines should not fall below -10 % relative to the predicted. The statistical analysis between turbines with and without a gearbox showed very small differences in availability. It is however hard to draw conclusions due to the fact that only one manufacturer with gearless turbines is represented in Sweden and Finland. A price of 45 /MWh of future electricity was assumed. This was done to be able to predict if a required rate of return could be reached. The net present value for the entire investment was then calculated from the cost of establishment, grid losses, yearly costs and income. Then the production was varied with ±20 % and the cost of electricity with /MWh, to study the effects of such variations on the total economy of the project. The result shows that the required rate of return could not be reached for the basic assumptions. Only one of the manufacturers could meet the requirements with a realistic cost of future electricity. The other two needed both a higher production and an improbably high cost of electricity to fulfil the requirements. Part II of this report exists in two versions. One internal, where the manufacturers names, the turbines power curves, calculated production and economical turnout is presented. In the public version these parts has been removed due to an agreement of confidentiality. III

4 Förord Detta examensarbete på 30 högskolepoäng görs som den slutgiltiga kursen i civilingenjörsutbildningen i energiteknik vid Umeå Universitet. Jobbet görs åt WSP Environmental i Vasa. Beställare av produktionssimuleringen och den ekonomiska utvärderingen var Ålands Elandelslag. Jag vill tacka alla på WSP Samhällsbyggnad i Umeå, varifrån jag gjorde jobbet. Det har varit en mycket lärorik period i mitt liv. WSP Real AF till final Outstanding! Ett extra speciellt tack till följande: Ola Trulsson på WSP Environmental i Malmö för att du genomförde simuleringarna samt kom med tips och goda råd. Jakob Källman för bra handledning och mycket värdefull input. Jag lärde mig verkligen mycket! Lars Bäckström för utlåning av WindPRO manualen i pappersformat, den var mycket användbar. Staffan Andersson för noggrann korrekturläsning och hjälp med den multivariata analysen. Sara Nilsson. Mor och Far. IV

5 Innehåll DEL I TEORETISK BAKGRUND 1 1 INLEDNING GRUNDLÄGGANDE OM VIND DAGENS PARKMODELLERINGSPROGRAM DAGENS VINDSIMULERINGSPROGRAM MODELLBEGRÄNSNINGAR OCH FELKÄLLOR SKUGGNINGSMODELLER JÄMFÖRELSE DIREKTDRIFT OCH VÄXELLÅDA DEL II SIMULERING AV 14 VERK PÅ ÅLAND 43 8 BAKGRUND MATERIAL OCH METODER RESULTAT EKONOMISK UTVÄRDERING SLUTSATSER REKOMMENDATION V

6 DEL I TEORETISK BAKGRUND

7 Innehåll del I Teoretisk bakgrund 1 INLEDNING BAKGRUND SYFTE AVGRÄNSNINGAR METOD GENOMFÖRANDE GRUNDLÄGGANDE OM VIND UPPKOMST OCH KARAKTÄR ATMOSFÄRENS STABILITET VINDMÄTNINGAR MARKRÅHET OCH NOLLPLAN DAGENS PARKMODELLERINGSPROGRAM WINDPRO Input för beräkningarna WINDFARMER WINDFARM PRISER DAGENS VINDSIMULERINGSPROGRAM WASP Weibullfördelning Modellen Beräkningsgång WINDSIM Modellen Definition av Terrängen Beräkning av Vindfältet Objekt Resultat Beräknings av Vindresurs Beräkning av Energiproduktion MODELLBEGRÄNSNINGAR OCH FELKÄLLOR FELKÄLLOR VID VINDMÄTNING Mätnoggrannhet Systematiska fel BEGRÄNSNINGAR I WASP-MODELLEN Korsprediktering RIX ÖVRIGA FELKÄLLOR SKUGGNINGSMODELLER INLEDANDE TEORI N.O. JENSENS SKUGGMODELL VIRVELVISKOSITETSMODELLEN C.G. LARSEN MODELLEN SAMMANRÄKNING FÖR KORSANDE SKUGGOR FELKÄLLOR VID SKUGGSIMULERINGAR JÄMFÖRELSE DIREKTDRIFT OCH VÄXELLÅDA INLEDNING UNDERLAG... 41

8 7.3 METODER RESULTAT... 42

9 1 Inledning Att avgöra om en vindkraftsetablering bör genomföras eller ej har alltid varit ett problem för projektörer. De faktorer som skall tas hänsyn till är möjligheterna till nätanslutning, platsens tillgänglighet för dittransport av verk och verkets upprättande, marken beskaffenhet i form av stabilitet och bärighet, störningar på omgivningen i form av buller och skuggor, påverkan på flora och fauna, listan kan göras lång. Alla dessa faktorer skall sedan behandlas i ett MKBförfarande där för och nackdelar med etableringen vägs mot varandra och som slutligen leder till att ett beslut om projektets godkänns eller ej. Detta är dock bara konsekvensen av ett tidigare, än viktigare skede i processen: projektets ekonomiska förutsättningar. Beslutet att inleda en undersökning för vindkraftsetablering tas ofta på basis av relativt begränsad information. Det kan till exempel finnas befintliga verk i området som har gett god avkastning eller att initiativtagarna har lokal kännedom om området och subjektivt uppskattar vindresursen som god. En tredje metod som kommit på senare tid är nationella vindkarteringar, där en storskalig modell tillämpats på hela det nationella området i syfte att uppskatta potentialen för vindkraft. Den modell som används i Sverige kallas för MIUUmodellen och har en upplösning på 1 km. Problemet med dessa modeller är att de ej kan tillämpas på ett tillfredställande sätt för att simulera produktionen från vindkraftverk då de ej innehåller någon information om vilka vindriktningar som är de dominerande i området samt endast ger vindhastigheten som ett medelvärde. Dessutom tenderar modellupplösningen att vara för låg för att vara användbar utanför enklare terräng. När väl projektet har kommit så långt att beslut om investering skall tas finns alltid krav på noggrant uppskattad avkastning och risk, och det är i detta skeende som produktionssimulering kommer in. 1.1 Bakgrund För att uppskatta det ekonomiska utfallet krävs en produktionssimulering med hög noggrannhet och för en produktionssimulering med hög noggrannhet krävs vindmätningar gjorda i närheten av den tänka etableringen. Antingen placeras en mätmast på den tänka platsen och höjden som registrerar vinddata över en tillräckligt lång tid, eller så används SODAR- eller LIDAR-utrustning för att detaljerat mäta vindprofilen. Denna typ av utrustning använder laser (LIDAR) eller ljudvågor (SODAR) och dess reflektionsbeteenden för att beräkna vindhastighet och riktning och är således mycket tekniskt avancerad. Att upprätta en mätmast vid verkens navhöjd kan bli praktiskt svår att genomföra med dagens allt större vindkraftverk. Lösningen kan då vara att använda befintlig vinddata från närliggande meteorologiska stationer eller utföra egna mätningar i området vid mer lättillgängliga höjder, för att sedan uppskatta vinden vid det tänkta verkets höjd och position. För att göra detta krävs fysikaliska modeller som med ett antal parametrar beskriver vindens olika aspekter. Ju fler sådana parametrar som används i modellen, desto bättre kommer den att beskriva verkligheten. För att beskriva tillståndet hos atmosfären krävs sju variabler. Tryck, temperatur, densitet, fukthalt, två horisontella hastighetskomponenter samt en vertikal hastighetskomponent. Alla dessa variabler kommer vara beroende av position och tid. De ekvationer som beskriver dessa variabler är tillståndsekvationerna, Navier-Stokes ekvationer, termodynamikens första lag och kontinuitetsekvationerna. Genom att behandla dessa och sätta lämpliga randvillkor kan en matematisk modell som beskriver atmosfären byggas upp. Detta har gjorts på många olika sätt där olika approximationer och lösningsmodeller finns implementerade. Samtliga baseras på att åtminstone förenkla Navier-Stokes ekvationer till s.k. Reynolds Averaged Navier-Stokes (RANS), då det i vindsimuleringstillämpningen räcker med att 4

10 studera medelvärden hos vindhastigheten och inte den fullt tidsberoende lösningen. Dessutom är en numerisk lösning av Navier-Stokes ekvationer i dagsläget ej praktiskt genomförbar med dagens, i sammanhanget, begränsade datorkraft. RANS-ekvationerna, som är en samling ickelinjära differentialekvationer, kan ej heller betecknas som lätta att lösa. Detta har lett till ytterligare en approximation inom vindsimuleringen som baseras på att konvertera RANS till linjära ekvationer. Denna approximation är giltig så länge flödesseparation ej inträffar, vilket ofta sker vid komplex orografi, som karaktäriseras av branta lutningar, skarpa klippformationer o.s.v. Orografi innebär läran om formerna, d.v.s. hur ett område beskrivs utifrån skillnader i marknivå. Den modell som idag kan betecknas som industristandard vid vindsimulering tillhör kategorin linjära modeller och kallas för WAsP: Wind Atlas Analysis and Application Program. Programmet lanserades 1988 av Risø Nationallaboratorium för förnyelsebar energi i Roskilde, Danmark. Nyare kommersiella modeller, baserade på lösning av RANS med numeriska metoder, hädanefter kallat CFD, (Computational Fluid Dynamics Datorsimulerad fluidmekanik) börjar utmana WAsP när det gäller tillförlitlighet, framförallt vid komplex orografi. 1.2 Syfte Syftet med examensarbetet är att ge en djupgående orientering i hur produktionssimulering fungerar med dagens kommersiella datorprogram. Med detta innefattas vilka indata de olika modellerna kräver, den teoretiska grund de vilar på, vilka felkällor som finns samt metoder för att kompensera för dessa. En jämförelse mellan verk med respektive utan växellåda skall genomföras för att undersöka om det föreligger skillnader i tillgänglighet mellan de olika teknikerna. Med detta som grund skall 14 verk på Åland simuleras och utvärderas ekonomiskt. Detta görs på uppdrag av företaget Åland Elandelslag, som anlitat WSP Environmental i Vasa för denna beräkning. Den ekonomiska utvärderingen innefattar en beräkning av investeringens nettonuvärde för tre tillverkare som lämnat anbud om upprättande, alltså tre olika verk jämförts utifrån dess ekonomiska förutsättningar. 1.3 Avgränsningar Då WindPRO och WAsP är de program som funnits tillgängliga för simuleringen fokuserade den teoretiska studien på dessa. Detta innebär att andra simuleringsprogram beskrevs mindre noggrant samt att deras begränsningar och felkällor ej analyserades. Endast de tre skuggningsmodeller som finns implementerade i WindPRO beskrivs. Dessa är dock de vanligaste skuggningsmodeller och finns implementerade i andra kommersiella produktionssimuleringsprogram. 1.4 Metod För att beskriva den teori som används vid vindsimuleringar genomfördes en litteraturstudie. Tonvikten låg på den dokumentation som tillverkarna för respektive program gjort tillgänglig via Internet, användarmanualer och de vetenskapliga rapporter där metoderna publicerats. För studien mellan verk med eller utan växellåda användes tillgängliga driftsdata från både Sverige och Finland. Detta utgjorde grunden i en statistisk analys där målet var att utröna skillnader i tillgänglighet och hindertid mellan de olika teknikerna. För simuleringen och uppskattningen av produktionen, medelvindarna och den ekonomiska utvärderingen låg tonvikten på att med ett så logiskt och komplett resonemang som möjligt 5

11 kunna berättiga de antaganden och slutsatser som dras. Genom att inkludera befintliga verk i simuleringen utvärderades resultatets tillförlitlighet. 1.5 Genomförande Arbetet inleddes med att simulera medelvindarna på dem tänka verksplatserna för höjderna 80 och 95 m ö.h. Parallellt med detta inleddes litteraturstudien. De simulerade medelvindarna låg till grund för beställarens val av tornhöjder. Då denna simulering var klar upprättades den första rapporten till beställaren där resultatet presenterades. Efter detta fortsattes litteraturstudien parallellt med upprättandet av teoridelen i rapporten. Då teoridelen började närma sig sitt färdigställande började simuleringen av produktionen inledas. Då även befintliga verk i närområdet existerade och den rapporterade nettoproduktionen fanns tillgänglig, beslutades att dessa skulle inkluderas i simulering för att möjliggöra en verifiering av resultatet. För simuleringen av både produktion och medelvind har WindPRO och WAsP använts. Ingen WAsP-licens fanns tillgänglig på WSP i Umeå, därför utfördes simuleringarna av Ola Trulsson på WSP Environmental i Malmö. Simuleringen definierades i WindPRO med avseende på indata, parametrar och inställningar. Exportfiler skickades sedan till Ola som utförde simuleringen och skickade tillbaka resultatet. Vinddata som utgjorde grunden i simuleringarna erhölls från beställaren. Då vindmätningen utförts under en relativt kort tid måste produktionen relateras till ett medelår. Detta gjordes genom användningen av ett vindindex från VTT (statlig forskningsorganisation och del av Finlands innovationssystem). Utifrån denna simulerade produktion kunde nu de ekonomiska förutsättningarna beräknas. Då vindkraftverk producerar som mest under vinterhalvåret, då också elpriserna tenderar att vara höga, relativt årsmedelvärdet, måste produktionen delas upp på kortare tidsintervall för att kunna användas i den ekonomiska beräkningen. Genom att använda månadsmässiga uppdelningar för elpriset och produktionen kunde investeringens förutsättningar beräknas. En känslighetsanalys över investeringen utfördes genom att variera produktionen och elpriset procentuellt och beräkna utfallet för dessa variationer. Detta ledde till att ett elpris och en produktion som uppfyllde ett specifikt avkastningskrav kunde beräknas. För att möjliggöra den ekonomiska utvärderingen har MATLAB använts, då stora mängder data har behandlats. Slutligen genomfördes den statistiska analysen. Finländsk data från VTT samt Svensk data från Vindforsk, båda tillgäng via Internet, användes som indata i en multivariat analysmetod som analyserar samband mellan de ingående variablerna. 6

12 2 Grundläggande om vind 2.1 Uppkomst och karaktär Vind uppkommer till följd av den ojämna uppvärmning som jordens yta utsätts för. Då solinstrålningen är som störst vid ekvatorn och minst vid polerna kommer luften att stiga vid ekvatorn och sjunka vid polerna. Instrålningen varierar dessutom beroende på årstid och tid på dygnet, vilket bidrar till ännu större variationer i uppvärmningen. Luften påverkas även av jordens rotation, vars hastighet är störst vid ekvatorn och som sedan minskar till noll vid polerna. Detta skapar områden med olika lufttryck, där luften strömmar från högt till lågt tryck för att utjämna skillnaderna. Den enklaste modellen för att beskriva denna vindrörelse, den s.k. geostrofiska vindmodellen, kräver ekvationer för kraften som verkar på en luftmassa från tryckgradienten (ekvation 1) och Corioliskraften (ekvation 2). F p 1 p, (1) n p där ρ är luftens densitet, n normalvektorn till isobarerna. är tryckets derivata med avseende på F c fu, (2) där u är vindhastigheten, f 2 sin är Coriolisparametern. är latituden och vinkelhastigheten för jordens rotation. Corioliskraften är endast en fiktiv kraft och har införts för att beskriva föremåls avböjning som den upplevs från en medroterande punkt i ett roterande referenssystem. I detta fall är jorden vårt roterande referenssystem. En enkel beskrivning för effekten av Corioliskraften är att varje föremål som rör sig på norra halvklotet upplevs av en medroterande betraktare, t.ex. en människa på jorden, som om en kraft påverkar föremålet vinkelrätt åt höger relativt rörelsevektorn. Föremålet upplevs alltså böjas av i en kroklinjig bana åt höger. Detta gäller oavsett i vilken riktning föremålet rör sig och även i väst-östlig riktigt. I fallet vid nord-sydlig riktning handlar det om rörelsemängdsmomentets bevarande. Om radien till jordaxeln minskar eller ökar, som den gör vi transport i nord-sydlig riktning måste även vinkelhastigheten öka eller minska, då rörelsemängdsmomentet alltid är detsamma. Vid öst-västlig riktning kommer centrifugalkraften (fiktiv kraft som angriper föremål i roterande referensramar) att öka eller minska, och eftersom centrifugalkraften angriper vinkelrätt mot jordens rotationsaxel och är proportionell mot rotationshastigheten kommer denna att öka eller minska beroende på om vi rör oss längsmed rotationen (öster) eller motriktat rotationen (väster). Centrifugalkraften kan delas upp i en komposant längsmed jordens yta som då kommer att öka vid rörelse åt öster, d.v.s. föremålet dras åt höger relativt färdriktningen. Om vi nu tänker oss raka isobarer med ett lågtryck i norr och ett högtryck i söder. Luften vill då röra sig från de höga till det låga trycket. När luften sätts i rörelse börjar corioliskraften verka och luftelementet accelereras åt höger. Luftmassan kommer att böja av i en kroklinjig bana tills jämvikt mellan de två krafterna uppstår och den resulterande vinden rör sig med konstant hastighet parallellt med isobarerna (Figur 1). Den resulterande vinden är den s.k. geostrofiska vinden. 7

13 Figur 1. Schematisk bild av Tryckkraften och Corioliskraftens verkande på ett luftelement. Den geostrofiska vinden är endast en approximation, vill man beskriva den atomsfäriska friktionsfria vinden mer detaljerat måste fler krafter införas, t.ex. centripetalkraften vid krökta flöden (ej raka isobarer). Dock är detta en bra approximation som stämmer tillräckligt väl för våra europeiska vindförhållanden. Den geostrofiska vinden råder endast högt ovan marknivån och vindhastigheten avtar närmare markytan p.g.a. friktionen mot densamma. Området mellan den friktionsfria geostrofiska vinden och planet där vindhastigheten är noll, det s.k. nollplanet, kallas för det atmosfäriska gränsskiktet (Figur 2) och det når upp till 100 m på klara nätter med låg vindhastighet och 2 km på varma sommardagar (Petersen m.fl., 1997). Eftersom inga andra krafter än corioliskraften och tryckkraften verkar på den geostrofiska vinden kommer vindhastigheten vara konstant med avseende på höjden, d.v.s. ovanför det atmosfäriska gränsskiktet påverkas vindhastigheten ej av höjden ovan nollplanet. Vid låga vindhastigheter är vindsimulering rörande kraftproduktion ej relevant, så fallen då gränsskiktet påträffas inom 1 km från nollplanet bortses från. Det skikt närmast marken, definierat som 10 % av det atmosfäriska gränsskiktet från nollplanet, kallas för ytskiktet. 8

14 Figur 2. Schematisk bild över vindhastighetens höjdberoende samt de olika skiktens benämningar. 2.2 Atmosfärens stabilitet Atmosfärens stabilitet är ett mått på hur väl atmosfären kan motstå vertikala luftrörelser. Då solen värmer jordens yta kommer även luftskiktet närmast jordytan att värmas. Om det marknära skiktet värms till en högre temperatur än det ovanpåliggande skiktet kommer den varma luften vilja stiga uppåt genom de kallare skikten. Om vi nu studerar ett litet luftelement som på detta sätt stiger i atmosfären och approximerar det som helt torrt och enligt idealgaslagen kan då följande samband formuleras: dp gdz, (3) där p är atmosfärens tryck, ρ dess densitet, g gravitationsaccelerationen och z är höjden över markytan. Termodynamikens första lag per massenhet ger då: 1 dq du pd dh dp cpdt dp, (4) där q är mängden överförd värme, u inre energin, υ luftens volym, h entalpi, c p värmekapacitet och T temperatur. Då luft har låg termisk ledningsförmåga och det rör sig om stora volymer luft i rörelse kan denna process approximeras som adiabatisk, dq = 0. Resultatet kan då skrivas som: 1 c p dt dp (5) Det som ligger till grund för luftens temperaturförändring är det faktum att vid högre höjder råder lägre tryck och detta kommer leda till en volymexpansion hos luftelementet. Luftpaketet uträttar alltså ett arbete då den trycker undan den omgivande luften. Eftersom ingen värmetransport sker till luftelementet kommer temperaturen att avta p.g.a. detta arbete. Insättning av (ekvation 3) i (ekvation 5) ger då: 9

