för färgdefekta? Examensarbete 10 p Ett delmoment för uppnående av optikerexamen vid Optikerutbildningen Karolinska Institutet Stockholm

Storlek: px
Starta visningen från sidan:

Download "för färgdefekta? Examensarbete 10 p Ett delmoment för uppnående av optikerexamen vid Optikerutbildningen Karolinska Institutet 171 77 Stockholm"

Transkript

1 Seekey, nyckeln till seendet för färgdefekta? Examensarbete 10 p Ett delmoment för uppnående av optikerexamen vid Optikerutbildningen Karolinska Institutet Stockholm av Maria Nilsson Stockholm 2003

2 Sammanfattning Syftet med det här examensarbetet är att undersöka om Seekey hjälper personer med röd/grön färgdefekt att upptäcka och se saker de annars inte kan. Personerna som deltagit i den här studien har en ärvd färgdefekt. Normalt har en människa minst tre olika fotoreceptorer i näthinnan vilka är känsliga för olika våglängder och genom dessa är det möjligt att uppleva färger. Defekter kan uppkomma och vanligast är röd/grön färgdefekt. Det är sa många som 8 % män och 0,5 % kvinnor i den europeiska befolkningen. Det här arbetet förklarar färgseende, defekt färgseende, uppkomsten av färgdefekthet och några av de problem färgdefekta kan uppleva. Ishiharas test för Färgblindhet har använts och antalet felsvar utan och med Seekey har jämförts. Tester har utförts i samma rum under samma förutsättningar för samtliga försökspersoner. Försöksledaren har protokollfört alla svar. Studien visar att Seekey hjälper röd/grön färgdefekta att få ett bättre resultat i Ishiharas test för Färgblindhet. Nyckelord: färgdefekt, färgblindhet, våglängd, tappar, Seekey, Ishiharas test för Färgblindhet, transmission, deutanopi/deutan defekt, protanopi/protan defekt i

3 Innehållsförteckning Sammanfattning (svenska) Innehållsförteckning i ii 1. Introduktion Färgseende och färgdefekthet Tappar Yrkesrestriktioner Problem i vardagen Färgkoder Klassifikation av färgdefekthet Trikromasi-teorin Opponent Process -teorin och Dual Process -teorin Ärftlighets mönster Historik X-Chrom kontaktlinsen Examensarbetets mål Material och metoder Ishiharas test för Färgblindhet Seekey Filter Upplevelsen av Ishihara genom filtren Resultat Diskussion 19 ii

4 6. Summary (English) Referenser Acknowledgements Appendix Formler Resultat i tabell Protokoll Informationsblad Informationsblad Seekey 27 iii

5 1. Introduktion Det finns mängder av röd/grön färgdefekta i Sverige och i världen. Dessa personer brukar inte men kan uppleva stora problem i deras vardag. Det är inte så stor vikt lagd vid att utveckla hjälpmedel för färgdefekta personer. Ett intresse för röd/grön färgdefekt väcktes av Seekey. Samtal har skett med personer för att få en uppfattning om hur dessa löser situationer där andra använder färgseendet. De röd/grön färgdefekta behöver ett enkelt hjälpmedel, Seekey verkar vara den enda som finns på marknaden idag. Kan de som har en defekt bli hjälpta av denna uppfinning? Syftet med den här studien är att ta reda på om Seekey hjälper röd/grön färgdefekta att se saker de annars inte kan se eller har stora problem att upptäcka. 1.1 Färgseende och färgdefekthet Var och en har sin uppfattning om vilken färg ett visst föremål har. Alla lär sig tidigt i livet vilken färg som heter vad. Gräset är grönt, himlen är blå och jordgubbar är röda. Rött ser ut på ett visst sätt och att grönt ser ut på ett annat. Problem uppstår först då det är en så stor förändring i färgseendet att rött och grönt, eller gult och blått, inte går att skilja åt. Människan kan uppfatta de våglängder som är mellan 380nm och 780nm (Birch, 2001). De andra våglängderna uppfattas inte för att de antingen är absorberade av vävnaderna i ögat eller inte påverkar fotoreceptorerna i näthinnan. Färgerna i det synliga spektrumet är sammankopplade med den våglängd ljuset har. Om våglängden förändras, förändras även färgen på föremålet. Detta kan åskådliggöras genom att belysa en prisma med vitt ljus. Prisman har den egenskapen att den delar upp ljuset i olika våglängder. Ljuset delas upp i spektrumet, det bildas ett regnbågsfenomen. Detta undersökte Newton redan år 1666 (Palmer, 1999). Det visade sig att våglängderna för de olika färgerna i spektrumet var röd: 650nm; orange: 600nm; gul: 570nm; grön: 520nm; blå: 470nm; violett: 400nm (Schwartz, 1998). En allmän uppfattning är ofta att personer som är färgblinda (egentligen färgdefekta) inte kan se en viss färg eller inte någon färg alls. Till exempel att röd/grön-färgdefekta inte ser rött och grönt. Detta är dock mycket ovanligt. De flesta färgdefekta ser dessa färger men de uppfattar dem inte som en person med normalt färgseende. Vissa människor upplever spektrumet grått där en med normalt färgseende ser rött och grönt. Ett fåtal människor upplever hela världen i en gråskala. Vanligtvis upptäcks en färgdefekt i lågstadieåldern. Läraren märker att barnet har problem att skilja på färger och målar fel. Tidigare var det många små barn som blev klassade sena i utvecklingen när det egentligen var en färgdefekt som låg bakom problemet. De flesta skolsköterskor har numera ett färgseendetest, oftast Ishiharas test för Färgblindhet. Sköterskan utför det här testet och barnet får med sig en lapp hem till föräldrarna där det står att det har en färgdefekt. 1