15 dt g 1 dz adiabatisk c p (6) Om vi nu försummar höjdberoendet av g och c p kan vi beräkna en adiabatisk temperaturförändring, d.v.s. hur snabbt vårt luftelement kyls då det stiger i atmosfären. Insättning av g = 9,82 m/s 2 och c p = 1,0035 kj/kg K ger då: dt dz adiabatisk 0,0098K m (7) D.v.s. att temperaturen inom luftelementet måste avta med en hastighet av ungefär 1 K per 100 m stigning. Detta betecknas a och kallas för det torradiabatiska temperaturavtagandet och är definierat enligt: dt 1 K a (8) dz 100 m adiabatisk Det vekliga temperaturavtagandet är sällan samma som det torradiabatiska. Genom att mäta atmosfärens verkliga temperaturavtagande och jämföra det med den torradiabatiska kan man få ett mått på atmosfärens stabilitet. Anta att vi tar ett luftelement och lyfter det i atmosfären då det rådande <, d.v.s. luftens temperatur avtar långsammare än det adiabatiska a temperaturavtagandet. Luftelementet kommer att vilja avkylas enligt a, men detta är inte möjligt då luftelementet i så fall skulle vara kallare än den omgivande luften som avkyls enligt. Detta kommer att innebära att luftelementets stigning undertrycks av atmosfären och atmosfären betecknas som stabil. Om det omvända råder kommer de undre luftlagren stiga och atmosfären betecknas som instabil. 2.3 Vindmätningar Grunden för simuleringar av vindresursen eller produktionsberäkningar för ett specifikt vindkraftverk utgörs av en serie vindmätningar. När vinddata upptas på en plats över en längre tid (fler än enstaka mätningar) kallas resultatet för en tidsserie. I tidsserien ingår minst data om vindhastighet, vindriktning och tidpunkt för mätningen. Vindhastigheten brukar i de flesta fall redovisas som ett medelvärde av alla registrerade värden, oftast med en upplösning på 10 minuter eller en timme. För att producera en tidsserie krävs en eller flera anemometrar. Denna utrustning kan se ut på många olika sätt och de som främst används idag beskrivs mycket kort nedan. Stålkorsanemometer eller koppanemometer. Dessa är en av de vanligaste typerna av anemometrar och består av tre eller fyra koppar som fästs på en horisontell axel kring en roterande vertikal axel. När vinden blåser sätts kopparna i rörelse och denna rörelse omvandlas till en signal som sedan tolkas. Kompletteras ofta med en fena för att mäta inkommande vindriktning. Propelleranemometer. Denna typ av anemometer fungerar som ett litet vindkraftverk som passivt regleras mot den inkommande vinden med hjälp av en fena. SODAR eller LIDAR. Denna typ av utrustning använder antingen ljudvågor eller laserljus som reflekteras mot vinden och återupptas i utrustningen. Genom att mäta tiden för återreflektion eller med hjälp av dopplereffektens påverkan på de återreflekterade ljudvågornas frekvensförändring kan vindhastigheten bestämmas med relativt hög noggrannhet. Vindhastigheten kan i vissa fall även registreras för flera höjder samtidigt, d.v.s. hela 10

16 vindprofilen kan uppmätas. Nackdelen med denna typ av utrustning är kostnaden. För SODAR kan även omgivningsförhållanden som regn eller vissa omgivningsljud störa upptagningen av data. Vindmätningsutrustningen kan även kompletteras med annan utrustning för att mäta andra storheter som är relevanta för tillämpningen, t.ex. temperaturen vid olika höjder för att uppskatta atmosfärens stabilitet, lufttrycket och turbulensintensiteten. Den senaste framräknas genom att en standardavvikelse beräknas för varje redovisat medelvärde från mätutrustningen. Turbulensintensiteten beräknas sedan per definition (ekvation 9). u IT, (9) u där I T är turbulensintensiteten och σ u standardavvikelsen hos medelvinden u. Det skall nämnas att för att utförligt studera turbulens används mer avancerad utrustning än vad som är vanligt vid vindmätningar för produktionssimuleringar (Manwell m.fl., 2002). Studier av turbulens i samband med vindkraft utförs främst för att bedöma hållfasthet och utföra utmattningsstudier samt att avgöra kraftkvaliteten från verk utsatta för kraftig turbulens. Turbulensintensiteten vid en viss plats kan vara viktig att känna till om en bedömning av de påfrestningar ett vindkraftverk kommer att utsättas för skall göras. Detta eftersom ju mer turbulent vinden är desto större krafter kommer verket att utsättas för. Oftast finns krav från tillverkarna som säger att ett visst värde på turbulensintensiteten inte får överskridas om garantierna för verket skall gälla. Dessutom påverkar turbulensintensiteten hur snabbt en vindkraftsskugga återfår sin energi, där högre turbulens leder till snabbare energiåtergång. Detta beskrivs utförligare i kapitlet om skuggningsmodeller. 2.4 Markråhet och nollplan En viktig ingående storhet vid vindsimulering är markens råhet. Denna storhet mäts i meter och är den höjd som ger hastigheten noll i den logaritmiska vindprofilen (ekvation 15), som beskrivs under kapitlet WAsP. Denna storhet kallas för råhetslängd och betecknas z 0. Råhetslängden är ett mått på hur mycket en yta bromsar vindflödet och storheten kommer att påverka vindhastigheten i hela det atmosfäriska gränsskiktet. Relationen mellan z 0, olika råhetsklasser och markanvändning enligt Troen och Petersen (1989) (Tabell 1). Tabell 1. Råhetslängder för olika marktyper med motsvarande råhetsklasser. Råhetslängd, z0 (m) Marktyp Råhetsklass 1 Städer 0,4 Skog, förorter 3 0,2 Träd och buskar 0,1 Jordbruksområde med många byggnader och träd 2 0,05 Öppet jordbruksområde 0,03 Väldigt öppet jordbruksområde med mycket få byggnader och träd 1 0,01 Landningsområde flygplats 0,005 Slät barmark 0,001 Slät snö 0,0003 Slät sand 0,0002 Vattenområden 0 11

17 Ett ickelinjärt samband råder mellan råhetsklasserna och råhetslängderna (Figur 3). Figur 3. Råhetsklasserna och råhetslängderna plottade mot varandra. Observera råhetslängdens logaritmiska skala på y-axeln. Nollplanet, det plan ovan markytan där vindhastigheten är noll, behöver inte inträffa vid samma höjd som marktypens råhetslängd. Om vinden blåser över ett område med många tätt placerade hinder, exempelvis en skog, kommer hela nollplanet att lyftas från marknivån till en viss nivå mellan marken och trädtopparna. Denna sträcka har visats utgöra ungefär 2 3 av trädens höjd, men är beroende av bl.a. trädens utseende och inbördes avstånd. Detta innebär alltså inte att vid 30 m höga träd kommer råhetslängden att vara 20 m, utan att en nollplansförskjutning inträffar, områdets råhetslängd är fortfarande ca 0,4 m. 12

18 3 Dagens parkmodelleringsprogram Med parkmodelleringsprogram menas datorprogram som kan användas som stöd i hela projekteringsprocessen. De är alla modulärt uppbyggda där en grundläggande modul sköter hantering av digitala kartor, orografi, information om olika vindkraftverk o.s.v. För att utföra bullerberäkningar, fotomontage, elnätsberäkningar och ekonomiberäkningar, för att nämn några, måste ytterligare modeller köpas till. För själva vindsimuleringen anropar programmen i regel andra program som är specifikt utvecklade för detta ändamål, så som WAsP eller WindSim. Modeller för beräkning parkverkningsgrad brukar dock vara integrerade i parkmodelleringsprogrammen, en utförligare beskrivning av dessa finns under rubriken Skuggningsmodeller. De simuleringar som utförts i detta examensarbete har utförts med WindPRO som grund. Därför kommer beskrivningen av WindPRO vara den mest detaljerade. Eftersom samtliga av dessa parkmodelleringsprogram är väldigt lika varandra har jag valt att för de andra två programmen beskriva de huvudsakliga skillnaderna från WindPRO. 3.1 WindPRO Programmet utvecklas av det Danska företaget EMD International A/S som är ett helägt dotterbolag till organisationen Energi- og miljødata som grundades Version 1 av WindPRO lanserades på CD-ROM i juni Programmet har kontinuerligt uppdaterats sedan dess och är nu uppe i version 2.6. Programmet används i dagsläget av över 900 företag och organisationer och anses därför vara världens största datorprogram för planering och utformning av vindparker Input för beräkningarna WindPRO använder sig av bakgrundskartor kombinerat med koordinatsystem för att med stor noggrannhet kunna positionera planerade verk, vindmätningar, råhetsområden o.s.v. Dessa kartor kan erhållas i digitalt format med tillhörande koordinatfiler så de direkt kan integreras i WindPRO. Om koordinatfiler inte finns tillgängliga kan kartorna anpassas till koordinatsystemet genom att positionera tre punkter på kartan med kända koordinater, varefter WindPRO utför anpassningen. Ett mått på hur väl anpassningen utförts fås också, så om en karta används med en annan geografisk projektion än det valda koordinatsystemet kommer ett sådant fel upptäckas av programmet. Den information som bör finnas med på bakgrundskartorna är höjdkurvor samt information om markanvändningen. Vanligtvis används en karta med en skala på runt 1: inom en radie av 5 km från de studerade punkterna för inmatning av orografi samt noggrann bestämning av markråheten. En karta med skala 1: används för grovbestämning av markråheten mellan en radie av 5 km och ungefär 20 km från den studerade platsen. Vidare måste de planerade vindkraftverken och vinddata inmatas på kartan, detta görs lämpligast från en koordinatlista där koordinaterna för varje plats finns noggrant angivna, men kan även göras med god noggrannhet genom att helt enkelt märka ut verken direkt på kartan, förutsatt att bra kartunderlag finns Råhet Inmatningen av markråheten kring objekten kan ske på tre olika sätt. Det första av dessa kallas råhetsros och går ut på att råheten kring varje studerat objekt beskrivs i sektorerna med objektet i centrum. Denna ros innehåller information om avståndet till en råhetsförändring och råheten efter förändringen för varje sektor (Figur 4). 13

19 Figur 4. Exempel på råhetsros. Den första metoden är att själv upprätta en råhetsros. Fördelen med detta är att anpassningen av respektive ytas råhet kan göra med bättre precision. Detta gäller exempelvis om ett område med många vindbrytare studeras, t.ex. jordbruksområden. Om vindbrytarna ligger vinkelrätt mot vinden kommer dessa att ge upphov till en betydligt större råhet än om de ligger parallellt med vinden, något som ej kan tas hänsyn till om inte råhetsrosen inmatas manuellt. Nackdelen är att det i regel tar lång tid om många råhetsroser skall upprättas samt risken att inkonsekvenser uppkommer då samma område kan tilldelas olika råhet i olika roser, något som kan ske om sektorer från olika roser korsar varandra. Den andra metoden går ut på att skapa slutna konturlinjer där råheten definieras på var sin sida om linjen, s.k. råhetslinjer. Nackdelen med denna metod är att om linjer av misstag korsar varandra kan samma område tilldelas olika råhet och det anropade vindsimuleringsprogrammet vet inte vilken som skall användas. Slutligen kan metoden med råhetsområden tillämpas. Denna går ut på att rita upp områden där råheten definieras. Dessa områden exporteras sedan till råhetslinjer där WindPRO anpassar områdena till linjer så inga linjer korsar varandra, vilket gör att vindsimuleringsprogram som WAsP använder rätt råheter i beräkningarna. Oavsett vilken av de två senare metoder som använts kommer WindPRO att beräkna en råhetsros från råhetslinjerna för varje objekt där råheten måste inmatas, om inte råhetsrosen redan definierats av användaren Hinder WAsPs hindermodell, som beskrivs utförligare under rubriken WAsP, kräver hindrets position i förhållande till den studerade platsen, dess porositet som är ett mått på hur stor del av hindrets totala area som släpper igenom vinden samt dess höjd över marknivån, h. Detta innebär alltså att hindret inte länkas till den digitala kartan via koordinater utan till det hindrade objektet. Eftersom hindren är approximerade som rektanglar med en viss höjd behövs endast radierna till rektangelns närmsta hörn, radiernas vinklar från en given axel samt dess tjocklek för att bestämma hindrets position i förhållande till objektet. 14

20 Orografi För att kunna beräkna hur stor ökning av vindhastigheten som blir på toppen av en kulle eller hur vindriktningen förändras p.g.a. den omgivande terrängen krävs indata i form av orografisk information. För att på ett smidigt sätt kunna erhålla dessa data har programmet konstruerats så att den accepterar indata i form av höjdkurvor från en karta. När höjdkurvorna inmatats beräknar programmet höjden vid varje punkt genom att använda sig av en metod benämnd TIN, Triangular Irregular Network. Denna metod går ut på att programmet bygger upp orografin av sluttande trianglar från de inmatade höjdkurvorna (Figur 5, Figur 6). Figur 5. Inmatade höjdkurvor för Borgö, Åland. Figur 6. Beräknad TIN från inmatade höjdkurvor. Höjddata kan även inmatas från data erhållet från det internationella Shuttle Radar Topography Mission, SRTM, styrt av NASA. Uppdraget utfördes i februari 2000 av rymdskytteln Endeavour och målet var att skapa den mest kompletta och högupplösta topografiska databasen över jorden hittills. Dessa filer finns att hämta gratis från Internet och är av ett sådant format att de direkt kan importeras till WindPRO och därigenom användas i vindsimuleringsprogram. Dock finns data över Europa endast tillgänglig med en upplösning på var tredje bågsekund, vilket ungefärligen motsvarar ett rutnät på 90x90 m. Detta är i regel för lågt om komplex orografi råder i närområdet av verken och vindmätningarna, men duger gott till ytterområdena. 3.2 WindFarmer WindFarmer utvecklas av GarradHassan Ltd. med huvudkontor i Storbritannien. Företaget har i skrivandes stund ca 270 anställda och jobbar som konsulter inom vindkraftssektorn. Förutom WindFarmer som lanserades 1998 utvecklar företaget även programmen GH Bladed, ett turbindesignprogram, GH T-MON, ett program för att beräkna materiallaster, GH SCADA (Supervisory Control And Data Acquisition) som behandlar och analyserar vindparksdata och GH Forecaster, ett program som skapar korttidsprognoser för vindparksproduktion. 15

21 Förutom alla de beräkningar som är möjliga i WindPRO har programmet möjligheten att beräkna överskridningssannolikheter. Detta innebär att programmet beräknar en produktion med tillhörande sannolikhet att den överskrids baserat på uppskattningar av osäkerheten i indata. På så sätt kan exempelvis P 90 eller P 75, produktionen där sannolikheten för överskridande är 90 % respektive 75 % beräknas. Detta är intressanta uppgifter för finansiärer då förmågan att uppskatta den finansiella risken hos ett projekt ökar. Programmet har även möjligheten att analysera parkens störning på närbelägna radarstationer. 3.3 WindFarm Programmet utvecklas av det brittiska företaget ReSoft Ltd. Detta program skiljer sig från WindPRO genom att levereras med en flödesmodell redan implementerad. Modellen kallas för MS-Micro/3 och är baserad på samma grundläggande antaganden som WAsPs orografimodell. Skillnaden är att modellen använder kartesiska koordinater och således har sämre upplösning i närområdet kring den studerade platsen (WAsP använder polära koordinater, detta beskrivs utförligare under rubriken WAsP). Programmet accepterar även indata från WAsP. Användarbasen är minst av de tre programmen. WindFarm saknar även moduler för beräkning av parkekonomi samt elnätsberäkningar, som båda finns som tillval till de andra programmen. Det måste dock poängteras att den generella kvalitén hos WindFarm bedöms som lägre än de andra programmen, bullerområden redovisas simplare, inga automatgenererade rapporter finns att tillgå och en generell avsaknad av alternativ och funktioner gör så att programmet bedöms som ett budgetalternativ till de andra två. 3.4 Priser De olika parkmodelleringsprogrammens inköpspriser är inte direkt jämförbara trots den modulära uppbyggnaden då de inkluderade funktionerna skiljer sig från modell till modell. WindFarm med samtliga moduler inkluderade kostar medan motsvarande moduler för WindPRO och WindFarmer kostar respektive och detta exklusive ett vindsimuleringsprogram. 16

22 4 Dagens vindsimuleringsprogram 4.1 WAsP WAsP är i dagsläget betraktat som industristandard när det gäller vindsimuleringar och programmet har över 2300 användare i 100 länder. Programmet kan användas som standalone för att beräkna produktion och parkförluster för vindkraftsparker såväl som enskilda verk, samt för att beräkna vindresurskartor över mindre områden. För att göra detta måste ett vindklimat beräknas från befintliga observationer, något som beskrivs mer utförligt under rubriken beräkningsgång. Programmet kan även, precis som WindPRO, användas för att digitalisera höjdkurvor från kartor. Dock stöds bara vektorbaserade höjdkurvor och kan inte importera kartor som använder sig av raster eller rutnät för bestämning av höjden. Som källa för beskrivningen av WAsP användes framförallt Troen och Petersen (1989). För kompletterade material användes WAsP 9 Help Facility (2007) samt WAsP Support: FAQs (2008) Weibullfördelning Den statistiska modell som används för att modellera vindens frekvensfördelning är Weibullfördelningen vilken beskrivs nedan. Vindens sannolikhetsfördelning, d.v.s. sannolikheten att en viss vindhastighet u skall råda på en bestämd plats kan approximeras med Weibullfördelningen (ekvation 10). k 1 k k u u p u exp, (10) c c c där p(u) är sannolikheten för en vindhastighet u, k den s.k. formfaktorn och c skalfaktorn. Medelvinden kan då beräknas (ekvation 11). 0 u u u p du (11) Medelvinden för Weibullfördelningen (ekvation 12). 1 u c 1, (12) k där är den s.k. gammafunktionen och definieras x Den tillgängliga effektdensiteten kan då skrivas enligt: 0 e t t x 1 dt. E 1 3 c 2 1, (13) 2 k där E är effektdensiteten med enhet W/m 2, och ρ är luftens densitet. 17

23 Vindhastigheten med störst tillgänglig effektdensitet ges av: u m 1/ k k 2 c (14) k Ett specialfall av Weibullfördelningen är den så kallade Rayleighfördelningen som uppstår då formfaktorn k = 2. Denna fördelning kan användas för att approximera frekvensfördelningen om endast medelvinden över en längre period är känd, då k i verkligheten ofta är nära 2. För att anpassa Weibullfördelningen till de observerade vinddata kan olika strategier tillämpas. Om histogrammet för de observerade data avviker från Weibullutseendet måste anpassningen ske till fördel för ett visst intervall av vindhastigheter. Eftersom de är de högre vindhastigheterna, exklusive de mest extrema, som ger störst bidrag på produktionen hos ett vindkraftverk är de dessa som anpassningen utgår ifrån. Weibullanpassningen i WAsP sker i varje vindriktningssektor. För anpassning av c och k finns två kriterier, det första att den totala energin hos vinden skall vara lika för anpassningen och för uppmätt data. Det andra är att den sammanlagda frekvensen av vindhastigheter större än medelvärdet måste vara lika för Weibullanpassningen som för de uppmätta data Modellen WAsP innehåller fyra metoder för att korrigera uppmätta data för den rådande atmosfärsstabiliteten, förändringar i markråhet, skuggning från hinder samt påverkan från områdets orografi. Här nedan beskrivs dessa fyra modeller samt den matematiska teori som knyter dessa samman. De modeller som redovisas är stabilitetsmodellen, råhetsmodellen, hindermodellen och orografimodellen. Den först- och sistnämnda har valts att inte beskrivas matematisk, en beskrivning av denna återfinns i Troen och Petersen (1989), samt annan litteratur som hänvisas till i källan. För beräkning av vindhastigheten vid en specifik höjd z använder WAsP en logaritmisk vindprofil som korrigeras för den rådande atmosfärsstabiliteten (ekvation 15) u * z u z ln ( z L), (15) z0 där u(z) är vindhastigheten vid höjden z över nollplanet, z 0 betecknar ytans råhetslängd, κ = 0,4 och betecknar von Karmans konstant, u * betecknar vindens friktionshastighet och ψ(z/l) är en stabilitetsberoende empirisk funktion som beror av z och L, som är Monin-Obukhov längden (ekvation 16). L c 3 T0 p *, (16) g H u 0 där T 0 och H 0 är markytans absoluta temperatur samt värmeflöde, med enhet W/m 2. c p är luftens värmekapacitet vid konstant tryck och g gravitationsaccelerationen. u * relateras till ytans skjuvspänning, τ, genom följande definition: 2 u * (17) Den geostrofiska vinden kan beräknas via tryckgradienten. (ekvation 18) kan sedan användas för att lösa ut u * för ett givet z 0. u * kan sedan insättas i (ekvation 15) för att beräkna u för ett valfritt z. 18