6 Röd/grön färgdefekta har problem att skilja på följande färger: Grå och lila, även grå och rosa Grön och brun Grön och röd Röd och brun Lila och blå Orange och gul Färgdefekthet går inte att bota utan personen får lära sig att leva med den. Det finns hjälp för färgdefekta så att de kan skilja på saker som för dem är isokromatiska, har samma färg, genom att använda filter (Birch, 1993) Tappar Näthinnan har två olika fotoreceptorer, stavar och tappar. Näthinnan har en central del, fovea, vilken är den del av näthinnan som används då detaljseendet utnyttjas. I fovea finns det bara tappar. Dessa fotoreceptorer fungerar bäst i dagsljus. Stavarna används under mörkerseendet och det finns bara en typ av stav. Dessa är belägna ute i den perifera näthinnan (Palmer, 1999). Detta gör att det inte går att se någon färg under mörka förhållanden utan allt upplevs i olika gråskalor. Under dagtid används tapparna vilka är känsliga för olika våglängder på ljuset. Det finns tre olika typer av tappar. Det är denna känslighet som gör att människan uppfattar det som en färg och kan skilja olika färger åt. Om det endast finns en sorts fotoreceptor så kan två olika färger med samma intensitet upplevas likadana, till exempel 603nrn och 487nm (Fig. 1.1). Det är genom de olika utslagen på de olika tapparna som gör att färgerna går att skilja åt. 2

7 Tapparna kallas 5-, M- och L-tappar. S-tappen är känslig för de korta våglängderna och har sin högsta känslighet för 430nm, blå-violett. Färgpigmentet i S-tappen kallas cyanolabe. M-tappen har högst känslighet för 535nrn, grön-gult och färgpigmentet är chlorolabe. L-tappen reagerar på de långa våglängderna med högst känslighet för 565nm, orange, och det är färgpigmentet erythrolabe som reagerar (Fig. 1.2). 1 fovea är det högst koncentration av främst M- och L-tappar, vilket leder till människans ökade känslighet för 550nm, gulgrön färg. S-tappen finns i större mängd ute i den perifera näthinnan (Schwartz, 1998). L- och M-tapparna kan absorbera alla våglängder medan S-tappen bara kan absorbera våglängder under 545nm (Schwartz, 1998). Normalt kallas tapparna för de röda, gröna och blå tapparna. Då tapparna aktiveras kan en människa skilja på ca 10 miljoner olika nyanser och färger (Fig. 1.1). Detta är möjligt genom de olika utslagen på tapparna som de olika våglängderna i färgen gör (Martin, 1997). Det är inte svårt att föreställa sig att alla människor inte har precis samma uppsättning av S-, M- och L- tappar. Detta leder då till att alla inte har precis samma uppfattning av samma färg, på grund av de olika starka impulserna från fotoreceptorerna till hjärnan. Det finns två olika fotoreceptorpigment som kan finnas i L-tapparna, den ena har högsta känslighet på 552nm och den andra 557nm. Detta bidrar till färgseendeskillnader bland normalt färgseende människor (Schwartz, 1998). Vissa kvinnor har båda typerna av L-tappar, detta betyder att dessa upplever ett färgspektrum som är förskjutet åt det röda hållet Yrkesrestriktioner Att utreda färgseendet är viktigt, speciellt vid vissa yrkesval. Det finns yrken där det inte är tillåtet att ha en färgdefekt. En stor krock inträffade 15/ i Sverige mellan två tåg, 8 personer dog och ett stort antal skadades. Detta på grund av att den ena lokföraren hade en outredd färgdefekt som gjorde att han missuppfattade signalerna. Då utvecklades ett test för att upptäcka personer med färgdefekt som vill utöva yrken där ett korrekt färgseende är av yttersta vikt (Benjamin, 1998). 3

8 Det skall tilläggas att i vissa fall och yrken kan det vara en fördel att vara färgdefekt. De med en röd färgdefekt uppfattar blodådror mycket mörkare och kan i vissa situationer se dessa bättre än en människa med normalt färgseende. Exempel på yrken där inga anmärkningar på färgseendet far förekomma (Birch, 2001): Officer inom militären, såväl som piloter, ingenjörer och förare Sjöfart: sjökaptener och matroser Tulltjänstemän Lokförare Laboratoriepersonal på sjukhus och apotekare Poliser och brandmän små färgdefekter är tillåtna Problem i vardagen Det är inte endast personer med stora färgdefekter som kan ha problem i vardagen. En studie visade att (Steward et al., 1989) över 75 % av färgdefekta personer upplevde problem i vardagen. Bekymmer kan vara att avgöra när en tomat eller ett äpple är moget. Kunna skilja på olika växter samt att se mogna bär. Många färgdefekta har problem att välja rätt sytråd, köpa dekorationer som passar tillsammans samt välja tapeter och färger till hemmet. De med uttalad färgdefekthet kan uppleva problem med klädval och ber ofta om hjälp inför speciella tillfällen. Att läsa kartor kan också utgöra stora bekymmer. Nästan 25 % av deltagarna i studien sade att de hade problem vid olika sporter, främst vid biljard. De flesta, även de med små problem, hade problem att se skillnad på den bruna och den svarta bollen. Steward et al. (1989) visade i sin studie att 50 % av dikromaterna och 20 % av de anormala trikromaterna (se 1.2.1) hade problem med trafikljus. Det är något förvånande att så många färgdefekta har problem med detta, eftersom både positionen på de olika ljusen samt i vilken ordning de uppträder ger information. Det är inte fastställt när problemen är som störst utan de uppkommer vid normalt dagsljus, starkt solljus och nattetid. En tredjedel av personerna som deltog i studien sade att de hade problem att skilja på gatlyktor och trafikljus samt kände en stor osäkerhet vid körning nattetid. Personer med röd färgdefekthet har särskilt stora problem att se de röda trafikljusen nattetid Färgkoder De flesta färgdefekta personer har problem med färgkoder som innehåller röda, gula och gröna färger. Till och med de färgkoder vilka innehåller tre färger kan vara svåra att förstå för dessa personer. Färgkoderna på elektriska sladdar har förändrats så att de ska bli lättare för en färgdefekt att se. De flesta misstag uppkommer vid matchning av blå och lila, röd och brun, röd och grön samt orange och grön. Desto större yta som har en färg, desto enklare är det för den färgdefekte att känna igen färgen. Ljuset har även betydelse för igenkännligheten. 4