24 G u u f z0 2 * * ) 2 ln A( ) B(, (18) där G är den geostrofiska vinden. A och B är dimensionslösa konstanter som är beroende av atmosfärens stabilitetsparameter µ. Stabilitetsparametern µ, enligt definition (ekvation 19). u (19) f L µ * Stabilitetsmodellen WAsP-modellen tar hänsyn till atmosfärens olika stabilitet genom att behandla dessa som små avvikelser från ett grundtillstånd. Genom att specificera ett medelvärde och en standardavvikelse för värmeflödet över land och hav kan stabilitetens påverkan modelleras på ett förenklat sätt. Modellen kommer att modifiera de vertikala vindprofilerna genom att modifiera de klimatologiska medelvärdena och standardavvikelserna för vindhastigheten. Fördelarna med stabilitetsmodellen, förutom att korrigera WAsP för att stämma bättre överens med de olika atmosfärsstabilitetsförhållandena, är att denna modell även kan användas för att relatera mätningar gjorda till havs med förhållandena på land och vice versa, då olika värmeupptagningsförmåga råder för dessa områden, vilket påverkar stabiliteten. Om ett område nära kusten studeras kommer justeringarna som utförs p.g.a. förhållanden över land eller hav att viktas med en vikt, w, som framräknas enligt: min( x, c) w, (20) c där x är motvindssträckan till ett havsområde och c är kustzonens bredd, som i standardinställningarna antas till 10 km, men är en ställbar parameter i programmet. Detta görs för att motverka att en orealistiskt skarp gräns mellan hav och land uppkommer Råhetsmodellen Den logaritmiska vindprofilen (ekvation 15), gäller endast då markråheten är homogen en längre sträcka motvinds den studerade platsen. Om skillnader i råhet förekommer inom ungefär 20 km från platsen kan den inte användas i dess nuvarande form. Det går ej heller att beräkna en effektiv råhet, då den i så fall skulle vara höjdberoende, vilket visas nedan. En råhetsförändring tillräckligt långt ifrån platsen kommer inte att påverka vindprofilen, eftersom krafterna som driver vinden, tryckkraften och markfriktionen, kommer vilja jämna ut vindprofilen över en sträcka på ungefär km. När vinden blåser från en råhet till en annan kommer ett internt gränsskit närmast marken att börja växa. Ovanför detta skikt kommer vindprofilen att vara opåverkad av råhetsförändringen (Figur 7). Detta skikts beroende av höjd och längd från råhetsförändringen beskrivs nedan (ekvation 21). 19

25 Figur 7. Illustration över det växande interna gränsskiktet, IG, då vinden passerar en gräns mellan två råheter. Det bruna området representerar den reducering av vindhastigheten som uppkommit genom råhetsförändringen. h h x ln 1 0,9 z 0 z, (21) 0 z 0 där z 0 max( z01, z02), h är höjden på det interna gränsskiktet vid sträckan x ifrån råhetsförändringen. Empiri visar att friktionshastigheten före och efter råhetsförändringen kan beskrivas som en funktion av det interna gränsskiktets höjd, h, samt råhetslängderna före och efter förändringen (ekvation 22). u*2 ln( h/ z01), (22) u*1 ln( h/ z02) där u *2 är friktionshastigheten vid den studerade punkten och u *1 är friktionshastigheten motvind råhetsförändringen. Eftersom vindprofilen har förändrats under det interna gränsskiktet, som avgränsas av höjden h, kan inte u * beräknas från den logaritmiska vindprofilen (ekvation 1), i detta skikt. Dock har empiri samt resultat från numeriska modeller visas att den förändrade vindprofilen kan beskrivas i tre delar enligt nedan: ln( z / z01) u för z c1h ln( c1h / z01) ln( z / c2h) u( z) u u u för c2h z c1h, (23) ln( c1 / c2) ln( z / z02) u för z c2h ln( c2h / z02) där u u ln( c h / ), u u ln( c h / ), c 1 = 0,3 och c 2 = 0,09. * 1 / 1 z01 * 2 / 2 z02 Friktionshastigheten u *2, vid en uppmätt vindhastighet kan således relateras till u *1 som alltså är friktionshastigheten innan råhetsförändringen (ekvation 22 och 23). Dessa ekvationer kan även appliceras i serie, så att den ostörda vindhastigheten kan beräknas för en strecka långt motvind från den studerade platsen. För att teorin skall vara giltig får inte råhetsförändringar ske för nära varandra. En tumregel är att om sträckan från platscentrum till råhetsförändring n är x n måste sträckan till förändring n+1 vara större eller lika med 2x n. Råheten från n till n+1 beräknas då som ett genomsnitt av de råheter som råder inom området. Dock gäller också att 20

26 om en väldigt tydlig råhetsförändring sker inom området, t.ex. land till hav, är det acceptabelt att ändra råhet även om kravet inte uppfylls (Figur 8). Figur 8. Riktlinje för längd mellan råhetsförändringar. Ännu längre motvinds från beräkningsplatsen kommer denna råhetsförändringsmodell ej stämma, då den ej tar hänsyn till gränsskiktsförändringen upp till rådande jämvikt. Därför har en vikt införts på varje beräknad råhetsförändring (ekvation 24). x n Wn exp, (24) D där W n är den beräknade vikten för förändring n, x n är sträckan till förändringen och D är avståndet då jämvikt uppkommer. I modellen antas D=10 km som standard. Ekvationen kan förväntas giltig då x/d är stort eftersom en råhetsförändring som sker långt ifrån jämviktsavståndet ej bör påverka vindprofilen nämnvärt. I fallet då x/d är litet stämmer (ekvation 22 och 23) väl överens med verkligheten. Genom att istället för att beräkna en råhetsförändring från z 0n till z 0n+1 ersätter ln( z0n) Wn ln( z0n 1 / z0n) uttrycket ln( z 0n 1). Denna viktning kan användas i serie för att bestämma ett värde på u * en lång stäcka mot vinden. Även ett z 0 som kan användas i ekvationen för den geostrofiska vinden erhålls genom denna metod. Inmatade data med avseende på råhet ligger till grund för om ett område definieras som vatten eller mark, vid beräkning av stabilitet. Om ett område matas in med råhetsklass 0 (råhetslängd 0 m) kommer WAsP att ange att området är ett vattenområde och använda stabilitetsparametrarna för vatten Hindermodellen WAsP tar hänsyn till hinder genom en enkel, tvådimensionell approximation av hindret i fråga. Detta innebär att nära ett hinder, på avstånd och höjder jämförbara med höjden hos hindret kommer flödet inte att kunna modelleras realistiskt. För detta ändamål krävs betydligt mer avancerade flödesmodeller som i detalj beskriver situationen och löser det med Navier-Stokes ekvationer. Modellen kan dock användas för att korrigera data då hindret befinner sig relativt långt ifrån den studerade platsen och platsen inte utsätts för det turbulenta flöde som skapas närmast hindret. En ekvation för ett enkelt tvådimensionellt oändligt långt hinder, vinkelrätt placerat mot vinden och som är rektangulärt till formen, t.ex. väggar, murar, en lång rad träd och vindbrytande häckar har framtagits från vindtunneltester (ekvation 25). 21

27 0,14 u z x 1,5 9,8 (1 P) exp( 0,67 ), (25) u h h där η är ett uttryck beroende av flera storheter (ekvation 25). P är hindrets porositet och definieras som hindrets öppna area dividerat med dess totala area. h är hindrets höjd, z är den studerade höjden och x är sträckan nedströms från hindret. u / u blir då den procentuella reduktionen av vindhastigheten. 0,47 z 0, 32 x ln( / ) (26) h h z0 h Det turbulenta flödet hos dessa hinder anses vara begränsad av en rak linje från toppen av hindret till en sträcka av fem gånger höjden nedströms och två gånger höjden uppströms från hindret (Figur 9). Detta är alltså det område där modellen ej kan uppskatta minskningen i vindhastighet på ett korrekt sätt. Figur 9. Illustration av det antagna turbulenta område kring ett hinder med höjd h där modellen ej kan förväntas ge giltiga resultat. För hinder som har en icke-oändlig längd och som ej står vinkelrätt mot vinden kommer dock ge upphov till en annorlunda skuggeffekt. För att ta hänsyn till detta använder sig WAsP av åtta stycken strålar i varje 30 azimutsektor (Figur 10). För varje sådan stråle som skär ett hinder noteras sträckan till hindret samt dess höjd. Om en stråle skär flera hinder behandlas varje hinder var för sig, med det som är längst bort först. Detta innebär att hindrens skuggning på varandra tas hänsyn till. Figur 10. Illustration över principen bakom hindermodellen. Strålarna är i detta fall reducerade till 3 st i denna sektor på 30 för förbättrad tydlighet. Efter att skuggningen från hindren beräknats, utjämnas strålarnas värden med varandra. Detta görs för att på ett mer realistiskt sätt uppskatta den genomsnittliga skuggningen i en sektor, då skuggningen runt ett hinder avtar med ökande sträcka från hindrets kanter. 22

28 För att avgöra om ett hinder skall beskrivas enligt hindermodellen eller enligt råhetsmodellen vid användande av WAsP kan följande riktlinjer tillämpas. Om sträckan mellan objektet och hindret är mindre än 50 h och objektets höjd uppgår till mindre än 3 h bör hindret beskrivas i hindermodellen. Då skall hindret också borträknas från områdets råhet. I praktiken kommer detta att innebära att för planerade vindkraftverk kommer sällan hinder att behöva tas hänsyn till då de flesta moderna verk har navhöjder och rotordiametrar som leder till att närliggande byggnaders höjder blir försumbara jämfört med verkets. Dock råder inte detsamma för vindmätningar, då vanlig mätutrustning kan mäta så lågt som 10 m över marknivå och ofta kan vara placerad i närheten av bebyggelse Orografimodellen För att korrigera uppmätta data för förändringar i terrängens topografi används en orografimodell. Denna modell är speciellt framtagen för att behandla vågliknande kullformationer med en horisontell skala på tiotal km. Modellen är baserad på analysen av flöden över kullar av Jackson och Hunt (1975). Detta innebär att modellen ej kan behandla de fall då flödet separerar från ytan, d.v.s. i områden med för brant terräng kan modellen ej förväntas ge korrekta resultat, utan tenderar att överskatta vindresursen. En vidare beskrivning om vad som kan anses utgöra för brant terräng och hur resultatet kan korrigeras för att bättre överrensstämma med verkligheten i dessa fall ges under rubriken RIX i kapitlet modellbegränsningar och felkällor. Denna modell använder sig av polära koordinater, vilket innebär att modellen har finast upplösning närmast den studerade punken, då denna placeras i centrum. Rutnätets radiala storlek ökar med en faktor 1,06 för varje ny ruta i den radiala riktningen och rutnätet har 100 punkter i den radiella utsträckningen. Detta innebär att för en modell med en yttre radie på 10 km kommer upplösningen nära den studerade punkten vara så hög som 2 m. Detta innebär att modellen inte kommer vara begränsande upplösningsmässigt, utan snarare den karta vars höjdkurvor används som indata i beräkningen. Output från modellen kommer att vara koefficienter som sedan appliceras på inmatade vinddata för att transformera dess vindhastighet och riktning Beräkningsgång Beräkning av vindstatistik Den beräkning som utförts i WindPRO med WAsP är en generering av vindstatistik från uppmätta data och sedan en anpassning av denna statistik till de specifika platserna som studerats. Arbetsmetoden för beräkningen av dessa moment redovisas nedan. För beräkning av vindstatistiken matas först de uppmätta platsdata in i programmet. Data delas då upp i de antal sektorer som användaren bestämt, som standard används 12 sektorer. För varje sektor skapas sedan ett histogram från indata med en stapelbredd på 1 m/s. Om vi studerar en sektor j utförs då operationerna enligt nedan. Dessa histograms stapelgränser korrigeras för de rådande omgivningsförhållandena enligt råhets-, hinder-, och orografimodellen. Om vi betänker en befintlig stapel med gränserna u k och u k+1. Efter korrigeringen av modellerna kommer stapelgränserna att vara u k och u k+1. Orografimodellen kommer även att korrigera sektorns gränser med avseende på vridningen av vinden som den omgivande orografin orsakar. Från råhetsmodellen erhålls en effektiv råhetslängd för varje stapelgräns i den beräknade sektorn som sedan sätts in i ekvationen för den geostrofiska vinden. u * erhålls även den från råhetsmodellen. Den geostrofiska vindens riktning beräknas för varje sektorgräns. Observera att frekvensen för varje stapel bevaras i alla dessa beräkningar, det är bara stapelgränserna 23

29 som ändras. Därefter beräknas u * -värden genom samma ekvation för fyra s.k. standardråheter. Dessa råheter motsvarar råhetslängderna hos de fyra råhetsklasserna 0, 1, 2 samt 3 och är definierade med respektive råhetslängd enligt: 0,0002; 0,03; 0,10 samt 0,40 m. Den logaritmiska vindprofilen (ekvation 1), används sedan för att räkna ut de motsvarande vindhastigheterna vid första standardhöjden, 10 m. Nu anpassas sedan data om från de korrigerade stapelbredderna och sektorsvärdena till standardvärdena, alltså 30 -sektorer och 1 m/s i stapelbredd, d.v.s. frekvenserna ändras. Denna procedur upprepas nu på alla sektorer och för de fyra standardråheterna. För varje sektor anpassas nu Weibullfunktioner enligt beskrivningen i rubriken Weibullfördelning. Weibullparametrar för de övriga standarhöjderna (25, 50, 100 och 200 m) beräknas sedan, där tas även hänsyn till stabilitetsparametrarna. Beräkningen av vindstatistiken är nu komplett (Figur 11). Figur 11. Schema over arbetsgången vid generering av vindstatistik Användning av vindstatistik för produktionssimulering För att anpassa den beräknade vindstatistiken till en specifik plats och höjd utförs i princip inversen till vindstatistikberäkningarna. Modellen ger resultatet i form av en förväntad årsproduktion baserad på den vindstatistik som använts (Figur 12). 24

30 Figur 12. In och utdata för PARK beräkningen. Programmet använder gällande navhöjd för varje plats, hur mycket vinden vrider sig från en helt slät terräng baserat på den inmatade topografiska data samt vilken råhet som skall användas för respektive sektor. Från de Weibullparametrar som framräknats från beräkningen av vindstatistiken kan nu respektive plats specifika parametrar erhållas genom interpolation. Resultatet blir alltså en sannolikhetsfördelning, p n (u), för att en vindhastighet, u, skall råda för sektor n samt en sannolikhet att vinden blåser från respektive sektor, s n. För en specifik sektor kan då den totala produktionen, P n, beräknas (ekvation 27). n 0 Pn s pn( u) Pc ( u) du, (27) där P c (u) är den producerade effekten för vindhastighet u (Power Curve). Resultatet korrigeras även efter en skuggmodell, där produktionen reduceras enligt den beräknade parkverkningsgraden, som beskrivs under rubriken Skuggningsmodeller. Om vinddata upptagits under en kortare period måste den beräknade produktionen korrigeras med ett vindindex för att relatera denna period med långtidsmedelvärdet för produktion i området. Vindindex beskrivs utförligare i DEL II av rapporten under kapitlet Material och metoder. 4.2 WindSim WindSim är ett CFD-verktyg för produktionsberäkning och platsoptimering av vindkraftverk. Programmet utvecklas av WindSim AS (VECTOR AS innan 2005), ett norskt företag som tillsammans med Meteorologisk Institutt i Norge etablerade ett norskt vindatlas Den första kommersiella versionen lanserades Programmet beräknar vindresursen genom att lösa RANS med hjälp av en k ε turbulensmodell. Lösningsmetoden är baserad på den kommersiella universal-cfd-koden PHOENICS, utvecklad av det brittiska företaget CHAM Ltd Modellen Eftersom RANS är en uppsättning ickelinjära differentialekvationer löses dessa ej analytiskt utan lösningen erhålls genom iterativa numeriska metoder där en samling initial- och randvillkor utgör grunden för beräkning av vindfältet. Modellen jobbar med ett kartesiskt koordinatsystem där de fem variablerna tryck, tre hastighetskomponenter, turbulent kinetisk energi samt turbulent skingringshastighet löses för varje nod i koordinatsystemet. Även den 25

31 procentuella turbulensintensiteten kan beräknas från den turbulenta kinetiska energin genom att anta isotropisk turbulent kinetisk energi. Modellen använder sex beräkningssteg som måste utföras i följd för att beräkna årsproduktionen för ett vindkraftverk. Stegen beskrivs nedan i detalj. Fördelen med dessa typer av CFD-modeller är att modellskalan är variabel. Genom att simulera ett stort område kan storskaliga flödesegenskaper för området utvärderas. Detta kallas för en mesoskalmodell och är användbart om vindresursen i ett stort område skall uppskattas. När det sedan kommer till finjustering av turbinpositionerna kan ett betydligt mindre område studeras och småskaliga skillnader i vindflödet uppenbaras, en s.k. mikroskalmodell har upprättats Definition av Terrängen Simuleringen börjar med att definiera terrängen och dess råhet. Detta görs genom att importera en kartfil med det egna formatet.gws. WindSim har ingen inbyggd möjlighet att digitalisera höjdkurvor från kartor som till exempel WindPRO eller WAsP, utan litar på tredjeparsprogram för generering av kartan. Möjlighet att konvertera kartfiler från andra program finns därför implementerat och i dagsläget stöds kartor från AutoCAD, WAsP, Surfer och ESRIs ArcGIS. Även generiska.xyz-format stöds, vilket möjliggör en egen konvertering i exempelvis Excel om kartorna endast finns i ett format som ej stöds. När kartfilen importerats definieras rutnätet. Detta görs genom att sätta parametrarna höjd över terrängen, höjdfördelningsfaktor, antal celler i z-led samt max antal celler. Höjd över terrängen bör sättas så nära marknivån som möjligt, eftersom upplösningen i z-led då blir högre för ett konstant antal z-celler, men utan att blockeringseffekter uppstår. Med blockeringseffekter menas att ofysikaliska lösningar erhålls då avståndet mellan en höjdpunkt i terrängen och det övre randvillkoret är för litet. Anledningen till detta är att det övre randvillkoret är satt av användaren till antingen en friktionsfri vägg, där ingen luft får passera, eller ett plan med konstant tryck. I vilket fall kommer flödet att bestämmas felaktigt om avståndet mellan randvillkoret och marknivån blir för litet (Figur 13). Figur 13. Ofysikaliska lösningar uppstår mellan bergstoppen och den friktionsfria väggen då en flaskhalseffekt uppstår p.g.a. att luften ej får passera genom toppen av modellen. Programmet försöker uppskatta om blockeringseffekter uppstår genom att ta en kvot mellan arean ovanför den projicerade marknivån i nord-sydlig respektive väst-östlig riktning mot den totala arean. Om den kvoten understiger 0,95 kan blockeringseffekter uppstå och parametern höjd över terräng bör ökas. Då antal z-celler redan är definierat beräknas antalet celler i x- och y-led genom 26

32 nx ny nz n max, (28) där n betyder antal celler. Rutnätet kan även göras progressivt tätare i ett utvalt område, förslagsvis kring vindkraftverken och mätstationerna, för att öka upplösningen kring dessa på bekostnad av ytterområdena. Det finns även metoder för att förhindra att lösningen divergerar, som går ut på att släta ut skarpa förändringar i höjd som kan leda till divergens Beräkning av Vindfältet När nu själva terrängen och beräkningsområdet är definierat kan nu randvillkor och initialvärden för beräknings av vindfältet specificeras. Som standardinställning används 12 riktningssektorer där den inkommande vinden simuleras. Som randvillkor längsmed simuleringsgränserna kan antingen resultatet från en överlappande mesoskalmodell användas eller att den logaritmiska vindprofilen antas gälla i utkanten. Detta innebär i praktiken att en oändligt lång plan yta med en specificerad råhet antas ligga utanför modellområdet, något som kan ge felaktiga värden om lösningen nära randen söks. Som initialvärden definieras höjden och geostrofiska vindhastigheten. Även maximalt antal iterationer innan simuleringen bryts kan specificeras, detta så att exempelvis en divergerande lösning ej kan simuleras i oändligheten. Om lösningen hinner konvergera innan det maximala antalet iterationer uppnåtts bryts simuleringen så beräkningstid ej används i onödan. Det är detta moment som kräver mest beräkningstid i simuleringen. Då antalet iterationer för konvergens ökar exponentiellt med antalet celler kan det vara bra att dela upp en stor simulering i flera små för att minska beräkningstiden. Resultatet av denna modul är värden för de fem lösta variablerna för varje punkt i rutnätet för ett vindflöde från respektive sektor Objekt I detta moment definieras verkens och vindmätningarnas position och egenskaper. Även s.k. flyttade klimatobjekt kan läggas till. Med detta menas att en vindmätning flyttas horisontellt och vertikalt, en virtuell vindmätning upprättas för platsen. Detta kan användas till att flytta en vindmätning från en modell till en annan, förutsatt att klimatet kan anses representativt för båda modellerna. Genom att flytta klimatet till en högre höjd i en mikroskalmodell kan småskaliga flödeseffekter filtreras ut. Sedan kan klimatet flyttas via en överlappande mesoskalmodell till en ny mikromodell och där användas som en ny vindmätning Resultat Denna modul används för att extrahera tvådimensionella horisontalplan för grafisk presentation med specificerad höjd över markytan från den fullständiga lösningen. De variabler som kan extraheras är samtliga hastighetsskalärer och vektorer, trycket, den kinetiska energin samt turbulensintensiteten vid isotropisk kinetisk energi. Dessa variabler extraheras även från respektive vindriktning, exempelvis kan hastighetsskalären i x-y-planet extraheras för höjden 30 m över markytan och vindriktning 180 (vind från söder) Beräknings av Vindresurs Här sker anpassningen av det framräknade vindflödet för samtliga sektorer mot de uppmätta vinddata i klimatobjektet. Om data upptagits i mer än ett klimatobjekt sker anpassningen genom interpolation av det inversa avståndet mellan den beräknade cellen och klimatobjekten. 27