9 Färgkoder är vanliga inom elektronik, läkemedel, kemiska ämnen även pedagogik i skola (Birch, 1993). 1.2 Klassifikation av färgdefekthet Det finns två grundläggande typer av färgdefekter, ärvd och förvärvad. Den ärvda färgdefekten är beroende på ett kromosomalt fel i arvsmassan. Medan den förvärvade beror på olika sjukdomar i ögat och kroppen samt påverkan av mediciner och gifter med mera. Det är viktigt att särskilja dessa två typer av färgdefekt eftersom de behandlas olika. För dem med förvärvad färgdefekt är det viktigt att utreda orsaken till defekten. 1 vissa fall om den grundläggande orsaken kan behandlas försvinner färgdefekten, vilket inte är möjligt om den är nedärvd från föräldrarna (Benjamin, 1998). Röd/grön färgdefekt alltså ett icke-patologiskt tillstånd, den förändras inte över tiden. Det är också ett obotligt tillstånd som personen måste lära sig att leva med. Mest vanlig är den röd/gröna färgdefekten, vilken är en recessiv X-kromosom förändring som leder till total avsaknad eller nedsatt funktion av ett fotoreceptorpigment Trikromasi-teorin Thomas Young kom 1802, med delar av den teori som idag används då färgseendet förklaras: As it is almost impossible to conceive each sensitive point of the retina to contain an infinite number of particles, each capable of vibrating in perfect unison with every possible undulation, it becomes necessary to suppose the number limited; for instance to the three principal colours... and that each of the particles is capable of being put in motion more or less forcibly by undulations differing less or more from perfect unison. Each sensitive filament of the nerve may consist of three portions, one for each principal colour (Schwartz, 1998). Vad han menar här är att det inte är troligt att det finns ett oändligt antal receptorer på varje bestämd del av näthinnan. När en speciell våglängd kommer in i ögat reagerar just den fotoreceptor som är känslig för den våglängden. Han menar istället att det finns tre olika typer av tappar, vilka tillsammans verkar för rätt färgupplevelse. Young ansåg att det fanns tre grundfärger rött, blått och grönt. Dessa är färger som inte kan blandas ihop av andra färger. Helmholtz ( ) utvecklade den här teorin vidare till det som idag kallas trikromasiteorin. Den ärvda färgdefekten klassificeras i tre grupper, anormal trikromasi, dikromasi och akromatopsi. En person som ser alla slags färger är trikromat. Vilket betyder att de kan mixa ihop de tre olika grundfärgerna. Den som är anormal trikromat kan se de tre grundfärgerna men behöver olika intensitet i färgerna för att uppfatta dem. En person som är dikromat kan bara uppfatta två av de grundfärgerna. Den som är akrobat uppfattar bara en och får matcha andra färger genom att ändra intensiteten på den ena. Akromatopsi betyder att det bara finns en typ av tapp. Detta är jämförbart med att endast ha stavar. Färger skulle då upplevas som olika nyanser av grått. Genom erfarenhet är det sedan möjligt för personen att skilja färgerna åt. Blå-grönt upplevs som ljusare än rött och kan därför, vid en direkt fråga om vad som har vilken färg, skilja dem åt. Problem uppkommer när intensiteten på objekten ändras så att det blir en lika stor reaktion från båda färgerna i näthinnan. De är då omöjliga för en akromat att skilja åt (Schwartz, 1998). 5