33 Anpassningen kan också utföras med sektorsinterpolation, vilket innebär att vridningen av vinden i modellen vid klimatobjektet tas hänsyn till. Vikten av detta kan illustreras med följande exempel. Om vi tänker oss att inkommande vind från väst böjs av mot öst-syd-öst och inkommande vind från väst-syd-väst inte böjds av alls när den når klimatobjektet. Resultatet blir att medelvärdet mellan de två inkommande vindriktningarna ger värdet för sektorn väst i klimatobjektet (Figur 14). Figur 14. Interpolation mellan inkommande vind från väst och väst-syd-väst motsvarar inkommande vind från väst vid klimatobjektet. I denna modell utförs även skuggberäkningarna, där parkförlusten uppskattas för verk som arbetar i varandras skugga. Tre skuggmodeller finns implementerade, den s.k. N.O. Jensenmodellen, C.G. Larsen-modellen samt en modell av T. Ishihara m.fl. De två förstnämnda finns vidare beskrivna under kapitlet Skuggningsmodeller senare i rapporten. Modellen kan även upprätta en områdesklassificering utifrån vilken medelvind som råder inom området Beräkning av Energiproduktion Slutligen beräknas den årliga energiproduktionen för samliga vindkraftverksobjekt. Finns vinddata upptaget som tidsserie kan energiproduktionen även får som resultat utan Weibullanpassning till vinddata. Skillnaderna tenderar dock att röra sig i storleksordningen om ett par procent på årsproduktionen. Det går även att exportera vindprofilerna vid varje vindkraftverk, där bl.a. information om hastighetskomponenterna, vindprofilens form, turbulensintensitet och infallsvinkel finns redovisat för samtliga celler i z-led. 28

34 5 Modellbegränsningar och felkällor 5.1 Felkällor vid vindmätning Alla mätningen som syftar till att bestämma vindhastighet och vindriktning är behäftade med en viss nivå av osäkerhet. De dominerande felen vid vindmätningar är dels fel relaterade till den använda utrustningen som sådan och fel av systematisk karaktär. Det brukar anses att fel av den systematiska typen dominerar över de slumpmässiga mätfel som utrustningen ger upphov till Mätnoggrannhet Dessa typer av fel beror på utrustningens upplösning och inneboende mätfel. Upplösningen hos utrustningen definieras som den minsta förändring i den uppmätta storheten som utrustningen kan registrera. Mätfelet definieras som skillnaden mellan det uppmätta värdet och väntevärdet. Ju högre upplösning och ju lägre mätfel hos utrustningen desto större mätnoggrannhet erhålls. Generellt är det erhållna mätfelet, för en korrekt placerad och kalibrerad anemometer av bra kvalitet, i storleksordningen 2 % (Troen och Petersen, 1989) Systematiska fel Systematiska fel innebär fel som förskjuter den slumpmässiga spridningen av en mätserie från väntevärdet. Systematiska fel behöver inte vara konstanta utan kan variera med t.ex. tiden. Några exempel på systematiska fel som är vanliga när det gäller vindmätningar är felaktigt kalibrerade vindmätare, vindmätare placerade i närheten av turbulensgivande hinder, mätare som vrids efter en period av frisk vind, nedisade eller nedsmutsade mätare som p.g.a. detta registrerar för låga vindhastigheter o.s.v. För att en vindsimulering skall ge tillfredställande resultat måste de ingående mätdata vara fria från systematiska fel i största möjliga mån, då efterkorrigeringar av resultaten är svåra att göra. De vindmätningar som använts för att skapa European Wind Atlas har noga studerats för att exkludera vindmätningar som kan förväntas vara behäftade med systematiska fel. Troen och Petersen (1989) anser ändå att en osäkerhet på 5 % eller mer hos den uppmätta vindhastigheten vid dessa mätningar ändå måste antas för att kompensera för felkalibrering och andra, oupptäckta fel av systematisk karaktär. 5.2 Begränsningar i WAsP-modellen Modellens grundpelare, uttrycket för den geostrofiska vinden, är endast giltig då friktion från marken borträknas samt för raka isobarer. Hur väl denna approximation stämmer med verkligheten beror på var på jorden vinden studeras. I de klimat som råder i norra Europa tenderar approximationen att vara giltig medan i tropikerna kommer den verkliga vinden att avvika från den geostrofiska approximationen. Även om osäkerheten i bestämningen av den geostrofiska vinden från en enstaka mätserie kan vara stor, så fungerar metoden väl då en vindmätning skall flyttas i horisontell och vertikal led och felen blir i praktiken relativt små. Råhetsmodellens fel varierar beroende på de studerade områdenas råhet. En bestämning av råheten utifrån kartor och flygfoton eller sattelitbilder kommer alltid vara behäftat med ett fel och storleksordningen på detta bör ligga kring 50 % eller mer i bestämningen av råhetslängden. Även med platsbesök kan råheten vara svåruppskattad vid komplexa förhållanden. Detta resulterar i fel kring 5 % för råhetsklass 2, med avseende på medelvinden och kring 15 % för råhetsklass 3. Råheten kommer i många fall att variera även med årstiden. Stora ytor med låg vegetation kan under vintern täckas helt med snö i de norra 29

35 klimatområdena vilket kommer leda till en minskning av områdets råhet. Ännu ett exempel är stora jordbruksområden vars råhet varierar med tid på säsongen, vilka sädesslag som odlas och hur dessa skördas. Det finns inget sätt att kompensera för detta i den nuvarande WAsPmodellen, men studier har visat att detta har en marginell påverkan på resultatets tillförlitlighet. Troen och Petersen (1989). Hindermodellen approximerar verkliga hinder med en formel för flöde över tvådimensionella porösa hinder. Denna förenkling ger givetvis upphov till stora fel. Troen och Petersen (1989) refererar till en studie av P.A. Taylor, m.fl. (1993) som visar att denna metod tenderar att överskatta skuggningen hos tredimensionella objekt med upp till en faktor 2, medan för stängsel överrensstämmer modellen väl med verkligheten. Dock brukar skuggningen från hinder vara relativt liten i de flesta fall, vilket medför att det totala felet blir ringa, såvida inte en plats med många hinder studeras. Orografimodellen är den modell som förväntas ge störst fel i beräkningarna vid komplex terräng. För områden med kullar och åsryggar med en lutning under 30 % och horisontella dimensioner kring 1-2 km brukar modellen ge fel kring 10 %. För lutningar över 30 % kommer modellen att överskatta vindhastigheten på läsidan av kullen. Detta p.g.a. att vinden separerar från marken och skapar turbulens på baksidan. För att modellera dessa fenomen krävs mer avancerade CFD-modeller. Dock kan felen uppskattas med hjälp av RIX-metoden som beskrivs nedan och resultatet kan med hjälp av detta korrigeras för att minimera effekterna av separerade flöden. Fel uppkommer även när storskaliga områdesegenskaper inverkar på flödet. Ett exempel på detta är en mätstation lokaliserad i Fort Augustus, Skottland. Stationen ligger mitt i en lång dalgång med Loch Ness på ena sidan och Loch Lochy på den andra. Om en vindstatistik skulle beräknas från den platsen för att sedan flyttas 50 km i en riktning vinkelrätt mot dalen och sjöarna skulle detta leda till en felaktig vinduppskattning, då de områdesegenskaper som tvingar vinden att blåsa längs dalgången ej längre skulle influera flödet. Men så länge mätningarna och platsanpassningarna utförs inom liknande områdesegenskaper bör dessa typer av fel ej uppstå. Ett exempel på detta är en vindmätning som utförts på en homogen och utdragen åsrygg. Om vindmätningen flyttas längsmed toppen kan resultatet förväntas giltigt, medan bara några km vinkelrätt mot ryggen leder till prediktionsfel (Figur 15). Figur 15. Förflyttning av en vindmätning längsmed en åsrygg medför i regel inget fel medan en förflyttning nedför berget ger prediktionsfel. 30

36 Att beräkna produktionen inom skogsområden eller i områden med skog i sin absoluta närhet kommer att medföra problem. Detta eftersom den s.k. Monin-Obukhov similaritetsteorin som WAsP-modellen bygger på inte kan förväntas giltig i ett gränsskikt ovan skogen (Dalström m.fl., 2008). Detta gränsskikt kallas på engelska för roughness sublayer, uppgår till maximalt två gånger trädhöjden och karaktäriseras av kraftigt turbulenta flöden (Figur 16). Det finns ingen teori som med säkerhet kan avgöra höjden på gränsskitet, men rent generellt kan sägas att ju glesare träden står desto längre uppgår gränsskiktet. Hur detta turbulenta gränsskikt påverkar kraftproduktionen i verket är långt från självklart; en kraftigt turbulent vind kommer att ha högre energiinnehåll än en mindre turbulent för samma medelvindhastighet, på grund av vindenergins beroende av vindhastigheten i kubik. Däremot kommer infallsvinkeln mot den svepta arean att variera snabbt, vilket innebär att verket inte har möjlighet att utnyttja vindenergin maximalt, då verket helt enkelt inte hinner med de snabba förändringarna i vindriktningen. Dock bör det nämnas att vindkraftverk inte är konstruerade för att arbeta i den typ av turbulens som rådet inom gränsskiktet, vilket medför kortare livslängd, eller i värsta fall att tillverkarna ej lämnar garantier för verk med för kort tornhöjd i skogsområden. Lösningen på problemet blir att bygga så höga torn att ingen del av den svepta arean arbetar i gränsskiktet, men högre torn medför högre kostnader. Som tidigare nämnts uppstår inom ett skogsområde även en s.k. nollplansförskjutning vilket innebär att den effektiva marknivån där vinden i vanliga fall har hastigheten noll förskjuts till en nivå mellan marknivån och trädtopparna, h np. Detta innebär i princip att den effektiva tornhöjden hos vindkraftverken sänks med samma höjd som nollplansförskjutningen. Både Tore Wizelius (2008), högskoleadjunkt vid Gotlands högskola och författare till boken Vindkraft i teori och praktik och Andrew Tindal (2008) från GarradHassan hade samma budskap i föredragen de höll på vindkraftskonferensen Vind2008 i Malmö. För att simulera produktionen i skogsområden måste vindmätningen göras i skogsområdet på samma plats som det tänka verket eller åtminstone en i närheten liknande plats samt på en höjd nära verkets navhöjd. Dessutom bör underkanten av den av rotorn svepta arean vara minst tre trädhöjder ovanför marknivån för att minimera effekterna av det turbulenta gränsskiktet närmast trädtopparna. Effekterna av gränsskiktets turbulens minskar om verken placeras på lokala höjdpunkter i skogsterrängen. Klart är dock att stor osäkerhet råder kring förutsättningarna över skogsområden och möjligheterna att bedöma förutsättningarna för vindkraftsproduktion. Figur 16. Illustration över vindprofilen över skog. 31

37 För att avgöra huruvida en simulering är pålitlig eller inte kan två olika metoder användas. Den första, korsprediktering, innebär att den framräknade vindstatistiken anpassas till andra platser där vinddata finns tillgänglig så jämförelser kan göras mellan dem. Den andra kallas för ruggedness index (RIX) och kan användas för att uppskatta den eventuella över eller underskattningen av vindhastigheten i kuperad terräng Korsprediktering Denna metod ger en bra indikation på hur väl den framräknade vindstatistiken representerar vindklimatet i området. Denna metod går bara att använda om flera vindmätningar utförts inom maximalt 200 km från den plats vars vindfördelning skall beräknas. Predikteringen går till så att en vindstatistik från var och en av de tillgängliga vindmätningarna i området genereras. För var och en av dessa vindstatistiker beräknas sedan vindhastigheten på de platser och höjder där övriga vindmätningar är utförda. Dessa framräknade medelvärden jämförs sedan med det uppmätta medelvärdet hos respektive station. Om platserna ligger inom samma vindklimat och i övrigt är jämförbara enligt kriterierna ovan bör de predikterade och de uppmätta medelvärdena skilja med några tiondels m/s. Om skillnaderna är större är risken stor att vindmätningarna ej representerar samma vindklimat, alternativt att andra felkällor påverkar vinddata RIX Denna metod går ut på att uppskatta hur kuperat de studerade områdena är och jämföra graden av kupering vid mätplatsen och den predikterade platsen. Eftersom WAsP-modellen överskattar vindhastigheten vid separerade flöden har en modell framtagits för att uppskatta hur stor andel av flödet som kan väntas separera kring ett område. Bowen och Mortensen (2004) konstaterar i en undersökning att separation generellt inträder vid lutningar större än 30 %. Metoden går till så att den studerade platsen placeras i centrum av en cirkel med valfri radie, som standard används 3,5 km. Från cirkelns mittpunkt ritas sedan ett antal strålar ut och de delar av varje stråle som skär en lutning större än 30 % noteras. För att detta skall kunna utföras korrekt förutsätts orografiska kartor av god kvalitet. Dessa noterade sträckor divideras med den totala sträckan av samliga strålar och ett värde på platsens kullighet, RIX, erhålls. Skillnaden mellan den predikterade platsen och platsen där vindmätningarna utförts beräknas sedan. Om ΔRIX < 8 % kan det anses litet och innebörden blir att platserna har lika stor kullighet och att eventuella fel som införs p.g.a. detta är lika stora och tar ut varandra i beräkningen. Däremot om ΔRIX > 8 % finns två fall. Om deltat är positivt, d.v.s. att den predikterade platsen har större kullighet än vindmätningsplatsen innebär detta att vindhastigheten överskattas för den predikterade platsen. Om det motsatta rådet, d.v.s. en slät predikterad plats och en kullig vindmätningsplats leder detta på motsvarande sätt till en underskattning av vindhastigheten vid den predikterade platsen. 5.3 Övriga felkällor Samliga vindsimuleringar innebär en tidsmässig extrapolering av uppmätt vinddata. För att denna extrapolering skall vara så tillförlitlig som möjligt krävs att vindmätningar utförts under en längre tid. För att kunna förutsäga storskaliga klimatförändringar krävs, enligt Manwell (2002), vinddata registrerade över en period av 30 år, och för att kunna förutsäga långtidsmedelvinden krävs data från 5 år. Manwell (2002) refererar till en artikel av Aspliden m.fl. (1986) som konstaterar att ett års vinddata räcker för att förutsäga långtidsmedelvinden med en noggrannhet inom 10 % med en standardavvikelse på 90 %. Kortare dataserier kan användas med ökad tillförlitlighet genom att relatera resultatet till befintlig produktion, om sådan finns tillgänglig. Genom att simulera produktionen för ett 32

38 existerande verk i området kan resultatets giltighet kontrolleras. Har dessutom verket producerat länge i området och dessa produktionsdata finns tillgängliga, kan produktionen från en kortare tidsperiod relateras till långtidsproduktionen och resultatet blir bättre överrensstämmande gentemot långtidsmedelvärdet. Tillgänglighetsdata för verket kan också vara nödvändigt för att generera ett godtagbart resultat. Om verket har haft driftsproblem under vissa tidsperioder kanske detta inte märks i produktionsdata och resultatet blir felaktigt. För dataserier med bortfall av data finns också osäkerheter. T.ex. kan dataserier utan nattliga observationer finnas tillgängliga. Då vindhastigheten på de flesta platser är större på dagen än på natten, kommer detta att leda till att områdets vindhastighet överskattas. I vissa området kan dock det motsatta gälla och utan referensdata kan det vara svårt att avgöra vad som gäller för den studerade platsen. Andra bortfall som vid första anblick kan vara lätta att avfärda som slumpmässiga och således mindre viktiga, kan också finnas i tillgängliga data. Vid användning av sådana dataserier kan det vara svårt att säga något om felet, om det inte kan uteslutas att databortfallet beror på omgivande väder- eller vindfaktorer. En tidsmässig variation av råheten kring platsen är också tänkbar. Då de flesta vindkraftverk som uppförs idag har en förväntad livslängd på 20 år eller mer kan mycket hända med den omgivande terrängen. Storskalig skogsavverkning eller nyplantering på ett kalhygge kan över tid påverka råheten i ett område. Sådana faktorer kan vara viktiga att ha i åtanke om ett vindkraftverk uppförs i ett område som domineras av dessa områdestyper. Den tidsmässiga upplösningen hos data har betydelse vid produktionssimuleringar. Data rapporterade som medelvärden på 10 minuter innehåller ingen information om variationerna krig medelvärdet under perioden mellan rapporteringen. Då vindens energiinnehåll är proportionellt mot kuben av vindhastigheten kommer energin i vinden öka vid ökande spridning kring ett och samma medelvärde. Detta går att ta hänsyn till med teori, dock skall det poängteras att denna teori endast beräknar energiökningen i en punkt och inte tar hänsyn till det faktum att för att ett vindkraftverk skall kunna extrahera den turbulenta energin måste turbulensen sammanfalla över hela rotorarean samtidigt. Det är även möjligt att den tillgängliga effektkurvan för ett specifikt verk redan anpassats för en tidsskala på 10 minuter, där alltså turbulenseffekterna redan bakats in. Hur detta skall behandlas vid en produktionssimulering får tas hänsyn till från fall till fall. 33

39 6 Skuggningsmodeller När flera vindkraftverk placeras i närheten av varandra kommer dess totala verkningsgrad att minska jämfört med om varje verk skulle stå var för sig i den fria vinden. Detta beror på att när ett verk nyttjar energi från vinden kommer en skugga, med reducerad vindenergi, att bildas nedströms verket. Den totala produktionsminskningen hos en park jämfört med samma antal enskilda verk rör sig generellt kring 2 20 % på årsbasis och brukar kallas för parkverkningsgrad. Skuggan kommer att återfå sin energi genom ett utbyte av rörelseenergi från den omgivande vinden. Hur snabbt detta sker är beroende av vindens turbulensintensitet, där högre turbulensintensitet kommer att öka energiutbytet. Avståndet mellan verken spelar givetvis också roll, ju längre sträcka energiutbytet får ske, desto mer lik den ostörda vinden kommer skuggan att vara. För att modellera denna skuggas energireduktion finns ett antal olika modeller. Dessa modeller kan delas in i fyra huvudgrupper med stigande komplexitet: 1. Markråhetsmodeller 2. Semiempiriska modeller 3. Virvelviskositetsmodeller (Eddy viscosity) 4. Navier-Stokes lösare Markråhetsmodellerna är baserade på vindtunneltester och är de tidigaste modeller som föreslagits för att beräkna samlingsförlusterna. Dessa modeller antar en logaritmisk vindprofil som sedan modifieras genom en råhetsförändringsmodell för att kompensera för de lägre vindhastigheter som råder inne i vindparken. De semiempiriska modellerna är baserade på momentets bevarande och innehåller en eller flera empiriskt framtagna konstanter. Den av EMD rekommenderade modellen av bl.a. N.O. Jensen är av denna typ. De på engelska kallade Eddy viscosity models är baserade på förenklade modeller baserade på Navier-Stokes ekvation där flödets tidsmässiga medelvärden beräknas genom dess skjuvspänning. Denna skjuvspänning kan sedan relateras till flödeskaraktären med hjälp av s.k. virvelviskositet. Ainslies modell som finns implementerad i WindPRO använder denna metod. Slutligen finns kompletta Navier-Stokes lösare. Dessa är mycket tidskrävande med dagens datorer och används främst vid forskning och framtagande av enklare modeller. Den s.k. parkverkningsgraden, som beräknas utifrån resultatet av skuggningsmodellerna, definieras enligt E E, (29) park beräknad ensam där E beräknad avser den beräknade energin med parkförluster och E ensam den energi verket skulle producera om inga andra verk fanns i dess närhet. Tre skuggmodeller finns implementerade i nuvarande version av WindPRO. Två av dessa (N.O. Jensen och C.G. Larsen) finns även implementerade i WindSim och kan klassificeras till kategorin semiempiriska modeller. Dessa modeller beskrivs i korthet nedan. Tonvikten har lagts på N.O. Jensens modell eftersom denna är den rekommenderade modellen och även den modell som i fallstudier har gett bäst resultat (Nielsen, 2002; Sørensen m.fl., 2008). 34

40 6.1 Inledande teori För att beskriva utseendet hos en vindturbinskugga kan följande modell av Betz användas. Denna modell baseras på momentets bevarande och använder sig av kontrollvolymer som sträcker sig före och efter en pådrivande rotorskiva som sänker lufttrycket i en diskontinuitet (Figur 17, Figur 18). Figur 17. Definition av kontrollvolymerna och index. Figur 18. Schematisk figur över tryckförändringarna kring rotorskivan. Modellen antar även homogent, inkompressibelt och stationärt flöde, ingen motriktad friktion, oändligt många blad, homogen tryckkraft över hela rotorn, att trycket hos den ostörda luften råder långt före och efter rotorn samt en ickeroterande luftmassa efter rotorskivan. Dragkraften som vinden utför på rotorn ges av dm T u, (30) dt där T är dragkraften. P.g.a. antagandet om stationärt flödet kan dm/dt omskrivas till m. Med ovan nämnda antaganden ges nu att dragkraften är den enda kraft som verkar på kontrollvolymen. Den kommer till storlek och riktning att vara den motriktade kraften till T. Ekvationen för dragkraften ställs nu upp för kontrollvolymen vilket ger T m ( u 1 u4) (31) Dragkraften kan även uttryckas som summan av alla krafter över rotorskivan (ekvation 32). T A( p ) 2 p3, (32) där A är rotorarean. För att relatera p 2 och p 3 till flödeshastigheterna ställs Bernoullis ekvation upp för varsin sida om rotorskivan och p 2 och p 3 löses ut p1 u1 p2 u2 p2 p1 ( u1 u2 ) (33) p3 u3 p4 u4 p3 p4 ( u4 u3 ) (34) (ekvation 33) och (ekvation 34) insätts nu i (ekvation 32) med antagandet att p 1 =p 4 samt u 2 =u 3, hädanefter betecknad u R. (ekvation 35). 35

41 T A( u 1 u4 ) (35) 2 (ekvation 31) och (ekvation 35) sätts nu lika och ger därefter, med uttryck: m Au R, följande u R u 1 u 4 (36) 2 D.v.s. att hastigheten vid rotorskivan är medelhastigheten av uppströms- och nedströmshastigheten. En axiell induktionsfaktor, a, kan nu definieras. (ekvation 37). a u u u 1 R (37) 1 (ekvation 37) tillsammans med (ekvation 36) ger nu u u1(1 2 ) (38) 4 a Vidare ger (ekvation 35) och (ekvation 38) 1 2 T Au1 4a(1 a) (39) 2 Nu definieras slutligen den dimensionslösa dragkoefficienten C T enligt T 1. (40) u A C T Detta skall tolkas som dragkraften genom vindens kinetiska kraft, vilket alltså är ett mått på hur stor del av den initiala kinetiska kraften som verkar på rotorskivan. Detta är en viktigt storhet som ingår i samliga modeller för att beräkna skuggförlusterna. C T -kurvan för Vestas V90 med en generator på 3MW samt standardkurvan för pitchreglerade verk jämfördes (Figur 19). 36

42 Ct Dragkoefficienten för Vestas V90/3MW och standardkurva för pitchreglerade verk 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, Vindhastighet (m/s) Vestas V90 Harakosan (std. CT Curve) Figur 19. CT -kurva för Vestas V90 och den kurva som används som standardkurva för pitchreglerade verk i WindPRO. Vidare följer nu från (ekvation 38, 39 och 40) att u4 1 C T. (40) u 1 Dragkoeffcienten är alltså en viktig ingående storhet för att bedöma parkförlusten i samtliga modeller. Det framgår att C T är som störst vid vindhastigheter kring 5-9 m/s för att sedan avta vid större vindhastigheter (Figur 19). Detta innebär att de största parkförlusterna kommer att inträffa just i detta vindhastighetsspann, då ett större C T leder till ett mindre u 4 och således en större parkförlust. 6.2 N.O. Jensens skuggmodell. Denna modell uppfanns av Jensen (1983). Modellen tar ej hänsyn till flödets karaktär inom skuggan, utan går ut på att försöka uppskatta själva energiförlusten. Resultatet av N.O. Jensenmodellen är alltså ett homogent hastighetsfält i skuggan, med en skarp gräns mot den omgivande vindhastigheten. Den fria vindhastigheten u 1 relateras med vindhastigheten i skuggan, u 4 och den verksspecifika dragkoefficienten C T, och lägger grunden för denna relativt enkla, men ändå väl överrensstämmande skuggningsmodell (Figur 20). 37

43 Figur 20. N.O. Jensens skuggningsmodell med ingående storheter. u w är vindhastigheten i skuggan som begränsas av gränsskiktet, den blå streckade linjen. Genom antagandet av momentets bevarande kan följande relation skrivas, vilket är den formel för beräkning av u w som modellen använder. u 1 1 C w T 1, (41) 2 u1 x 1 2k D där k är den empiriskt framtagna skuggavtagandekonstanten. Vänster led betecknas som vindens hastighetsbrist och är ett uttryck för hur stor andel av den fria vindhastigheten som densamma skall minskas med för att ge hastigheten i skuggan på sträckan x från rotorplanet. Det har visat sig att k beror av ett antal storheter. Dessa inkluderar den omgivande turbulensen, turbulens skapad av turbinen samt atmosfärens stabilitet. I WindPRO approximeras k till att i huvudsak bero av den omgivande turbulensintensiteten, som i sin tur är beroende av markråheten. Därför kan k uppskattas direkt från markråheten om inte uppmätt turbulensintensitet finns att tillgå. Värt att notera är att enligt Manwell (2002) som refererar till en artikel av Katic (1986) behöver k ej bestämmas exakt för mellanstora vindparker där vinden ej har en dominerande vindriktning. Detta eftersom ett stort värde på k kommer att resultera i en liten effektreducering over ett stort område och ett litet k således en kraftig effektreducering i ett litet område. Detta innebär att små variationer i k kommer att påverka den beräknade produktionen marginellt. Detta gäller ej för större vindparker och specifikt större vindparker med en dominerande vindriktning, där resultatet påverkas kraftigt av variationer i k (Sørensen, 2008). För små landbaserade vindparker, motsvarande råhetsklass 1,5, har det från fallstudier visat sig att k = 0,075 stämmer väl. För havsbaserade parker, motsvarande råhetsklass 0, bör beräkningen utföras med k = 0,04. I fallet semi-offshore, är det möjligt att använda olika värden på k för olika riktningssektorer. I dessa fall blir det möjligt att använda det lägre värdet i de sektorer som vetter mot havet och det högre för de som vetter mot land. I annat fall kan tabellerade värde på k användas om det studerade området avviker från typiska land- eller offshoreegenskaper, exempelvis området med mycket hög markråhet, så som platser omgivna av hög skog. Ett antagande som modellen också gör är att skuggans centrumlinje har konstant avstånd till marknivån. Detta innebär att i komplex terräng kan modellen ge otillfredsställande resultat då denna approximation ej kan förväntas vara giltig. 38

44 I WAsP dokumentationen anses det att modellen ej kan förväntas ge korrekta resultat om avstånden mellan turbinerna understiger fyra rotordiametrar, då detta närområde karakteriseras av ett turbulent flöde. Dock har ett experiment utfört av Sørensen m.fl., 2008, visat att modellen gett tillfredställande resultat trots att avståndet mellan verken endast uppgått till 2,4 rotordiametrar. 6.3 Virvelviskositetsmodellen Denna modell använder sig av den axialsymmetriska Navier-Stokesekvationen där det tidsmässigt genomsnittliga flödet studeras. Modellen jobbar med Navier-Stokes ekvation i cylindriska koordinater och eftersom axialsymmetri antagits kommer beroendet från vinkeln kring centrumlinjen att försvinna, vilket leder till en förenklad kontinuitetsekvation. Konceptet med Eddy viscosity används för att relatera det genomsnittliga flödet med turbulenta virvlar (Figur 21). Figur 21. Illustration av resultatet från Ainslies skuggningsmodell. Modellen initieras efter en sträcka på två rotordiametrar från rotorskivan. Det använda randvillkoret är här beroende av dragkoefficienten C T där större C T ger en större minskning i hastighet för det initiala randvillkoret i skuggan. När randvillkoret specificeras löser sedan modellen differentialekvationerna numeriskt. Då modellen initieras två rotordiametrar från rotorn innebär detta att området inom sträckan approximeras med det initiala resultatet. Detta spelar endast roll för slutresultatet då verken är placerade närmare eller kring två rotordiametrar ifrån varandra, vilket i praktiken inte bör förekomma. Denna modell är mest krävande av de implementerade vad gäller beräkningstid. Modellen använder ett rutnät i radiell och axiell led för att beräkna hastigheten i varje punkt i rutnätet. Rutnätets upplösning är ställbar i tillämpningen och resultatet överrensstämmer bättre vid högre upplösning enligt fallstudier, samtidigt som beräkningstiden ökar vid finare rutnät (Sørensen m.fl., 2008). Även denna modell använder en empirisk konstant som används indirekt för att relatera medelflödet till de turbulenta virvlarna. Denna är experimentellt bestämd från tre fallstudier, men kan ändras om senare forskning visar att ett annat värde ger korrektare resultat. 6.4 C.G. Larsen modellen Denna modell som utvecklats av C.G. Larsen m.fl. (1988) och är baserad på Prandtls symmetriska turbulensgränsskiktsekvationer. Denna skuggmodell rekommenderas vid beräkning av skugginducerade laster av det EU-finansierade projektet European Wind Turbine 39

45 Standards II som färdigställdes I denna modell kan både en enklare första ordningens lösning användas eller en mer avancerad andra ordningens lösning, men skillnaden påverkar endast den skugga som uppkommer närmast rotorn vilket innebär att den andra ordningens lösning endast påverkar resultatet om verken är placerade ovanligt nära varandra. 6.5 Sammanräkning för korsande skuggor Gemensamt för samliga ovanstående modeller är att de är s.k. enkelskuggmodeller, de beräknar endast en skugga från ett verk åt gången. För att räkna ut den sammanlagda effekten från skärande skuggor används en skuggkombinationsmodell. Ännu ett problem uppstår vid beräkning av effekten för ett skuggat verk. Eftersom de flesta av skuggmodellerna räknar fram en skugga där hastigheten inom skugga ej är homogen måste ett genomsnitt för hastigheten över den svepta arean framräknas, då verkens effektkurva räknar ut en produktion för en hastighet. Detta görs genom samma modell som rapporterats av Lange m.fl., 2003, (ekvation 42). Detsamma gäller även N.O. Jensens modell om endast en del av det skuggade verkets rotor träffas av skuggan ( u0 urotor) u0 uw( r, ) da, (42) A rotor där u 0 är den fria vindhastigheten just före rotorn, u rotor är genomsnittshastigheten vid rotorn och u w (r,θ) är vindhastigheten i skuggan, som är beroende av radien r från navet och vinkeln θ. Den sammanslagna effekten av flera skuggor kan beräknas (ekvation 43) ( u0 urotor) u rotor, i uw, i( r, ) da, (43) A rotor i där i summerar samliga växelverkande skuggor. 6.6 Felkällor vid skuggsimuleringar Samtliga skuggmodeller i dagens kommersiella datorprogram för vindkraftssimulering har svårigheter att korrekt simulera parkförlusterna i stora vindparker, och då specifikt offshore. Detta beror enligt Frandsen m.fl., 2006, på att dagens skuggmodeller ej tar hänsyn till en stor vindparks påverkan på det atmosfäriska gränsskiktet, utan beräknar skuggan från verk till verk. Försök har gjorts i WindPRO att simulera denna effekt, med dagens skuggmodeller, genom att anta att verken i sig ökar markråheten inuti parken och lösningen har då blivit att anta en högre markråhet än den rådande inom parken. Denna metod har visats fungera tillfredställande, dock löser den inte fullt problemet med oförmågan att ta hänsyn till atmosfärspåverkan från stora parker (Sørensen, 2008). Ytterligare en svårighet med metoden är att det är svårt att veta vilken storlek på råhetsökningen som ger korrekt resultat, då olika värden har visats stämma för olika parker. Frandsen m.fl., 2006, har föreslagit en ny skuggmodell som skall ge tillfredställande resultat för oändligt stora vindparker genom att ta hänsyn till gränsskiktspåverkan, men kalibrering av modellen har i dagsläget ej genomförts och således finns den ej heller implementerad i WindPRO. 40

46 7 Jämförelse direktdrift och växellåda 7.1 Inledning En av de delar som brukar anses vara en svaghet i dagens vindkraftverk är växellådan. Anledningen till detta är att det är svårt att konstruera en växellåda som klarar av de stora påfrestningar som uppstår i dagens vindkraftverk. Påfrestningen på växellådan i ett vindkraftverk skiljer sig kraftigt från annan tillämpning, då lasterna i ett vindkraftverk är av statisk, cyklisk, stokastisk, transient och i vissa fall även resonansinducerad karaktär och där flera av dessa lasttyper kan inträffa samtidigt under såväl drift som stillastående. (Manwell m.fl., 2002). Vissa tillverkare (ex. Enercon) har i sin designa av vindkraftverket helt eliminerat växellådan till förmån för en stor direktdriven mångpolig synkron generator. Drivningen tillåts löpa med ett variabelt varvtal där en AC-DC-AC länk skapar en utfrekvens på 50 eller 60 Hz. Syftet med detta är att skapa ett vindkraftverk med färre rörliga delar och således mindre behov av underhåll och en högre tillgänglighet. Syftet med denna jämförelse är att studera på basen av tillgänglig driftsdata om direktdrivna verk verkligen har bättre tillgänglighet än de växellådsdrivna motsvarigheterna. 7.2 Underlag Som underlag för jämförelsen har driftsdata från både Finland och Sverige använts. Data från Finland är tagna från VTTs årliga vindkraftsrapporter tillgängliga via dess hemsida (www.vtt.fi). Svenska data är hämtade från vindforsks årliga statistik över vindkraftverk i Sverige över 50 kw (http://www.vindenergi.org/driftuppfolj.htm). Årsrapporterna består av årligt inrapporterad driftsdata. Med detta innebär information om produktion, märkeffekt, beräknad produktion, tillverkare, tillgänglighet (procent av total kalendertid), hindertid (antal timmar verket ej kunnat producera p.g.a. tekniskt fel), kapacitetsfaktor (ekvation 44), produktion per svept areaenhet samt driftsstart, för att nämna några. P C, (44) P max där P är den producerade effekten och P max den teoretiskt maximala produktionen (märkeffekten gånger kalendertiden). Den Finska driftsstatistiken innefattar driftåren Den Svenska statistiken innefattar åren För den Svenska fanns krav på inrapportering av driftsstatistik om investeringsstöd gavs till etableringen. Efter 2003, då investeringsstödet ersatts av certifikatsystemet upphörde dessa krav. Detta har lett till att färre och färre av de nya verken inrapporteras till driftsstatistiken. År 2007 fanns ungefär 85 % av den utdelade certifikatseffekten med i driftsstatistiken. Detta innebär att främst nya verk ej inrapporterats i statistiken, något som bör beaktas. Hur situationen ser ut i Finland är okänd. 7.3 Metoder Då det är den moderna tekniken som är intressant i jämförelsen exkluderades verk med en effekt under 500 kw. Samtliga verk som inte hade någon uppgift om hindertid exkluderades i jämförelsen. Även de Svenska prototypverken, d.v.s. ett Kvaerner 3 MW (även känt som Matilda eller Näsudden II) samt ett Nordic 1 MW exkluderades från analysen. Även verk som 41

47 hade en hindertid på ett helt rapporteringsår exkluderades. Slutligen exkluderades de verk från årsrapporterna som hade sitt driftstagande under samma år. När denna exkludering genomförts sammanställdes samtliga kvarvarande data i Excel. Genom att studera tillverkaren och den rapporterade märkeffekten har verkstypen kunnat uppskattas. På så sett klassificerades samtliga verk som växellådsbaserade eller ej. I denna granskning kunde det konstateras att det endast var Enercon av samtliga tillverkare som hade direktdrivna verk i Sverige och Finland. Kvar fanns 4044 st svenska och 347 st finska verksår. Av dessa fanns totalt 750 st verksår med direktdrivna verk (17 % av samtliga data). De ingående variablerna i analysdatabladet var samtliga som nämndes i rubriken underlag samt om de hade växellåda eller ej. De utvalda data analyserades nu genom en multivariat analysmetod i SIMCA-P för att hitta samband i de undersökta variablerna. Detta innebar att inte bara sambandet mellan tillgänglighet och växellåda undersöktes utan även andra samband som gick att finna i de ingående data. Metoden går ut på att undersöka hur väl en målvariabel kan predikteras av de ingående variablerna som definieras av användaren. På så sätt ställdes olika scenarion upp, där tillgängligheten eller produktionen försökte predikteras av de ingående variablerna. Även en analys i Excel genomfördes där medelvärdet och standardavvikelsen i hindertid beräknades för verk med respektive utan växellåda. 7.4 Resultat Resultatet från den multivariata analysen visade att mycket små skillnader finns mellan verken som har eller inte har växellåda. En liten tendens till att verk utan växellåda producerade mer än verk med fanns, men skillnaden får anses ligga inom den statistiska felmarginalen. Medelvärdet och standardavvikelsen av hindertiden för verk med eller utan växellåda (Figur 22). Medelvärde av verkens hindertid Med växellåda Hindertid (h) Utan växellåda Figur 22. Medelvärdet och standardavvikelsen för hindertiden hos verk med respektive utan växellåda. Medelvärdet hos verk med respektive utan växellåda visar att skillnader finns till de direktdrivna verkens fördel. Skillnaden kan dock bero av annat än växellådan, vilket diskuteras i kapitlet Slutsatser. 42

48 DEL II SIMULERING AV 14 VERK PÅ ÅLAND Tabell 1 Figur 1 Figur 2 Figur 3 Figur 4 Figur 5 Figur 6 Figur 7 Figur 8 Figur 9 Figur 10 Figur 11 Figur 12 Figur 13 Figur 14 Figur 15 Figur 16 Figur 17 Figur 18 Figur 19 Figur 20 Figur 21 Figur 22

49 Innehåll del II Simulering av 14 verk på Åland 8 BAKGRUND MATERIAL OCH METODER ÖVERSIKT VERKENS PLACERING VINDDATA OCH SIMULERINGSMETODIK Vätingen och Nyhamn Kontroll och behandling av indata Modellering av vindklimatet Simulering av medelvindar Simulering av produktionen Kvalitetssäkring EKONOMISK UTVÄRDERING Beskrivning av NPV Nettoproduktion Intäkter Kostnader och förluster Kassaflöde Beräkning av NPV och känslighetsanalys RESULTAT SIMULERAD VIND Allmänt Stenarna Rödskär SIMULERAD PRODUKTION VERIFIERING AV SIMULERINGEN FELKÄLLOR Analys av rapporterad produktion och vinddata Analys av VTTs vindindex Analys av överskattad produktion och slutsatser EKONOMISK UTVÄRDERING INGÅNGSDATA NPV KÄNSLIGHETSANALYS Inledning Tillverkare Tillverkare Tillverkare SLUTSATSER TEORI KRING VINDSIMULERINGAR JÄMFÖRELSE DIREKTDRIFT KONTRA VÄXELLÅDA SIMULERING AV 14 VERK PÅ ÅLAND REKOMMENDATION... 77

50 8 Bakgrund Ålands Elandelslag (ÅEA) ägs av kunderna. Målsättningen är att svara för en trygg och kostnadseffektiv elförsörjning till ägarna. ÅEA delar inte ut eventuella överskott utan detta återgår till verksamheten, främst till förnyande av äldre ledningsnät och till nybyggnation för nyanslutningar. ÅEAs målsättning är att öka självförsörjningsgraden genom att producera el från kretsloppsbaserade energikällor. Av detta skäl har ÅEA låtit utreda förutsättningarna att öka mängden vindkraftsproducerad el genom nybyggnad av två vindkraftsparker. Ett genomförande av projekten höjer vindkraftandelen av elproduktionen på Åland till ca 70 %. Lokalt producerad el ger positiva samhällsekonomiska konsekvenser jämfört med inköp av el från Finska fastlandet eller Sverige, då ersättningen för elen tillförs det åländska samhället och arbetstillfällen i form av drift och underhåll skapas. Projektets storlek, tillsammans med Ålands redan befintliga vindkraftverk, kommer förutom tryggandet av egen miljövänlig åländsk elproduktion att ge Åland en ny exportprodukt. Under blåsiga sommardagar kommer Åland att kunna exportera ett överskott till den nordiska elmarknaden Nordpool. Det ena planerade vindkraftsområdet Stenarna ligger utanför Hammarland, söder om Eckerö i Hammarlands, Eckerö och Jomala kommuner. Det andra planerade området Rödskär ligger väster om Bråttö i Föglö kommun. I området finns även befintliga vindkraftverk Albert, Preciosa och Båtskärsverken, vid Nyhamn (Figur 23). Figur 23. De båda vindkraftsparkernas placering, de befintliga verken Albert, Preciosa och Båtskärsverken vid Nyhamn samt mätstationer för vindmätningar. 45

51 Vindmätningar utfördes av ÅEA på Vätingen, Långnabba och Rödskär men från Långnabba och Rödskär erhölls tyvärr ett relativt litet antal mätvärden p.g.a. tekniska problem. Utöver detta finns data i form av medelvindar uppdelade på åtta riktningssektorer tillgänglig från den meteorologiska mätstationen vid Nyhamn registrerade under perioden Vid upphandlingen av vindkraftverken lämnade tre tillverkare anbud på uppförande av dessa. Med respektive tillverkares tillhandahållna effektkurva och investeringskostnad svarade WSP Environmental för att göra en produktionssimulering och en ekonomisk utvärdering av de tre alternativen. Beräkningar avseende vindförhållanden utgör underlag vid bedömning av lönsamheten för olika tornhöjder. Denna rapport är upprättad av Linus Bergström som en del i ett examensarbete vid civilingenjörsprogrammet i energiteknik, Umeå Universitet. Granskare och godkännare av dokumentet är Jakob Kjellman. 46