10 Dikromasi är när det finns två typer av tappar i näthinnan. De två typerna av tappar har olika känslighet för våglängder. När ljus kommer in i ögat reagerar dessa tappar olika mycket, vilket leder till en färgupplevelse. Det går inte att få två våglängder att uppfattas som likadana eftersom tapparna aktiveras olika mycket. Det är inte heller möjligt att manipulera intensiteten på en färg och få dem att upplevas likadan som den andra. Skillnaden i känslighet mellan de två tapparna finns alltid där. På så sätt går det, oberoende av intensiteten på ljuset, att skilja färgerna åt. Problemet uppkommer för personen först när det finns en våglängd (1) och sedan en blandning av två olika våglängder (2). Om personen har möjlighet att ändra intensiteterna på de tre olika våglängderna kan personen få (1) och (2) att upplevas som likadana (Schwartz, 1998). Personer som har problem att se korta våglängder, blått ljus, saknar S-tapparna. De som inte kan se de lite längre våglängderna saknar M-tapparna och det gröna ljuset påverkas. De som saknar L-tapparna kan inte uppfatta de långa våglängderna, rött. Vad Young ansåg var alltså att människan normalt är trikromat. Trikromasi betyder att tre olika tappar finns som överlappar varandras absorptionsförmåga av våglängder. Möjligheten att skilja på färger är större vid trikromasi men den är fortfarande begränsad. Det är först när det är en blandning av fyra eller fler våglängder som problem med åtskiljningen mellan dessa blandningar kan uppkomma (Schwartz, 1998). Under fotopiska omständigheter, ljusintensiteter mellan 430nm och 565nm, används i normala fall alla tre typerna av tappar. Dessa absorberar olika våglängder och bildar en nervimpuls vilken uppfattas som en viss färg. Vid röd/grön färgdefekthet är personen antingen dikromat eller anormal trikromat. Dikromasi i detta fall betyder att personen saknar M- eller L-tappen eller egentligen färgpigmentet för någon av dessa tappar. En anormal trikromat har inte tillräckligt med färgpigment, chlorolabe eller erythrolabe men har alla typer av tappar. Dikromasi är också uppdelad i protanopi och deuteranopi. Det är ord som har ersatt det gamla rödblind respektive grön-blind. En person med protanopi kan inte använda det röda ljuset utan använder bara informationen från det gröna och det blå ljuset. Då det är grön, blå och röd som är de tre grundfärgerna. Personen blandar ihop blå-grönt med rött. Deuteranopi är när personen inte kan använda den gröna informationen. De blandar ihop blå-grönt med röd-lila. Dikromaten och den anormale trikromaten far en färgupplevelse som är förskjuten åt något håll, deuteranopi/deutan defekt (A) leder till förskjutning åt det långvågiga hållet (mer röd upplevelse). En protanopi/protan defekt (B) leder till en mer blå upplevelse vilken är en förskjutning åt det kortvågiga hållet (Fig. 1.3). 6

11 Färgseendet förändras med åldern. Detta beror på den normala åldrande processen. Genom den minskade retinala belysningen samt gulnandet av linsen i ögat blir det en förändring mot en tritan defekt, blå-gul defekt Opponent Process -teorin och Dual Process -teorin Hering ( ) utvecklade det som kallas Opponent process-teorin. Han såg svagheter i trikromasiteorin. Den gav bland annat ingen förklaring om varför en defekt människa alltid har problem att se två olika färger i speciella par, röd och grön, gul och blå. Av trikromasiteorin är det möjligt att förvänta sig att bara en färg kan påverkas eller färgparen röd och blå eller grön och gul, så är emellertid inte fallet. Young och Helmholtz trodde också att det bara fanns tre grundfärger. Detta grundades på de tre känslighetstopparna på tapparna. Hering såg ett problem i att förklara färgen gul. Enligt trikromasiteorin skulle gul vara en blandning av grönt och rött. Upplevelsen av en blandning av rött och grönt är inte en gul färg utan gult måste också vara en grundfärg. Inte heller detta fenomen kunde Helmholtz teori förklara. Alla färger ser ut att ha delar av dessa fyra grundfärger. Orange upplevs vara en blandning av gult och rött. Lila upplevs som blått och rött. Det finns inga färger som upplevs som en blandning mellan gult och blått, eller rött och grönt. Detta menade Hering betydde att de var polariskt motstående färger. Genom detta byggde han en teori, vilken går ut på tre motstående mekanismer. De tre mekanismerna reagerade på rött och grönt, gult och blått samt vitt och svart (akromatiskt system). Polariteten, energin, uppkommer av bildandet och nedbrytningen av ämnena i tapparna. Om ett ämne bildas ger det antingen en röd, gul eller en vit färgupplevelse, beroende på i vilken mekanism det sker (Fig. 1.4). Likadant bildas antingen en grön, blå eller svart färgupplevelse om ämnet bryts ned (Palmer, 1999). 7

12 Efter decennier då trikromasiteorin och opponent process teorin försökte överträffa och överbevisa varandra, skedde ytterligare utvecklingar kring färgseendetänkandet. Hurvich och Jameson vidareutvecklade tanken von Kries (1905) kom med att båda teorierna var riktiga. De skedde bara på olika plan i färgintrycksbearbetningen. Detta kallas dual process-teorin, även kallad Zonteorin, och var färdig De ansåg att båda teorierna stämde om Herings åsikt om att mekanismerna fanns i fotoreceptorerna frångicks. De sade att informationen bearbetades enligt Helmholtz och informationen från trikromasi steget blev input för opponent process steget. Dessa samarbetar för en riktig färgupplevelse (Palmer, 1999) Ärftlighetsmönster Färgdefekthet har ett genetiskt ursprung. Det har skett en förändring i människans 23: e kromosompar. Det finns totalt 23 par kromosomer i människan och av dessa har 22 par samma storlek och form. Dessa par kallas de autosomala kromosomerna. Det 23: e paret avgör könet på personen. En kvinna har två X kromosomer (XX), medan en man har en X kromosom och en Y kromosom (XY), där X kromosomen kommer från mamman och Y kromosomen kommer från pappan. Färgdefekten är en recessiv X kromosomdefekt. Vad det betyder är att personens alla X kromosomer i könskromosomparet måste ha defekten för att defekten ska visa sig, annars är personen en bärare (Fig. 1.6). Fig. 1.6 åskådliggör också att det är mycket lättare för en man att få defekten än en kvinna att få den. Det är många som har uppfattningen att färgdefekten kommer från pappan, så är alltså inte fallet (Schwartz, 1998). 1 allmänhet överförs defekten från morfar till sonson, med mamman som bärare. 8

13 Genetiken bakom de olika färgdefekterna är klara. Personer med dikromasi saknar en av de olika fotoreceptorerna, antingen 5, M eller L-tappen. 1 de fall där det är en röd/grön färgdefekt är det alltså M- eller L-tappen som saknas. 1.3 Historik Undersökningar och en förståelse av färgseendet har inte skett förrän på senare år. Den första ingående dokumentationen på detta område är från år Då beskrev kemisten John Dalton sin egen färgdefekt. Han trodde att det berodde på en blå missfärgning av glaskroppen i ögat. Han önskade att hans ögon skulle dissekeras vid hans död för att se om hans teori stämde. När detta inträffade 1844 upptäcktes det att han hade fel. Det visade sig senare med hjälp av DNA analys att Dalton var deuteranop, problem att se grönt (Benjamin, 1998). Första teorin angående färgseende kom 1777 av George Palmer. Denna teori återupptäcktes av Thomas Young Helmholtz vidare utvecklade den här teorin till det som idag kallas trikromasiteorin (se 1.2.1). Hering såg en svaghet i denna teori. Trikromasiteorin förklara inte varför färgupplevelserna alltid förloras i speciella par, röd och grön eller blå och gul. Han menade att dessa färger var motstående och hade motstående polaritet. Han kallade denna teori opponent process theory. Under 1920 talet utvecklades tänkandet kring färgseendet 9

14 ytterligare av Miller och Schrödinger. De ansåg att både trikromasiteorin och opponent process-teorin skedde fast i olika plan i synsystemet. Hurvich och Jameson fullbordade teorin och skapade det som idag kallas Dual Process -teorin eller Zonteorin (se 1.2.2) X-Chrom kontaktlinsen Det har inte funnits så många hjälpmedel för de färgdefekta på marknaden. Den mest kända är antagligen kontaktlinsen X-Chrom, vilken introducerades Det är en rödfilter kontaktlins, med vilkens hjälp den färgdefekte personen kan se saker som den tidigare inte kunde. Kontaktlinsen sätts i det icke-dominanta ögat och är antingen en stabil PMMA lins eller en mjuk lins som är färgad med en röd filterfärg. Den har ett transmissionsmaximum på 575nm. Linsen introducerades på marknaden som botemedlet för färgdefekthet. Detta grundades på det förbättrade resultat personer fick i olika färgseende tester. Det visade sig sedan att kontaktlinsen inte fungerade så bra ute i verkligheten (Birch, 1993). 10

15 2. Examensarbetets mål Att påvisa en eventuell positiv seendeförändring vid användandet av Seekey. Att fastställa röd/grön färgdefekt hos försökspersonerna. Att få en större kunskap om färgseende och defekt färgseende. Att få en förståelse om hur färgseende tavlor är uppbyggda. 11

16 3. Material och metoder Litteratur har lästs i ämnet färgseende och färgdefekter. Försökspersonerna har rekryterats genom affischanslag på universitet och högskolor, länk på Seekeys hemsida samt genom personliga kontakter. Ishiharas test för Färgblindhet användes i 24 tavlor setet. Fem försökspersoner valde att avbryta deras deltagande i studien, dock redan innan de kom på undersökningen. Alla försökspersoner skulle vara medvetna om deras färgdefekt och skulle gärna ha varit diagnostiserade av antingen skolsköterska eller läkare i militärtjänst. Alla undersökningar är gjorda i samma rum för att förhållandena ska vara likadana för alla som medverkar i studien. I detta rum var totala belysningen ungefär 380 lux. Tavlorna belystes med 198cd/m 2. Värmetemperaturen på lysrören i rummet är 3000K och de har ett färgåtervinningsindex på Studien skedde över ett bord, framtaget för detta tillfälle. Försöksledaren redogjorde hur resultatet skulle journalföras (se 9.3). Instruktionen för färgseendetestet var att försöksledaren vände blad efter ungefär tre sekunder, under vilka personen skulle säga vad denne såg. Personen fick gissa om denne inte såg direkt vad det stod på tavlan, de hade även möjligt att säga att de inte såg något alls på tavlan. Det var tillåtet för försökspersonerna att spontant ändra deras svar. Försöksledaren journalförde detta bakom Ishiharas test för Färgblindhet, utanför synfältet för personen. Seekey introducerades sedan, varvid en känsla för hur hjälpmedlet fungerade utvecklades genom att titta på och läsa informationsbladet för Seekey (se 9.5). Försöksledaren bad även personen namnge färgade prickar. Vid de fall personen namngav några prickar fel, användes informationsbladet för att bestämma vilken färg de felbenämnda prickarna verkligen hade. För att personen skulle få en uppfattning om hur Ishiharas test för Färgblindhet skulle se ut, användes ett annat pseudoisokromatiskt test. Efter detta fick personen använda Seekey när Ishihara återigen användes. I den här studien kan inte protan defekt skilj as från protanopi eller deutan defekt från deutanopi. För detta krävs ytterligare tester. För enkelhetens skull benämns alla typer av grön färgdefekt som deutan och röd färgdefekt som protan. 3.1 Ishiharas test för Färgblindhet Ishihara är ett pseudoisokromatiskt test. Tavlorna är uppbyggda på ett sådant sätt att de kan lura dem med färgdefekt. Det är en tavla med en bakgrund och siffra vilka uppfattas av en färgdefekt som isokromatisk, har samma färg. De är byggda för att hitta dem med en ärvd färgblindhet. I de flesta fall går det bara avgöra om personen har en färg defekt eller inte. I andra fall går det även att avgöra graden på defekten. 12