52 9 Material och metoder 9.1 Översikt Nedan presenteras metoderna som använts för simulering av produktion, medelvind och ekonomi för de två vindkraftsprojekten på Åland. Anledningen till uppdelningen av projekt Stenarna och Rödskär (istället för ett projekt Åland) är att de inte kommer att realiseras vid samma tidpunkt. Simuleringarnas indata består av vindmätningar. Dessa är upptagna vid Vätingen (ÅEA 5, Figur 24) och Nyhamn (Figur 23). Data från Nyhamn är historiska data med dålig upplösning, varför dessa främst utgjort kontroll av resultatet baserat på vindmätningarna från Vätingen. Först simulerades medelvindarna på 80 och 95 m ö.h. för samtliga verksplatser. För detta ändamål användes båda vindmätningarna. Utöver vinddata krävs även att markråheter och orografisk data inkluderas i modellen. Därefter simulerades produktionen. Detta gjordes för tre vindkraftverk på vardera plats, alla från olika tillverkare som lämnat anbud om upprättande. Modellen utökades då till att även inkludera åtta st. kontrollverk (Albert, Preciosa och de sex Båtskärsverken, Figur 23). Även råhetskartan och den orografiska kartan utökades för att inkludera dessa nya platser. Dessa beskrivs under rubriken Råhet och orografi. Med resultatet från produktionssimuleringen som grund samt ekonomiska data i form av investeringskostnader, årliga kostnader, produktionsförluster och förväntat elpris kunde de ekonomiska förutsättningarna för vardera tillverkare undersökas. Även en känslighetsanalys upprättades, d.v.s. en uppskattning av hur investeringen kommer att påverkas av avvikelser mellan det verkliga produktionsutfallet relativt det simulerade. 9.2 Verkens placering De planerade verken finns utspridda på många öar, se Figur 24 och Figur

53 Figur 24. De enskilda verkens placering vid Stenarna och dess benämning samt ungefärliga avstånd mellan dessa i meter och för två rotordiametrar, 90 resp. 71 m. ÅEA 1 kommer ej att byggas vid genomförande av projektet. 48

54 Figur 25. De enskilda verkens placering vid Rödskär och dess benämning samt ungefärliga avstånd mellan dessa i meter och för två rotordiametrar, 90 resp. 71 m. Avståndet mellan Stenarna och Rödskär uppgår till ca 37 km. Mellan Stenarna och verket Preciosa är avståndet 17 km. Nyhamn och Båtskärsverken ligger ca 20 km från både Stenarna och Rödskär. 9.3 Vinddata och simuleringsmetodik Vätingen och Nyhamn Vinddata från vindmätningen vid Vätingen användes som grund för produktionssimuleringen. Vindmätningen vid Vätingen utfördes på två höjder, 18 m respektive 36 m ovan marknivån. Mätningen vid den högre höjden var dock drabbad av tekniska problem, vilket medfört stora databortfall och inkonsekvenser i tillgängliga data. Data från denna mäthöjd utelämnades därför helt vid simuleringen. Tidigare data från Nyhamn användes även de som indata i modellen. Dessa är som tidigare nämnts upptagna under perioden Dessa inkluderades i simuleringen i syfte att verifiera beräkningarna. Om stora avvikelser mellan resultaten baserade på Vätingen och Nyhamn uppstår måste detta kunna förklaras och eventuellt kompenseras för. De mätningar som använts som indata är sammanställda i Tabell 2 för överblick. 49

55 Tabell 2. Sammanställning av samliga vindmätningar. Plats Mäthöjder Varaktighet Tillgänglighet Vätingen 18 m / 36 m 9 mån 99 % / 25 % Nyhamn 18 m 10 år Okänd Den tidsmässiga upplösningen på uppmätta vinddata är 10 minuters medelvärden. Mätningen registrerade även den infallande vindens riktning, luftens temperatur och standardavvikelsen hos de registrerade vindhastigheterna under varje period. De tre mest frekventa vindriktningarna var SSW, WSW samt NNW (Figur 26). Figur 26. Frekvensfördelningen för de mätta vindarna från Vätingen, uppdelade på 12 riktningssektorer. Mätstationen vid Nyhamn är belägen ungefär 20 km från de båda planerade vindkraftsparkerna. Data därifrån består endast av medelvärden och riktningar. Eftersom ett medelvärde ej räcker för att utföra vindklimatsimuleringen måste en vindfördelning upprättas. Vindhastigheterna antogs vara Rayleighfördelade. Data från Vätingen delades upp i 12 sektorer och en Weibullfunktion anpassades mot varje sektor. Visuell inspektion av anpassningarna visade att kurvorna stämmer tillräckligt väl med registrerad data (Figur 27). Det råder dock skillnader i hur väl anpassningen överrensstämde beroende på vilken sektor som avsågs. De sektorer där anpassningen stämde sämst med registrerad data är ESE och SSE. Generellt kan sägas att ju fler datapunkter som finns i en viss sektor, desto bättre statistiskt underlag för anpassningen finns. Detta är en av anledningarna till att en för kort mätperiod med för få datapunkter ej är lämplig att använda i WAsP-modellen då modellen anpassar en Weibullfunktion till rådata under beräkningen av vindstatistiken. 50

56 Figur 27. Samtliga registrerade mätvärdena från Vätingen benämnda totalt i figuren och dess Weibullanpassning Kontroll och behandling av indata Rådata från Vätingen behandlades först för att exkludera uppenbart felaktiga data från beräkningarna. Genom visuell inspektion av den uppmätta tidsserien bedömdes de mätpunkter då vindhastigheten eller vindriktningen rapporterats som noll utgöra felaktig data. Rapporten från vindmätningen hade en upplösning på fyra siffror. Genom studie av tidsserien identifierades de lägsta värdena som rapporterats i antingen vindhastighets eller vindriktningskolumnen till 0,002. Om vindmätningsutrustningen rapporterade så små värden borde en nollrapportering vara felaktig. Dock måste det poängteras att utrustningen knappast kan mäta en förändring på tusendelen av den berörda storheten. Dessa felaktiga data identifierades sedan genom ett filtreringsverktyg i WindPRO, där all data med en felaktig vindhastighet eller vindriktning exkluderats från simuleringen. Totalt rör det sig om 30 datapunkter i det använda tidsintervallet, motsvarande fem timmar av den totala tiden på nio månader. Detta innebär att utsorteringen av nolldata inte kommer att påverka resultatet i märkbar utsträckning då det handlar om ca 0,08 % av de totala mätpunkterna som exkluderats. Rådata från Vätingen bestod alltså av en tidsserie som börjar den 21/ kl 15:10 och slutar den 2/ kl 14:10. Eftersom produktionen finns tillgänglig på månadsbasis exkluderades samtliga data från juni 2007 och april 2008 från beräkningen för att möjliggöra en jämförelse med tillgängliga produktionsdata. Vinddata från månaderna juli 2007 mars 2008, totalt 9 månader, har använts vid beräkningarna (Figur 28). 51

57 Figur 28. Översikt över data rapporterad från Vätingen. Blåa rutor innebär att ett eller fler värden från den aktuella dagen exkluderads från beräkningen. Talet i rutorna anger hur många rapporteringar som inkluderats i beräkningen, där 144 innebär att alla observationer under en dag användes. Datumformatet i den översta raden är enligt mm.åå Modellering av vindklimatet Modellen För beräkning och modellering av vindförhållandena vid de planerade verken användes WindPRO med beräkningsmodulerna METEO och STATGEN. WAsP användes för att möjliggöra beräkningen i den rådande terrängen. Då de båda parkerna ligger 40 km från varandra råder sannolikt samma vindklimat för de båda, enligt EMD kan vindklimatet antas vara giltig upp emot 100 km från en mätpunkt så länge området ej består av bergig terräng Råhet och orografi Vid simuleringen av vindklimatet och produktionen inmatades orografidata för ett område med en radie på ca 5 km från samliga mätstationer samt befintliga och planerade verk. Inom en radie på minst 1 km från objekten användes höjdkurvor med en höjdskillnad var 52

58 2,5:e meter. Mellan 1 5 km från verksplatserna inmatades istället var 5:e meters höjdskillnad. Denna yttre radie, med höjdkurvor var 5:e meter, uppdaterades dock ej när Båtskärsverken inkluderades i beräkningen, vilket innebär att vissa öar i området mellan 4 5 km från dessa ej finns inkluderade i den orografiska modellen. Påverkan på resultatet p.g.a. detta bedömdes vara litet, då dessa öar befinner sig i utkanten av den rekommenderade radien på 5 km (Nielsen 2008) och dess höjd uppgår till maximalt 10 m över havsnivån. Dessa verk användes som tidigare nämnts endast som kontrollverk och påverkade således inte simuleringsresultatet för de planerade verken. Markråheten inmatades för området med en radie av minst 30 km från mätstationerna, de befintliga verken och de tänkta verkens placering. Råhetsklassificeringen genomfördes genom att studera sattelitbilder från Google Earth och NASAs LandSat program, foton från tillgängliga MKB:er i området samt foton tillgängliga via Internet från Panoramio och kartor från Miljöförvaltningens databas HERTTA. Detta resulterade i att landmassan Åland klassificerades till råhetsklass 3 förutom de odlade områdena som klassificerades till antingen råhetsklass 1,5 eller 2 beroende på antalet skogsdungar och bebyggelsetätheten. Mariehamn klassificerades till råhetsklass 3. Öarna klassificerades som råhetsklass 1 3 beroende på bebyggelse och växtlighet. Ett stråk på m från kusten och öarna klassificerades som råhetsklass 0,2. Detta rekommenderade Nielsen (2002) i flera fallstudier, bl.a. vid vindparken i Björneborg. Anledningen är att kompensera för effekten av att öar och kuststråk påverkar råheten i närområdet mer än bara den klassificering som görs för området ovan vattenytan. Öppet vatten klassificerades till råhetsklass 0. Området mellan km från verksplatserna vid Geta, Saltvik och Sund samt Söderö, Snäckö och Sottunga klassificerades mindre noggrant och till råhetsklass 2,5, då även vissa vattenområden inkluderades i området (Figur 29). Figur 29. Översiktlig råhetsklassificering av Åland. Kuststråket med klassificering RK=0,2 är ej inkluderat i bilden av tydlighetsskäl. Vattenområdena klassificerade som RK=0. 53

59 Justeringsfaktor Simulering av medelvindar För beräkningen av medelvindarna korrigerades slutresultatet baserat på vinddata från Vätingen med en faktor 0,95. Detta eftersom Vätingen saknar data under månaderna april, maj och juni. Under dessa månader är medelvindhastigheten generellt lägre i området. Faktorn framräknades genom att beräkna en kvot mellan tioårsmedelvärdet och medelvärdet av de nio mätta månaderna över tio år vid Nyhamns mätstation. Det är inte praktiskt möjligt med WindPRO eller WAsP att direkt simulera medelvinden per månad. För att få en indikation på variationerna mellan månaderna korrigerades de beräknade årsmedelvärdena med en faktor som framräknats genom att ta respektive 10 åriga månadsmedelvärde dividerat med 10 årsmedelvärdet från Nyhamns mätstation, då detta är den station som bedömts bäst representera de långsiktiga månadsvariationerna i medelvind för området (Figur 30). Denna metod bör ses som en grov uppskattning av långtidsvariationerna i medelvind fördelad över årets månader. Justeringsfaktorerna för årets månader 1,40 1,20 1,00 0,80 0,60 0,40 0,20 0,00 januari februari mars april maj juni juli augusti september oktober november december Månad Figur 30. Justeringsfaktorerna för årets månader Simulering av produktionen Skuggning I beräkningarna har N.O. Jensens skuggmodell använts. Ett k-värde på 0,058 användes för Rödskär och 0,04 eller 0,058 för Stenarna. Det lägre värdet användes för de områden som vetter mot det öppna havet. Detta bedömdes ge bästa resultat eftersom verken skall byggas på öar en bit från fastlandet Simuleringen Den beräknade vindstatistiken användes till att beräkna de lokala förutsättningar som förväntas råda vid var och en av verksplatserna. Till detta användes beräkningsmodulen PARK som inkluderar modellen som beskrivits ovan för beräkning av skuggningsförlusterna. Samma råhet och orografi som vid beräkning av vindstatistiken användes som indata vid simulering av produktionen. För simuleringen av Båtskärsverken inmatades gruvtornet som ett solitt hinder med en antagen höjd på 32,5 m, halva tornhöjden från projektbeskrivningen Båtskär, där ett fotomontage av tornet och vindkraftverket finns. 54

60 Effekt (W) Övriga indata var verksdata, d.v.s. respektive verks Power Curve (Figur 31) (som även ger generatoreffekt och stoppvind), C T Curve (Figur 32), placering, navhöjd, rotordiameter samt densitet vid navhöjd, som beräknades enligt en standardiserad atmosfärsmodell, via WindPRO, utifrån medeltemperaturen och navhöjden för vardera verk. Power Curve för samtliga simulerade verk Vindhastighet (m/s) Enercon E-70 Enercon E-40 Vestas V-39 Figur 31. Power Curve för samtliga simulerade vindkraftverk. Tillverkarnas Power Curve endast i intern version. Figur 32 endast i intern version. Samtliga verk som ingått i simuleringen summerades med avseende på basdata (Tabell 3 Tabell 6). Tabell 3. Basdata för de planerade verken. Planerade verk Navhöjd Rotordiameter Generator Effekt / svept area Tillverkare 1 ## m ## m #### kw ### W/m 2 Tillverkare 2 ## m ## m #### kw ### W/m 2 Tillverkare 3 ## m ## m #### kw ### W/m 2 55

61 Tabell 4. Basdata för de befintliga verk som inkluderats i simuleringen. Befintliga verk Navhöjd Rotordiameter Generator Effekt / svept area Albert (E-40) 65 m 44 m 600 kw 395 W/m 2 Preciosa (V-39) 40,5 m 39 m 500 kw 419 W/m 2 Båtskärsverken (6 x E-70) 64 m 71 m 2300 kw 581 W/m 2 Tabell 5. Uppmätt markhöjd över havet, projekt Stenarna. Benämning Nummer Höjd (m) Västra Ståtbådan 2 2,0 Östra Ståtbådan 1 2,0 Högskär ,8 Måsskärsklubb 3.3 3,2 Båkenskär 4 8,3 Västersten 6 2,8 Stengrunden 7 3,5 Vätingen 5 2,0 Medel markhöjd 4,6 Tabell 6. Uppskattad markhöjd över havet, projekt Rödskär Benämning Nummer Höjd (m) Granhamnsholmen 4 4,6 Rödskär södra 3 4,0 Rödskär västra 6 6,4 Rödskär norra 2 11,3 Östra fjärdgrundet 2,0 Näst östra Fjärdgrundet 2,0 Medel markhöjd 5,1 För simuleringen med Vätingens vinddata som grund antogs en densitet på 1,241 1,247 kg/m 3. Denna densitet framräknades från temperaturmätningen som utfördes vid Vätingens mätstation och har därefter omräknats till vardera vindkraftverks navhöjd genom WindPROs atmosfärsmodell. För de kontrollberäkningar som baserades på Nyhamns vinddata har atmosfärsdata använts från en, i WindPRO inbyggd, meteorologisk databas med data från Mariehamn, vilket resulterade i en luftdensitet mellan 1,254 1,258 kg/m 3. Ett linjärt samband mellan produktionen och månadsmedelvinden vid 18 m från Vätingen beräknades och redovisas i resultatdelen under rubriken Verifiering av simuleringen (Figur 41, Figur 42). Syftet med detta var att identifiera om några avvikande punkter förekom. Om vindklimatet är detsamma för Vätingen, Båtskärsverken, Albert och Preciosa (vilket har antagits) och inga större markråhetsskillnader råder mellan platserna, bör ett samband finnas mellan den uppmätta vinden och produktionen. Genom denna analys identifierades tydligt avvikande punkter och anledningen analyserades VTTs vindindex När produktionen simulerats för de planerade verken måste denna produktion relateras till ett medelår. Detta eftersom vinddata upptagits under 9 månader och således ej kan anses representera platsens långsiktiga vindklimat. Denna justering av produktionen använder VTT:s produktionsindex för Åland, där produktionen under perioden sätts till 100 %. Indexvärden finns beräknade både på års och månadsbasis där varje år och månad tilldelas ett procentuellt värde baserat på en standardiserad effektkurva från ett nominellt verk. Före

62 användes en standardkurva för ett nominellt verk med effekt på 500 kw. Efter 2002 användes istället en standardkurva för ett verk på 1500 kw. Vindindex har hämtats från för perioden som årsindexvärden. Från 1999 och framåt fanns även de månatliga indexvärdena tillgängliga. Vindindexet är således ett produktionsindex, I, som relaterar en periods produktion med långtidsproduktionen enligt: P x I x, (45) PLT där P x avser produktionen under period x (år eller månad) och P LT produktionen under perioden (år eller medelmånad). Vindindex för perioden redovisas för perioderna då vindmätningen på Vätingen utfördes samt perioden (Tabell 7, Tabell 8). Tabell 7. Vindindex för perioden juli 2007 mars 2008 Period Vindindex (%) Jul Aug Sept Okt Nov Dec Jan Feb Mar Medel 109 Tabell 8. Vindindex för perioden Period Vindindex (%) Medel Kvalitetssäkring För att uppskatta simuleringens tillförlitlighet simulerades produktionen för de befintliga verken Albert och Preciosa samt de sex vindkraftverken, benämnda VK 1 till VK 6 vid Båtskär. Albert är beläget på Bråttö ungefär 800 m från det planerade verket Rödskär 4 på Granhamnsholmen. Preciosa ligger 15 km NNW om Stenarna. De sex Båtskärsverken är placerade i området kring Nyhamns lotsstation (Figur 32). 57

63 Produktion (MWh) Figur 32. Båtskärsverkens placering kring Nyhamn. Eftersom produktionsdata fanns tillgängligt för samma tidsperiod som de utförda vindmätningarna kan dessa verk användas för kontroll av simuleringen. I det ideala fallet skulle den simulerade produktionen vara lika med den verkliga produktionen. Produktionen för kontrollverken Albert, Preciosa och Båtskärsverken redovisas månadsvis. (Figur 33, Figur 34) Produktion under Vätingenmätningen jul-07 aug-07 sep-07 okt-07 nov-07 dec-07 jan-08 feb-08 mar-08 Månad Preciosa Figur 33. Månadsvis produktion under tidsperioden för vindmätningen vid Vätingen (VTT Albert 58

64 Produktion (MWh/mån) Tillgängligheten för Preciosa och Albert var 100 % respektive 98 % under denna tidsperiod. Detta bedömdes som normalt och ingen justering av produktionsdata utfördes p.g.a. detta. Produktion under Vätingenmätningen jul-07 aug-07 sep-07 okt-07 nov-07 dec-07 jan-08 feb-08 mar-08 Månad VK-1 VK-2 VK-3 VK-4 VK-5 VK-6 Figur 34. Månadsvis produktion under tidsperioden för vindmätningen vid Vätingen (VTT Ingen information om tillgängligheten för Båtskärsverken fanns att tillgå, förutom under månaderna november och december, då tillgängligheten var god. Igen korrektion utfördes på grund av detta. Verkens produktion följde varandra väl, förutom under september Inte heller detta motiverade någon korrektion. Den simulerade produktionen för Albert och Preciosa reducerades vardera med 2 %, detta för att kompensera för den generella verkningsgradsreduktion som uppstår på grund av åldrade komponenter, främst förslitningar i vingarna. Denna reduktion baserades på muntliga uppgifter från Herbert Byholm, Senior Adviser på Vasa Elektriska och kontaktperson för vindkraftverken vid Korsnäs, Finlands äldsta vindkraftverk som fortfarande är i drift. Ytterligare en reduktion med 2 % utfördes på den simulerade produktionen för samtliga kontrollverk. Detta för att de använda effektkurvorna avser effekten just efter verkets generator och tar således inte hänsyn till ledningsförluster eller transformatorförluster fram till inkopplingspunkten, som enligt schablon uppgår till ca 2 3 % på produktionen i moderna vindkraftverk. Denna reduktion utfördes ej på de planerade verken, då förlusterna är uppskattade som ett absolut värde av ÅEA. För att uppskatta simuleringens precision utifrån resultatet för kontrollverken beräknades verkens godhet, beräknad som kvoten mellan den verkliga och simulerade produktionen och redovisas i resultatdelen. 9.4 Ekonomisk utvärdering Beskrivning av NPV NPV (Net Present Value), på svenska: nettonuvärde, definieras som summan av nuvärdena för en serie kassaflöden. Ett kassaflödes nuvärde innebär att ett framtida kassaflöde kan relateras till dagen penningvärde genom att ta hänsyn till pengarnas tidsvärde och eventuell finansiell risk. NPV beräknas enligt 59