17 Dessa test består av bilder som är uppbyggda på fyra olika sätt: Förändrade tavlor: där den färgdefekte personen ser en siffra medan en utan färgdefekt ser en annan. Försvinnande tavlor: där kan den färgdefekte personen inte läsa något medan den normalt färgseende ser en tydlig bild. Gömda-siffror tavlor: här kan den färgdefekte läsa siffror medan den normalt färgseende inte kan läsa något alls. Diagnostiska tavlor: här är en siffra isokromatisk för en färgdefekt typ men inte för en annan. Ishihara kommer i set med 16, 24 och 38 olika tavlor. Med hjälp av detta test kan protan defekt skiljas från deutan defekt. Den är unik i att använda alla fyra olika tavlor. Första tavla i Ishiharas test för Färgblindhet är utformat så att alla kan läsa vad som står där, även de som ser världen i en gråskala (Fig. 3.1). Detta på grund av att det är olika intensitet mellan siffran och bakgrunden (Ishihara, 1989). Ishiharas test för Färgblindhet ger rätt resultat då vissa rekommendationer följs. Den är utformad att ske under nordiskt dagsljus, vilket betyder att totala belysningen i rummet vara minst 300 lux, på tavlorna ska belysningen vara mellan 50 och 90 cd/m 2. Tavlorna skall vara i en vinkel på 450 mot ljuskällan. 1 de fall då istället ett lysrör används ska de ha en värmetemperatur på K samt ett färgåtervinningsindex på minst 92. Alla typer av bländning skall undvikas. Eftersom tavlorna bleks om de ligger framme i solljus, ska de alltid förvaras i medfölj ande kartonger (Martin, 1997). Ett lysrör med värmetemperaturen 6000K har maximalt utsöndrande av ljust i det synliga spektrumet. Det är ungefär lika mycket av våglängderna i det synliga ljuset som utsöndras av lysröret (Schwartz, 1998). Ett högt färgåtervinningsindex betyder att ljuskällan har hög förmåga att återge färger inom sin temperaturklass. 13

18 3.2 Seekey Seekey består av ett rött och ett grönt filter gjorda av ett akrylplastmaterial. Den är utvecklad till ett format som ska vara enkel att ta med sig och användas vid behov. Filtren är utfällbara för bästa möjliga skydd vid förvaring. Seekey fungerar bra inomhus och utomhus. Den har en sådan form att det är enkelt att titta växelvis genom det röda och det gröna filtret. Detta växlande mellan filtren ger en blinkande effekt på föremålet. Skillnaden mellan ett filter och ett färgat glas är att filtret har förmågan att blockera vissa våglängder och samtidigt släppa in allt ljus som har en annan våglängd. Filtrets transmission, genomsläpplighet, för en viss våglängd är viktigt för dess egenskaper. Ett färgat glas, drar ner på den totala mängden ljus genom glaset. Filtrets färg beror på vilken slags filter det är. Här utnyttjas den förändring som sker med en färg, när delar av dess beståndsdelar blockeras från att nå ögat. Om alla, eller nästan alla, beståndsdelar i en färg blockeras från transmission genom filtret upplevs den färgen som svart, eller mycket nära svart. Det som är viktigt att tänka på är vilka våglängder det egentligen är som reflekteras från en yta. Om ett föremål är grönt, så absorberas det röda, gula och det blåa ljuset så att endast det gröna reflekteras. Likadant är det med röda saker, där absorberas allt det blåa, gula och det gröna ljuset och det är endast det röda ljuset som når ögat. Med detta i åtanke är det lite enklare att förstå varför en röd/grön färgdefekt människa har problem att se vissa saker. En deutan tittar på en tavla i Ishiharas test för Färgblindhet med en röd-gul bakgrund och ett grön-gult objekt. Personen ser den gul-röda bakgrunden, då det är det gula och röda våglängderna som reflekteras tillbaka. Problemet uppstår nu med det grön-gula objektet. Här reflekteras det gröna och det gula ljuset tillbaka. Personen har dock inga tappar som reagerar på det gröna ljuset, utan endast de som reagerar på det gula. Detta leder till att objektet försvinner in i den redan gul-röda bakgrunden och blir omöjlig för personen att se Filter Det finns olika typer av filter bland annat smalbands-, interferens-, bredbands- och kantfilter. Smalbandsfiltret släpper endast igenom ljus från en liten del av spektrumet. Interferensfiltret släpper igenom en ännu mindre del av spektrumet, praktiskt sägs det att interferensfiltret bara släpper igenom en enda våglängd. Bredbandsfiltret släpper igenom en stor del av spektrumet. Kantfiltret är sådant att de släpper igenom allt ljus som är över en viss våglängd och blockerar alla våglängder under denna. De filter som inte är ett kantfilter har totalt något lägre genomsläpplighet som maximum (Schwartz, 1998). Beroende på vad filtret ska användas till väljs ett speciellt filter. Genom att titta på föremål med och utan filter, eller alternativt genom olika filter, upplevs kontrastskillnader. En färgdefekt kan genom detta skilja på färger som annars ser likfärgade ut. Omgivningen och alla föremål upplevs ha samma färg som filtret. Färgerna försvinner och upplevs som olika nyanser av denna färg. Ett rött föremål upplevas få en ljusare nyans när personen tittar genom det röda filtret. Genom ett grönt filter skulle det röda föremålet få en mycket mörkare nyans. Personen upplever samma sak om denne tittar genom ett grönt filter, fast tvärtom. Genom erfarenhet kan sedan den färgdefekte lära sig att skilja på färgerna i dess omgivning (Birch, 2001). 14

19 Hovis (1997) visade i sin studie att kantfilter som släpper igenom långa våglängder, förbättrade resultatet i olika färgseende test (bland annat Ishihara). Förbättringen berodde främst på förändringar i luminans mellan de olika regionerna på testen. Med endast detta röda filter såg Hovis också en försämring i förmågan att skilja på färger, vilken en blå/gul färgdefekt har. Mer praktiskt visade Hovis studie att det inte var lämpligt för en protan att gå med ett rött filter i glasögonen, eftersom de redan har en lägre känslighet mot de långa våglängderna. Det kan också vara problem för de färgdefekta att skilja på trafikljusen, så de är inte att rekommendera vid bilkörning. Seekey består av ett grönt bredbandsfilter och ett rött kantfilter. Det gröna filtret i Seekey består av ett bredbandsfilter som har högsta genomsläppligheten på ljus med våglängden 497nm (Fig. 3.2). Det är ljus som har en blågrön färg. Detta betyder att saker i omgivningen vilka reflekterar ljus med våglängder mellan 465 och 526nm, upplevs ljusare än omgivande färger genom filtret. De föremål som reflekterar tillbaka andra våglängder upplevs som mörkare. Filtret har ganska mycket färg vilket gör att det inte är 100 % transmittans för våglängden 497nm, detta är vanligt för ett bredbandsfilter. Resultatet av detta är att de flesta föremål upplevs som något mörkare genom filtret, trots att föremålets reflekterade ljus transmitteras genom filtret. 15

20 Det röda filtret är ett kantfilter som hindrar allt ljus med kortare våglängder att ta sig genom den. Alla föremål som har en blå eller en grön färg upplevs få en mörkare nyans genom filtret. Den har en hög total transmittans (Fig. 3.3). Eftersom filtret har en brant kurva så finns det stor möjlighet att skilja färger åt. Fördelen med att ha ett rött och ett grönt filter framkommer vid jämförelse och benämning av olika färger, vilka alla blir ljusare med det röda filtret. Genom erfarenhet kan färger bestämmas med säkerhet genom att jämföra hur mycket ljusare de upplevs genom det röda filtret och mörkare genom det gröna. Vid jämförelse av till exempel rött och rosa, kan upplevelsen genom det röda filtret vara väldigt lika. Sedan märks det att den röda färgen blir mycket mörkare än den rosa genom det gröna filtret. Seekey bygger på att personen med färgdefekten ska lära sig använda den och få en kunskap om hur de olika färgerna förändras Upplevelsen av Ishihara genom filtren Ishihara har tavlor med bakgrundsfärgerna, grönt, brun-rost, grön-blå och röd-gul. På dessa finns siffror som är röd-rosa, gröna och brun-rost. En tavla har en bakgrund som består av rosa, rödbruna, orange och gula prickar samt en siffra med gröna, blåa och brunaktiga prickar. När tavlan studeras genom det röda filtret (Fig. 3.3) kommer alla våglängder under 540nm blockeras helt. Detta gör att de färger i tavlan som innehåller någon beståndsdel under denna våglängd kommer att upplevas få en mörkare nyans. Genom det gröna filtret (Fig. 3.2) blir det inte så stor nyansskillnad på prickarna i bakgrunden. Bäst märks skillnader på de färger som innehåller rött för att de far en mörkare färg eftersom de helt stoppas från transmission genom filtret. Prickarna i siffran kan upplevas något ljusare genom det gröna filtret. 16

Tentamen 1 Perception (T3)

Tentamen 1 Perception (T3) Namn: KAROLINSKA INSTITUTET OPTIKERUTBILDNINGEN Institut för Klinisk Vetenskap Enheten för Optometri Tentamen Perception (T) Tisdag 9/-0 Max poäng: xxp Tentamen utan litteratur. Ämnesområde G-nivå fråga:

Läs mer

KIT 104, Cognitive processes. Lecture 2: Colors , Thomas Porathe

KIT 104, Cognitive processes. Lecture 2: Colors , Thomas Porathe KIT 104, Cognitive processes Lecture 2: Colors 090325, Thomas Porathe Eye tracking Sackader Snabba ögonrörelser under vilka bildinhämtningen är undertryckt (visual smear). Typiska tider för en sackad:

Läs mer

FÄRGLÄRA Portfolieuppgift i bild

FÄRGLÄRA Portfolieuppgift i bild FÄRGLÄRA Portfolieuppgift i bild Mål: Att lära sig vad färg är och vad som händer när jag blandar olika färger Att lära sig blanda färger Att veta vad en färgcirkel och komplementfärger är Att kunna skilja

Läs mer

Vad skall vi gå igenom under denna period?

Vad skall vi gå igenom under denna period? Ljus/optik Vad skall vi gå igenom under denna period? Vad är ljus? Ljuskälla? Reflektionsvinklar/brytningsvinklar? Färger? Hur fungerar en kikare? Hur fungerar en kamera/ ögat? Var använder vi ljus i vardagen

Läs mer

Hur påverkas vi av belysningen i vår omgivning?