65 Andel av årsproduktion n Kt NPV, (11) t t 0 1 i där K t är kassaflödet år t, i den antagna räntan och n är antal år som beaktas. Den antagna räntan avser ett avkastningskrav eller en avkastningsnivå som kan nås på marknaden för en investering med liknande finansiell risk. Om räntan används som ett avkastningskrav kan resultatet av beräkningen tolkas så att om NPV 0 så bör projektet genomföras, då investeringens avkastningskrav kommer att uppfyllas (och även överskridas om NPV>0). Om det motsatta råder kan dock kravet inte uppfyllas. För en vindkraftssatsning av denna typ är rimligt avkastningskrav kring 10 % Nettoproduktion Den beräknade årsproduktionen, som korrigerades till ett normalår med VTTs vindindex delades upp i månadsandelar. Anledningen till detta var att både produktionen och elpriset varierar över årets månader och att beräkna intäkterna genom att bara multiplicera medelårsproduktionen och medelårspriset skulle underskatta inkomsterna då verken generellt producerar bäst på hösten och vintern, då också elpriset förväntas vara som högst. Genom att dela upp produktionen i en förväntad månadsproduktion, baserad på fördelningen i produktion från åländska verk under tidsperioden , kan en produktionskurva för årets månader skapas (Figur 35). Månadsandelar av årsproduktionen 18% 16% 14% 12% 10% 8% 6% 4% 2% 0% Jan Feb Mar Apr Maj Jun Jul Aug Sep Okt Nov Dec Månad Medel Figur 35. Månadernas andel av årsproduktionen, dvs. summan av samtliga månader under ett år är 100 %. Andelarna baserades på produktion under perioden Vid beräkningen av månadsandelarna togs hänsyn till verkens tillgänglighet genom att exkludera verk de år då tillgängligheten understigit 95 %. Verk som uppförts under perioden inkluderades allt eftersom komplett årsdata som uppfyllt tillgänglighetskravet funnits tillgänglig. Denna filtrering bedömdes ge så rättvis månadsfördelning som möjligt, då verk som exempelvis haft stora bortfall, i vissa fall upp emot en hela månader, ej tillåtits påverka produktionsandelarna. 60

66 Normvärde Vid utförandet av känslighetsanalysen beräknades nuvärden för ett spann på 20 % till +20 %, relativt det beräknade medelårsproduktionen. Detta utfördes för att studera vilken effekt ett utfall skilt från det beräknade skulle få för projektets totalekonomi Intäkter Det framtida förväntade årsmedelpriset på el antogs till 45 /MWh. Detta elpris delades därefter upp på förväntade månadsmedelpris enligt en normkurva (Figur 36). Denna normkurva skapades genom att beräkna kvoterna mellan månaderna och årsmedelpriset för de finländska spotpriserna på Nordpool åren Normkurva för årsmedelpriset 1,40 1,20 1,00 0,80 0,60 0,40 0,20 0,00 Jan Feb Mar Apr Maj Jun Jul Aug Sep Okt Nov Dec Månad Figur 36. Normkurva för elpriset. Kurvan är baserad på historiska data från nordpool under åren Normkurvan tillsammans med årsmedelpriset användes för att skapa månadsmedelpriserna (Figur 37). Vid utförandet av känslighetsanalysen beräknades NPV för ett intervall på 23 % till +45 %, vilket motsvarar ett årsmedelpris på ca 35 respektive 65 /MWh. Anledningen till att ett procentuellt påslag användes istället för en justering med ett fast pris är att effekterna av topparna hålls lika relativt varandra, jämfört med en alternativ justering med ett fast pris, då topparnas effekt minskar relativt ett högre årsmedelpris. Syftet är att studera hur en variation i det förväntade elpriset påverkar projektets totalekonomi. 61

67 Elpris ( /MWh) Elprisets fördelning över månaderna Jan Feb Mar Apr Maj Jun Jul Aug Sep Okt Nov Dec Månad 35 /MWh 45 /MWh 65 /MWh Figur 37. Den beräknade månadsfördelningen. Kurvorna för ett årsmedelpris på 35 respektive 65 /MWh inkluderade, vilka utgör de yttre gränserna i beräkningen. Inga intäkter (eller kostnader) antogs vid slutet av driftstiden, då verken nedmonteras och antingen säljs som reservdelar, materialåtervinns eller upprustas Kostnader och förluster De totala investeringskostnaderna för tillverkarna, erhölls av ÅEA (Tabell 9). Dessa användes som utgående kassflöde år 0 vid beräkning av NPV. Siffrorna avser den totala kostnaden för etablering av 7 verk. Tabell 9. Investeringskostnad för tillverkarna. Avser investeringen för 7 verk. Tillverkare 1 Tillverkare 2 Tillverkare 3 ### ### ### De totala årliga kostnaderna uppskattades av ÅEA till ### för 7 verk. I detta ingår kostnader för drift och underhåll, inmatningsavgifter, försäkringar, kostnader för markavtal samt övriga kostnader. Dessa dras från respektive årliga kassaflöde vid beräkningen av NPV. För projekt Rödskär, där ÅEA avser bygga 6 verk, antas investeringskostnaderna och de årliga kostnaderna linjärt följa de för projekt Stenarna. Detta innebär att investeringskostnaderna 6 7 K, där K Stenarna avser motsvarande och de årliga kostnaderna beräknas som Stenarna kostnader för projekt Stenarna. Kabelförlusterna från turbinernas transformator fram till inkopplingspunkten uppskattades av ÅEA till ### MWh/år för projekt Rödskär och ### MWh/år för projekt Stenarna, oberoende av tillverkare. Denna förlust antas stå i proportion till månadsandelen och dras från respektive månad. Denna förlust approximerades till att vara konstant gentemot produktionsspannet på ±20 % Kassaflöde Beräkningsgången för beräkning av det årliga kassaflödet utifrån de ingående storheterna: medelårsproduktion, förväntat årligt elpris, de månatliga produktionsandelarna, elprisets 62

68 normkurva, de förväntade elförlusterna samt de årliga kostnaderna illustrerades för överskådlighet (Figur 38). Figur 38. Beräkningsgången för att generera de förväntade årliga kassaflödena som sedan används för beräkning av NPV Beräkning av NPV och känslighetsanalys För beräkningen av NPV användes en ränta (avkastningskrav) på ## % respektive ## %. Den ekonomiska livslängden på verken är satt till 20 år. Syftet med känslighetsanalysen var att studera hur investeringen påverkas beroende på variationer i produktion eller elpris. Känslighetsanalysen utfördes genom att modifierades indata utifrån de ovan beskrivna intervallen på produktion och elpris. En steglängd på 1 % användes, vilket resulterade i 41 möjliga indata ( 20 % till +20 %) för medelårsproduktionen. För elpriset blev motsvarande siffra 69 möjliga indata ( 23 % till +45 %). För var och en av de tre tillverkarna beräknades samtliga möjliga utfall utifrån alla möjliga kombinationer av indata, total 8487 st. MATLAB användes för att kunna genomföra dessa beräkningar, där resultatet blev ett beräknat NPV för var och en av dessa möjliga utfall. 63

CFD Vindstudie RegionCity

CFD Vindstudie RegionCity CFD Vindstudie RegionCity För: Jernhusen AB Upprättad av: Ting Liu Affärsområde Stadsprojekt Granskad av: Will Sibia Uppdragsnummer: 4028766000 2014-09-12 Sammanfattning Vindberäkningar har utförts med

Läs mer

Ekonomisk ytanalys för vindkraft

Ekonomisk ytanalys för vindkraft Centrum för VindkraftsInformation Ekonomisk ytanalys för vindkraft - om sambanden mellan vindkraftverks avstånd till kust, höjd över mark, inbördes avstånd och vindkraftverkens produktion/markanspråk Medelvind

Läs mer

Värme och väder. Solen värmer och skapar väder

Värme och väder. Solen värmer och skapar väder Värme och väder Solen värmer och skapar väder Värmeenergi Värme är en form av energi Värme är ett mått på hur mycket atomerna rör på sig. Ju varmare det är desto mer rör de sig. Värme får material att

Läs mer

Klimatsimuleringar. Torben Königk, Rossby Centre/ SMHI

Klimatsimuleringar. Torben Königk, Rossby Centre/ SMHI Klimatsimuleringar Torben Königk, Rossby Centre/ SMHI Översikt Vad är klimat? Hur skiljer sig klimatmodeller från vädermodeller? Hav- och havsis processer Vad är klimatscenarier? Vad är klimatprognoser?

Läs mer

Jämförelse mellan volymberäkning baserad på flygfotografering och volymberäkning baserad på traditionell inmätning

Jämförelse mellan volymberäkning baserad på flygfotografering och volymberäkning baserad på traditionell inmätning Fakulteten för humaniora och samhällsvetenskap Naturgeografi Magnus Wallsten Jämförelse mellan volymberäkning baserad på flygfotografering och volymberäkning baserad på traditionell inmätning Comparison

Läs mer

Meteorologi - Grunder och introduktion - Meteorologiska modeller och prognoser

Meteorologi - Grunder och introduktion - Meteorologiska modeller och prognoser Meteorologi - Grunder och introduktion - Meteorologiska modeller och prognoser Elin Sjökvist, meteorolog elin.sjokvist@smhi.se Innehåll Grundläggande meteorologi Hur väder uppstår Molnbildning Nederbörd

Läs mer

Småskalig vindkraft en studie av förutsättningarna för etablering vid gården Åsen, Åseda

Småskalig vindkraft en studie av förutsättningarna för etablering vid gården Åsen, Åseda Småskalig vindkraft en studie av förutsättningarna för etablering vid gården Åsen, Åseda Som en del av projektet Rural Res skall ett antal platsers lämplighet för etablering av småskalig vindkraft studeras.

Läs mer

Solens energi alstras genom fusionsreaktioner

Solens energi alstras genom fusionsreaktioner Solen Lektion 7 Solens energi alstras genom fusionsreaktioner i dess inre När solen skickar ut ljus förlorar den också energi. Det måste finnas en mekanism som alstrar denna energi annars skulle solen

Läs mer

Slutrapport av projektet moment och varvtalsstyrning av vindkraftverk

Slutrapport av projektet moment och varvtalsstyrning av vindkraftverk Slutrapport av projektet moment och varvtalsstyrning av vindkraftverk Torbjörn Thiringer Juli 2005 STEM projektnummer: 21450-1 STEM diarienummer: 5210-2003-03864 Institutionen för Energi och Miljö, Chalmers

Läs mer

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning Karlstads GeoGebrainstitut Institutionen för matematik och datavetenskap Karlstads universitet Mats Brunström Maria Fahlgren GeoGebra ett digitalt verktyg för framtidens matematikundervisning Invigning

Läs mer

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform. Van der Waals gas Introduktion Idealgaslagen är praktisk i teorin men i praktiken är inga gaser idealgaser Den lättaste och vanligaste modellen för en reell gas är Van der Waals gas Van der Waals modell

Läs mer

Miljöfysik vt2009. Mikael Syväjärvi, IFM

Miljöfysik vt2009. Mikael Syväjärvi, IFM Miljöfysik vt2009 Mikael Syväjärvi, IFM Vind uppstår från solen Solen Värmer upp luft Jorden är rund och roterar Moln ger skillnader i uppvärmning Områden med olika temperaturer Högtryck och lågtryck Luft

Läs mer

Småskalig vindkraft en studie av förutsättningarna för etablering vid Hörby, Sölvesborg i Blekinge län

Småskalig vindkraft en studie av förutsättningarna för etablering vid Hörby, Sölvesborg i Blekinge län Småskalig vindkraft en studie av förutsättningarna för etablering vid Hörby, Sölvesborg i Blekinge län Som en del av projektet Rural Res skall ett antal platsers lämplighet för etablering av småskalig

Läs mer

Vindkraftpark Kvilla. Utredning om risk för lågt bakgrundsljud på grund av vindskyddat läge

Vindkraftpark Kvilla. Utredning om risk för lågt bakgrundsljud på grund av vindskyddat läge Handläggare Martin Almgren Telefon +46 10 505 84 54 SMS +46 701 84 74 74 martin.almgren@afconsult.com Datum 2015-04-02 Projekt nur 700926 Kund Samhällsbyggnadsförvaltningen i Torsås kommun Vindkraftpark

Läs mer

Produktbeskrivning: Höjdmodell Visning

Produktbeskrivning: Höjdmodell Visning 1(11) D atum: D ok umentversion: A vser tjänstens gränssnittsversion: 2014-12-12 1.0 1.0 Produktbeskrivning: Höjdmodell Visning Förändringsförteckning Innehållsförteckning 1 Allmän beskrivning... 2 1.1

Läs mer

Klimatscenarier för Sverige beräkningar från SMHI

Klimatscenarier för Sverige beräkningar från SMHI Klimat- och miljöeffekters påverkan på kulturhistoriskt värdefull bebyggelse Delrapport 1 Klimatscenarier för Sverige beräkningar från SMHI Klimatscenarier för Sverige beräkningar från SMHI 2 För att öka

Läs mer

Collaborative Product Development:

Collaborative Product Development: Collaborative Product Development: a Purchasing Strategy for Small Industrialized House-building Companies Opponent: Erik Sandberg, LiU Institutionen för ekonomisk och industriell utveckling Vad är egentligen

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16

CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16 CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg TME055 Strömningsmekanik 2015-01-16 Tentamen fredagen den 16 januari 2015 kl 14:00-18:00 Ansvarig lärare: Henrik Ström Ansvarig lärare besöker

Läs mer

Småskalig vindkraft en studie av förutsättningarna för etablering vid Sandvik, Ljungbyholm, Kalmar län

Småskalig vindkraft en studie av förutsättningarna för etablering vid Sandvik, Ljungbyholm, Kalmar län 1 Småskalig vindkraft en studie av förutsättningarna för etablering vid Sandvik, Ljungbyholm, Kalmar län Som en del av projektet Rural Res skall ett antal platsers lämplighet för etablering av småskalig

Läs mer

WORKSHOP: EFFEKTIVITET OCH ENERGIOMVANDLING

WORKSHOP: EFFEKTIVITET OCH ENERGIOMVANDLING WORKSHOP: EFFEKTIVITET OCH ENERGIOMVANDLING Energin i vinden som blåser, vattnet som strömmar, eller i solens strålar, måste omvandlas till en mera användbar form innan vi kan använda den. Tyvärr finns

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

1. Förklara på vilket sätt energin från solen är nödvändig för alla levande djur och växter.

1. Förklara på vilket sätt energin från solen är nödvändig för alla levande djur och växter. FACIT Instuderingsfrågor 1 Energi sid. 144-149 1. Förklara på vilket sätt energin från solen är nödvändig för alla levande djur och växter. Utan solen skulle det bli flera hundra minusgrader kallt på jorden

Läs mer

Mätning av fokallängd hos okänd lins

Mätning av fokallängd hos okänd lins Mätning av fokallängd hos okänd lins Syfte Labbens syfte är i första hand att lära sig hantera mätfel och uppnå god noggrannhet, även med systematiska fel. I andra hand är syftet att hantera linser och

Läs mer

VINDAR, VINDENERGI OCH VINDKRAFTVERK LATORP 2008-02-12

VINDAR, VINDENERGI OCH VINDKRAFTVERK LATORP 2008-02-12 VINDAR, VINDENERGI OCH VINDKRAFTVERK LATORP 2008-02-12 VINDAR OCH VINDENERGI VINDKRAFTVERK JBA VIND VINDKRAFTEN I VÄRLDEN VINDAR OCH VINDENERGI VAR KOMMER VINDEN FRÅN? HUR MYCKET BLÅSER DET? VINDEN VARIERAR

Läs mer

Källa: SNA, Klimat, sjöar och vattendrag

Källa: SNA, Klimat, sjöar och vattendrag Varje vinter faller snö över Sverige och bäddar in landet i ett täcke av snö. I södra Sverige omväxlar i regel köldperioder med snö med milda perioder när snön smälter, medan man i norr får ett mer sammanhängande

Läs mer

Dagens föreläsning (F15)

Dagens föreläsning (F15) Dagens föreläsning (F15) Problemlösning med datorer Carl-Mikael Zetterling bellman@kth.se KP2+EKM http://www.ict.kth.se/courses/2b1116/ 1 Innehåll Programmering i Matlab kap 5 EKM Mer om labben bla Deluppgift

Läs mer

VINDKRAFT. Alternativ Användning

VINDKRAFT. Alternativ Användning Datum (2012-03-14) VINDKRAFT Alternativ Användning Elev: Andreas Krants Handledare: Anna Josefsson Sammanfattning Alternativa användningssätt för vindkraft är vad denna rapport handlar om, och med alternativ

Läs mer

Vindkraft Anton Repetto 9b 21/5-2010 1

Vindkraft Anton Repetto 9b 21/5-2010 1 Vindkraft Anton Repetto 9b 21/5-2010 1 Vindkraft...1 Inledning...3 Bakgrund...4 Frågeställning...5 Metod...5 Slutsats...7 Felkällor...8 Avslutning...8 2 Inledning Fördjupningsveckan i skolan har som tema,

Läs mer

12) Terminologi. Brandflöde. Medelbrandflöde. Brandskapat flöde avses den termiska expansionen av rumsvolymen per tidsenhet i rum där brand uppstått.

12) Terminologi. Brandflöde. Medelbrandflöde. Brandskapat flöde avses den termiska expansionen av rumsvolymen per tidsenhet i rum där brand uppstått. 12) Terminologi Brandflöde Brandskapat flöde avses den termiska expansionen av rumsvolymen per tidsenhet i rum där brand uppstått. Medelbrandflöde Ökningen av luftvolymen som skapas i brandrummet när rummet

Läs mer

Klimatscenarier och klimatprognoser. Torben Königk, Rossby Centre/ SMHI

Klimatscenarier och klimatprognoser. Torben Königk, Rossby Centre/ SMHI Klimatscenarier och klimatprognoser Torben Königk, Rossby Centre/ SMHI Översikt Vad är klimat? Hur skiljer sig klimatmodeller från vädermodeller? Vad är klimatscenarier? Vad är klimatprognoser? Definition

Läs mer

SKOGLIGA TILLÄMPNINGAR

SKOGLIGA TILLÄMPNINGAR STUDIEAVSNITT 3 SKOGLIGA TILLÄMPNINGAR I detta avsnitt ska vi titta på några av de skogliga tillämpningar på geometri som finns. SKOGSKARTAN EN MODELL AV VERKLIGHETEN Arbetar man i skogen klarar man sig

Läs mer

SAMMANFATTNING AV SUMMARY OF

SAMMANFATTNING AV SUMMARY OF Detta dokument är en enkel sammanfattning i syfte att ge en första orientering av investeringsvillkoren. Fullständiga villkor erhålles genom att registera sin e- postadress på ansökningssidan för FastForward

Läs mer

9.2 Kinetik Allmän plan rörelse Ledningar

9.2 Kinetik Allmän plan rörelse Ledningar 9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,

Läs mer

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. RÖRELSE Inledning När vi går, springer, cyklar etc. förflyttar vi oss en viss sträcka på en viss tid. Ibland, speciellt när vi har bråttom, tänker vi på hur fort det går. I det här experimentet undersöker

Läs mer

Avrinning. Avrinning

Avrinning. Avrinning Avrinning Avrinning När nederbörden nått marken kommer den att söka söka sig till allt lägre liggande nivåer. Först bildas små rännilar och som efterhand växer till bäckar och åar. När dessa små vattendrag

Läs mer

Naturvårdsverkets författningssamling

Naturvårdsverkets författningssamling 1 Naturvårdsverkets författningssamling ISSN xxxxx Naturvårdsverkets allmänna råd om buller från vindkraftverk [till 2 kap. miljöbalken]; NFS 2006: Utkom från trycket den beslutade den xxx 2006. Dessa

Läs mer

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω)

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω) FUKTIG LUFT Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft Normalt är ω 1 (ω 0.02) ω = m v /m a m = m a (1 + ω) Luftkonditionering, luftbehandling:

Läs mer

Grundläggande energibegrepp

Grundläggande energibegrepp Grundläggande energibegrepp 1 Behov 2 Tillförsel 3 Distribution 4 Vad är energi? Försök att göra en illustration av Energi. Hur skulle den se ut? Kanske solen eller. 5 Vad är energi? Energi används som

Läs mer

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Termodynamikens grundlagar Nollte grundlagen Termodynamikens 0:e grundlag Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Temperatur Temperatur är ett mått på benägenheten

Läs mer

10. Relativitetsteori Tid och Längd

10. Relativitetsteori Tid och Längd Relativa mätningar Allting är relativt är ett välbekant begrepp. I synnerhet gäller detta när vi gör mätningar av olika slag. Många mätningar består ju i att man jämför med någonting. Temperatur är en

Läs mer

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera

Läs mer

Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi

Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi Beräkningsvetenskap stefan@it.uu.se Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska beräkningar Mer ingenjörsmässigt,

Läs mer

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet Stokastisk geometri Lennart Råde Chalmers Tekniska Högskola och Göteborgs Universitet Inledning. I geometrin studerar man geometriska objekt och deras inbördes relationer. Exempel på geometriska objekt

Läs mer

ÅRSREDOVISNING 2008. Istad Vind AB. Årsredovisning 2008

ÅRSREDOVISNING 2008. Istad Vind AB. Årsredovisning 2008 ÅRSREDOVISNING 2008 Istad Vind AB Årsredovisning 2008 Styrelsen för Istad Vind AB avger härmed årsredovisning för 2008, bolagets andra verksamhetsår. Stämma äger rum den 23 maj kl. 12.00 i Albökegården.

Läs mer

VINDKRAFT GLEMMINGEBRO

VINDKRAFT GLEMMINGEBRO VINDKRAFT GLEMMINGEBRO OM VINDKRAFT Vindkraftverk, anläggning som omvandlar vindenergi till el. Den vanligaste typen har en vindturbin med horisontell axel och tre (ibland två) smala blad. Global årsproduktion

Läs mer

SAMMANFATTNING: VINDKRAFTENS MILJÖPÅVERKAN FALLSTUDIE AV VINDKRAFTVERK I BOENDEMILJÖ

SAMMANFATTNING: VINDKRAFTENS MILJÖPÅVERKAN FALLSTUDIE AV VINDKRAFTVERK I BOENDEMILJÖ SAMMANFATTNING: VINDKRAFTENS MILJÖPÅVERKAN FALLSTUDIE AV VINDKRAFTVERK I BOENDEMILJÖ Angelica Widing Gunilla Britse Tore Wizelius Förord Denna studie har genomförts vid, Högskolan på Gotland under år 2003-2005

Läs mer

Regional satsning på småskalig vindkraft i sydöstra Sverige inom Nätverk för vindbruk

Regional satsning på småskalig vindkraft i sydöstra Sverige inom Nätverk för vindbruk Regional satsning på småskalig vindkraft i sydöstra Sverige inom Nätverk för vindbruk Energimyndigheten Intelligent Energy Europe start 2008-12, avslut 2011-03 Småskalig vindkraft Genomförande - Kalmar

Läs mer

Vindkraft, innehåll presentation

Vindkraft, innehåll presentation Vindkraft. Vindkraft, innehåll presentation Vad är vindkraft? Vad är el? Energiläget i Sverige och mål Typer av verk Projektering Byggnation Äga Planerade etableringar i Sverige Projektgarantis erbjudande

Läs mer

PM 10168123.03. Bullerutredning, detaljplaneområde i Påarp

PM 10168123.03. Bullerutredning, detaljplaneområde i Påarp Uppdragsnr: 10168123 1 (8) PM 10168123.03 Denna PM har uppdaterats 2013-11-18 med nya data för trafik på Helsingborgsvägen samt järnvägen. Utöver detta har extra beräkningar utförts med lägre tåghastigheter

Läs mer

TJÄNSTEANTECKNING 1 (5)

TJÄNSTEANTECKNING 1 (5) TJÄNSTEANTECKNING 1 (5) Användning av vindkraft i vägbelysning För att minska vägbelysningens miljöpåverkan gäller det att reducera energiförbrukningen. Bästa sättet är genom att använda effektiva ljuskällor,

Läs mer

Vindkraftverk. Principen bakom vårt vindkraftverk

Vindkraftverk. Principen bakom vårt vindkraftverk Vindkraftverk Min grupp har gjort ett speciellt vindkraftverk som är inspirerat av det flygande vindkraftverket Buoyant airborne turbine. Det som gör vårt vindkraftverk annorlunda jämfört med andra är

Läs mer

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska

Läs mer

Samrådsunderlag - allmänheten. Hössna Vindkraftverk

Samrådsunderlag - allmänheten. Hössna Vindkraftverk Samrådsunderlag - allmänheten Hössna Vindkraftverk December 2010 2 Greenextreme AB planerar att bygga ett vindkraftverk vid Hössna i Ulricehamns kommun. Greenextreme AB kommer i den här informationsbroschyren

Läs mer

Bilaga 5 Fördelar med tillstånd utan fasta positioner

Bilaga 5 Fördelar med tillstånd utan fasta positioner Bilaga 5 Fördelar med tillstånd utan fasta positioner Sammanfattning fördelar med att inte koordinatsätta Energiutbytet blir så högt som möjligt i förhållande till omgivningspåverkan - Rätt vindkraftverk

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 7: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Reynolds tal är ett dimensionslöst tal som beskriver flödesegenskaperna hos en fluid. Ett lågt värde på Reynolds

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

yttervägg 5,9 5,9 3,6 4,9 - - Golv 10,5 10,5 24 10,5 7 7 Tak 10,5 10,5 24 10,5 7 7 Fönster 2 2 4 3 - - Radiator 0,5 0,5 0,8 0,5 0,3 -

yttervägg 5,9 5,9 3,6 4,9 - - Golv 10,5 10,5 24 10,5 7 7 Tak 10,5 10,5 24 10,5 7 7 Fönster 2 2 4 3 - - Radiator 0,5 0,5 0,8 0,5 0,3 - B Lägenhetsmodell B.1 Yttre utformning Lägenheten består av tre rum och kök. Rum 1 och 2 används som sovrum, rum 3 som vardags rum, rum 4 som kök, rum 5 som badrum och slutligen rum 6 som hall. Lägenheten

Läs mer

METEOROLOGI. Innehåll

METEOROLOGI. Innehåll 1 METEOROLOGI Grunder för segelflygare Poul Kongstad 2 Innehåll Luftmassor Moln Termik Sjöbris Lävågor Fronter Väder på internet 1 3 Luftmassor Stort område med "liknande väder" Temp fuktighet skiktning

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

Öringe vindkraftpark Ljudimmissionsberäkning

Öringe vindkraftpark Ljudimmissionsberäkning Projektrapport Öringe vindkraftpark Ljudimmissionsberäkning Projekt: 12-03443 Rapport 12-03443-09021900 Antal sidor: 17 inklusive bilagor Bilagor: 6 Uppdragsansvarig Martin Almgren Göteborg 2009-02-20

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

Storflohöjden Bräcke kommun. Projektbeskrivning för etablering av vindkraftverk. Bygglovshandlingar

Storflohöjden Bräcke kommun. Projektbeskrivning för etablering av vindkraftverk. Bygglovshandlingar Storflohöjden Bräcke kommun Projektbeskrivning för etablering av vindkraftverk Bygglovshandlingar Mars 2011 www.jamtvind.se 1 Innehållsförteckning Innehåll Inledning 3 Lokalisering 3 Vägar 4 Vindförutsättningar

Läs mer

Kurskod: GRNMAT2 Verksamhetspoäng: 600

Kurskod: GRNMAT2 Verksamhetspoäng: 600 Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper

Läs mer

Kursplan Grundläggande matematik

Kursplan Grundläggande matematik 2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs

Läs mer

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH TERMODYNAMIK? Termodynamik är den vetenskap som behandlar värme och arbete samt de tillståndsförändringar som är förknippade med dessa energiutbyten. Centrala tillståndsstorheter är temperatur, inre energi,

Läs mer

Vindkraft i skog. Produktionsförutsättningar och externa faktorer. Markus Rönnqvist, Stockholm 2008 -- 1 --

Vindkraft i skog. Produktionsförutsättningar och externa faktorer. Markus Rönnqvist, Stockholm 2008 -- 1 -- Vindkraft i skog Produktionsförutsättningar och externa faktorer Markus Rönnqvist, Stockholm 2008 -- 1 -- Sammanfattning År 2002 sattes ett planeringsmål upp för att öka andelen förnyelsebar energi i Sverige.

Läs mer

PRODUKTUTVECKLING 3. CAD & 3D-ritning. Erik Almers 2011-01-10

PRODUKTUTVECKLING 3. CAD & 3D-ritning. Erik Almers 2011-01-10 PRODUKTUTVECKLING 3 CAD & 3D-ritning PM Erik Almers 2011-01-10 Detta fördjupningsarbete handlar om hur man kan använda sig utav 3d-modelering i en produktutvecklingsprocess. Betonar även vikten av 3d-modeleringen

Läs mer

Teknikprogrammet Klass TE14A, Norrköping. Jacob Almrot. Självstyrda bilar. Datum: 2015-03-09

Teknikprogrammet Klass TE14A, Norrköping. Jacob Almrot. Självstyrda bilar. Datum: 2015-03-09 Teknikprogrammet Klass TE14A, Norrköping. Jacob Almrot Självstyrda bilar Datum: 2015-03-09 Abstract This report is about when you could buy a self-driving car and what they would look like. I also mention

Läs mer

Förbättrad analys av förseningsdata med hjälp av RailSys

Förbättrad analys av förseningsdata med hjälp av RailSys KTH Järnvägsgrupp 1-- Anders Lindfeldt, Hans Sipilä Förbättrad analys av förseningsdata med hjälp av RailSys Bakgrund En av slutsatserna från projektet Kapacitetsutnyttjande i det svenska järnvägsnätet.

Läs mer

Inkvarteringsstatistik. Göteborg & Co

Inkvarteringsstatistik. Göteborg & Co Inkvarteringsstatistik Göteborg & Co Mars 2012 FoU/ Marknad & Försäljning Gästnätter storstadsregioner Mars 2012, hotell och vandrarhem Gästnattsutveckling storstadsregioner Mars 2012, hotell och vandrarhem

Läs mer

PowerCell Sweden AB. Ren och effektiv energi överallt där den behövs

PowerCell Sweden AB. Ren och effektiv energi överallt där den behövs PowerCell Sweden AB Ren och effektiv energi överallt där den behövs Requirements of power electronics for fuel cells in electric vehicles Andreas Bodén (Rickard Nilsson) Förstudie: Kravställning på kraftelektronik

Läs mer

Möte Torsås Ljudmätning vindpark Kvilla. Paul Appelqvist, Senior Specialist Akustik, ÅF 2015-04-08

Möte Torsås Ljudmätning vindpark Kvilla. Paul Appelqvist, Senior Specialist Akustik, ÅF 2015-04-08 Möte Torsås Ljudmätning vindpark Kvilla Paul Appelqvist, Senior Specialist Akustik, ÅF 2015-04-08 ÅF - Division Infrastructure Skandinaviens ledande aktörer inom samhällsbyggnad AO Ljud och Vibrationer

Läs mer

LABORATION 1 AVBILDNING OCH FÖRSTORING

LABORATION 1 AVBILDNING OCH FÖRSTORING LABORATION 1 AVBILDNING OCH FÖRSTORING Personnummer Namn Laborationen godkänd Datum Labhandledare 1 (6) LABORATION 1: AVBILDNING OCH FÖRSTORING Att läsa före lab: Vad är en bild och hur uppstår den? Se

Läs mer

x I Utförd på anslag från Styrelsen för teknisk utveckling Fack, 100 72 Stockholm 43 :> HOV 1971 STU-rapport 7O-4O7/U338

x I Utförd på anslag från Styrelsen för teknisk utveckling Fack, 100 72 Stockholm 43 :> HOV 1971 STU-rapport 7O-4O7/U338 STU-rapport 7O-4O7/U338 Strönmingsbilder längs en kokarkanal inkl. burnout. Grundläggande studier i ett 9-stavsknippe bernt Gustafsson AB Atomenergi Studsvik Fack, 611 01 Nyköping r r September 1971 x

Läs mer

Bröcklingbergets Vindkraftpark. Samråd med myndigheter 2009-12-16

Bröcklingbergets Vindkraftpark. Samråd med myndigheter 2009-12-16 Bröcklingbergets Vindkraftpark Samråd med myndigheter 2009-12-16 Ownpower Projects Projekteringsbolag för vindkraft Utvecklar projekt för egen portfölj, för andra och tillsammans med partner Konsultuppdrag

Läs mer

Mer om slumpvariabler

Mer om slumpvariabler 1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

Get Instant Access to ebook Ta Ner Manen PDF at Our Huge Library TA NER MANEN PDF. ==> Download: TA NER MANEN PDF

Get Instant Access to ebook Ta Ner Manen PDF at Our Huge Library TA NER MANEN PDF. ==> Download: TA NER MANEN PDF TA NER MANEN PDF ==> Download: TA NER MANEN PDF TA NER MANEN PDF - Are you searching for Ta Ner Manen Books? Now, you will be happy that at this time Ta Ner Manen PDF is available at our online library.

Läs mer

En enkel segelflygprognos

En enkel segelflygprognos En enkel segelflygprognos Charlotte Pöntynen Boström 25 oktober 2010 Innehåll 1 Väderläge 2 2 Luftmassa 3 2.1 Radar............................... 4 2.2 Satellit............................... 4 2.3 Tempogram............................

Läs mer

SKOGS PÅVERKAN PÅ VINDKRAFTSPRODUKTION

SKOGS PÅVERKAN PÅ VINDKRAFTSPRODUKTION ISRN LUTMDN/TMHP--07/5121--SE ISSN 0282-1990 SKOGS PÅVERKAN PÅ VINDKRAFTSPRODUKTION - en fallstudie av vindkraftverk vid Andersfält Gustav Egerup Examensarbete Avdelning för Energihushållning Institutionen

Läs mer

1(6) Datum 2011-10-03. Anna Björkesjö Klara Jakobsson. Nedskräpning i stadens centrala gatumiljö. - Nyköping 2011. Metod- och kvalitetsrapport

1(6) Datum 2011-10-03. Anna Björkesjö Klara Jakobsson. Nedskräpning i stadens centrala gatumiljö. - Nyköping 2011. Metod- och kvalitetsrapport Datum 2011-10-03 1(6) Anna Björkesjö Klara Jakobsson Nedskräpning i stadens centrala gatumiljö - Nyköping 2011 Metod- och kvalitetsrapport 2(6) Metoddokumentation Målpopulation Målpopulationen för en skräpmätning

Läs mer

Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi

Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi Beräkningsvetenskap I Jarmo Rantakokko Josefin Ahlkrona Kristoffer Virta Katarina Gustavsson Vårterminen 2011 Beräkningsvetenskap: Hur man med datorer utför beräkningar och simuleringar baserade på matematiska

Läs mer

Diagnostiskt prov i mätteknik/luftbehandling inför kursen Injustering av luftflöden

Diagnostiskt prov i mätteknik/luftbehandling inför kursen Injustering av luftflöden 1 (14) inför kursen Injustering av luftflöden 1. I vilken skrift kan man läsa om de mätmetoder som normalt skall användas vid mätningar i ventilationsinstallationer? 2. Ange vad de tre ingående parametrarna

Läs mer

Beräkning av lågfrekvent ljud från vindkraft

Beräkning av lågfrekvent ljud från vindkraft Beräkning av lågfrekvent ljud från vindkraft Markera cell A1, infoga bild, justera höjd t.ex. 11, 5 och bredd till 15 cm Projekt: Hultema vindkraftpark, Motala Beräkningsdatum: 2013-09-17 Beställare: VKS

Läs mer

Mätprogram ljud under byggtiden Ögonfägnaden och Björkhöjden vindparker, Sollefteå, Strömsunds och Ragunda kommuner

Mätprogram ljud under byggtiden Ögonfägnaden och Björkhöjden vindparker, Sollefteå, Strömsunds och Ragunda kommuner Author Paul Appelqvist Phone +46 10 505 60 24 Mobile +46701845724 Paul.Appelqvist@afconsult.com Date 2014-11-20 Project ID 593868 Recipient Statkraft SCA Vind II AB Urban Blom Mätprogram ljud under byggtiden

Läs mer

Enterprise App Store. Sammi Khayer. Igor Stevstedt. Konsultchef mobila lösningar. Teknisk Lead mobila lösningar

Enterprise App Store. Sammi Khayer. Igor Stevstedt. Konsultchef mobila lösningar. Teknisk Lead mobila lösningar Enterprise App Store KC TL Sammi Khayer Konsultchef mobila lösningar Familjen håller mig jordnära. Arbetar med ledarskap, mobila strategier och kreativitet. Fotbollen ger energi och fokus. Apple fanboy

Läs mer

1 Den Speciella Relativitetsteorin

1 Den Speciella Relativitetsteorin 1 Den Speciella Relativitetsteorin På tidigare lektioner har vi studerat rotationer i två dimensioner samt hur vi kan beskriva föremål som roterar rent fysikaliskt. Att från detta gå över till den speciella

Läs mer

Vindkraftteknik F1. Disposition. Varför vindkraft

Vindkraftteknik F1. Disposition. Varför vindkraft Vindkraftteknik F1 Varför vindkraft Disposition Vindkraft i Sverige och övriga världen - Historik och Trender Typer av vindkraftverk Vindkraftverkets delar Grundläggande begrepp Vinden 1 Det bästa med

Läs mer

Fysik 1 kapitel 6 och framåt, olika begrepp.

Fysik 1 kapitel 6 och framåt, olika begrepp. Fysik 1 kapitel 6 och framåt, olika begrepp. Pronpimol Pompom Khumkhong TE12C Laddningar som repellerar varandra Samma sorters laddningar stöter bort varandra detta innebär att de repellerar varandra.

Läs mer

Studieanvisning i Optik, Fysik A enligt boken Quanta A

Studieanvisning i Optik, Fysik A enligt boken Quanta A Detta är en något omarbetad version av Studiehandledningen som användes i tryckta kursen på SSVN. Sidhänvisningar hänför sig till Quanta A 2000, ISBN 91-27-60500-0 Där det har varit möjligt har motsvarande

Läs mer

Bygglovsansökan för vindkraftanläggning Jonsbo

Bygglovsansökan för vindkraftanläggning Jonsbo Hylte kommun Samhällsbyggnadskontoret Storgatan 8 314 80 Hyltebruk Bygglovsansökan för vindkraftanläggning Jonsbo 1 Administrativa uppgifter Fastighetsbeteckningar: Sökande och byggherre: Kontaktperson:

Läs mer

Matematik Uppnående mål för år 6

Matematik Uppnående mål för år 6 Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och

Läs mer

STORSEMINARIET 3. Amplitud. frekvens. frekvens uppgift 9.4 (cylindriskt rör)

STORSEMINARIET 3. Amplitud. frekvens. frekvens uppgift 9.4 (cylindriskt rör) STORSEMINARIET 1 uppgift SS1.1 A 320 g block oscillates with an amplitude of 15 cm at the end of a spring, k =6Nm -1.Attimet = 0, the displacement x = 7.5 cm and the velocity is positive, v > 0. Write

Läs mer

Optimering av el- och uppvärmningssystem i en villa

Optimering av el- och uppvärmningssystem i en villa UMEÅ UNIVERSITET 2007-05-29 Institutionen för tillämpad fysik och elektronik Optimering av el- och uppvärmningssystem i en villa Oskar Lundström Victoria Karlsson Sammanfattning Denna uppgift gick ut på

Läs mer

Vad kan Reflab - modeller hjälpa till med? Rådgivning inom

Vad kan Reflab - modeller hjälpa till med? Rådgivning inom Vad kan Reflab - modeller hjälpa till med? Rådgivning inom Val av modell Användning av modeller Kvalitetssäkring av beräkningar och resultat Lagstiftning Rapportering i samarbete med NV och IVL Hur erbjuder

Läs mer

), beskrivs där med följande funktionsform,

), beskrivs där med följande funktionsform, BEGREPPET REAL LrNGSIKTIG JeMVIKTSReNTA 4,0 3,5 3,0 2,5 2,0 1,5 1,0 0,5 Diagram R15. Grafisk illustration av nyttofunktionen för s = 0,3 och s = 0,6. 0,0 0,0 0,0 0,5 1,0 1,5 2,0 s = 0,6 s = 0,3 Anm. X-axeln

Läs mer

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR Kontrollera vilka kurser du vill söka under utbytet. Fyll i Basis for nomination for exchange studies i samråd med din lärare. För att läraren ska kunna göra en korrekt

Läs mer

Exportmentorserbjudandet!

Exportmentorserbjudandet! Exportmentor - din personliga Mentor i utlandet Handelskamrarnas erbjudande till små och medelstora företag som vill utöka sin export Exportmentorserbjudandet! Du som företagare som redan har erfarenhet

Läs mer

Högvattenstånd vid Åhuskusten Nu och i framtiden

Högvattenstånd vid Åhuskusten Nu och i framtiden Författare: Uppdragsgivare: Rapport nr Anna Karlsson Kristianstads kommun 2007-30 Granskningsdatum: Granskad av: Dnr: Version 2007-06-12 Jan Andersson 2007/1071/204 1.1 Högvattenstånd vid Åhuskusten Nu

Läs mer

Fysik 1. 8. (Ö) Bestäm hur mycket av luften som finnas under 20 km, 15 km, 10 km och 5 km genom 2 /140127. p(h) = p 0 e mgh

Fysik 1. 8. (Ö) Bestäm hur mycket av luften som finnas under 20 km, 15 km, 10 km och 5 km genom 2 /140127. p(h) = p 0 e mgh Atmosfären Atmosfären är spelplatsen för alla väderfenomen, så första steget är att stifta bekantskap med denna tunna hinna som omger jordklotet, och utan vilken allt liv på jorden vore en omöjlighet.

Läs mer