Hur påverkas vi av belysningen i vår omgivning? Hur påverkas vi av belysningen i vår omgivning? Strålning Elektromagnetiska spektrumet Synlig strålning IR UV Våglängdsområden 100-280nm UV-C 280-315nm UV-B 315-400nm UV-A 400-780nm 780-1400nm 1400-3000nm

Läs mer

VISUELLA FÖRHÅLLANDEN

VISUELLA FÖRHÅLLANDEN VISUELLA FÖRHÅLLANDEN Hur man uppfattar ljuset i ett rum kan beskrivas med sju begrepp som kännetecknar de delar av synintrycken som man kan iaktta och beskriva ljusnivå, ljusfördelning, skuggor, bländning,

Läs mer

Erik Ullmark Marie Kotomaa Nyholm Eleni Gioudas Maria Brodin Ala Abdul Rasol Johanna Lindblom Jessica Henriksson

Erik Ullmark Marie Kotomaa Nyholm Eleni Gioudas Maria Brodin Ala Abdul Rasol Johanna Lindblom Jessica Henriksson Erik Ullmark Marie Kotomaa Nyholm Eleni Gioudas Maria Brodin Ala Abdul Rasol Johanna Lindblom Jessica Henriksson 1 Innehållsförteckning Innehållsförteckning... 2 Inledning... 3 Anatomi... 3 Vad händer

Läs mer

Färgtyper. Färg. Skriva ut. Använda färg. Pappershantering. Underhåll. Felsökning. Administration. Index

Färgtyper. Färg. Skriva ut. Använda färg. Pappershantering. Underhåll. Felsökning. Administration. Index Med skrivaren får du möjlighet att kommunicera med färg. drar till sig uppmärksamhet, ger ett attraktivt intryck och förhöjer värdet på det material eller den information som du skrivit ut. Om du använder

Läs mer

ÖGON KÄNSLIGA FÖR GRÖNT

ÖGON KÄNSLIGA FÖR GRÖNT ÖGON KÄNSLIGA FÖR GRÖNT EN PILOTSTUDIE AV ROXOR-FILTER MED FRÅGAN: KAN MAN FÖRSTÄRKA SYNINTRYCK OCH SAMTIDIGT MINSKA BLÄNDNING? av Krister Inde, synpedagog, Karlstad Det synliga ljuset och kantfilter Det

Läs mer

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla Ljus/optik Ljuskällor För att vi ska kunna se något måste det finnas en ljuskälla En ljuskälla är ett föremål som själv sänder ut ljus t ex solen, ett stearinljus eller en glödlampa Föremål som inte själva

Läs mer

Optik. Läran om ljuset

Optik. Läran om ljuset Optik Läran om ljuset Vad är ljus? Ljus är en form av energi. Ljus är elektromagnetisk strålning. Energi kan inte försvinna eller nyskapas. Ljuskälla Föremål som skickar ut ljus. I alla ljuskällor sker

Läs mer

Våglängder. Synliga spektrat mellan 390 och 770 nm

Våglängder. Synliga spektrat mellan 390 och 770 nm Våglängder Synliga spektrat mellan 390 och 770 nm Vad ÄR färg? Aspekter som påverkar färguppfattning Fysikaliska Kemiska Fysiologiska Psykologiska färgen beroende av applikation enhet färgdefekter intensitetsskillnader

Läs mer

Hur gör man. Kika försiktigt in genom hålen i luckorna. Vilken färg är det på insidan av lådan? Så fungerar det

Hur gör man. Kika försiktigt in genom hålen i luckorna. Vilken färg är det på insidan av lådan? Så fungerar det 2. Svart låda Hur gör man Kika försiktigt in genom hålen i luckorna. Vilken färg är det på insidan av lådan? Så fungerar det Skåpet: Det enda vi kan se är ljus. Vi kan inte se hundar, bilar, bollar eller

Läs mer

SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE.

SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. Vad gjorde vi förra gången? Har du några frågor från föregående lektion? 3. titta i ditt läromedel (boken) Vad ska vi göra idag? Optik och

Läs mer

Belysning sida 1. Hur mycket ljus får vi från solen?

Belysning sida 1. Hur mycket ljus får vi från solen? Belysning sida 1 I flera av de tidigare delkurserna har det varit tal om ljus. Du har fått klart för dig att växter behöver ljus, men du sitter säkert med en mängd frågor kring det här med ljus. Det blir

Läs mer

* Bygg en solcellsdriven färgsnurra

* Bygg en solcellsdriven färgsnurra * Bygg en solcellsdriven färgsnurra Kort version Prova Olika färger Svarta cirkelstreck Påklistrade småbitar av cd-skivor 1 * Bygg en solcellsdriven färgsnurra Utförlig version Så här kan du göra Det är

Läs mer

Gauss Linsformel (härledning)

Gauss Linsformel (härledning) α α β β S S h h f f ' ' S h S h f S h f h ' ' S S h h ' ' f f S h h ' ' 1 ' ' ' f S f f S S S ' 1 1 1 S f S f S S 1 ' 1 1 Gauss Linsformel (härledning) Avbilding med lins a f f b Gauss linsformel: 1 a

Läs mer

Kan utforskande av ljus och färg vara en del av språkarbetet på förskolan?

Kan utforskande av ljus och färg vara en del av språkarbetet på förskolan? Kan utforskande av ljus och färg vara en del av språkarbetet på förskolan? Forskning visar att aspekter av begrepp om ljus i vardagstänkandet och inom naturvetenskapen skiljer sig åt. Vi vill utmana barnens

Läs mer

OPTIK läran om ljuset

OPTIK läran om ljuset OPTIK läran om ljuset Vad är ljus Ljuset är en form av energi Ljus är elektromagnetisk strålning som färdas med en hastighet av 300 000 km/s. Ljuset kan ta sig igenom vakuum som är ett utrymme som inte

Läs mer

Färglära. Ljus är en blandning av färger som tillsammans upplevs som vitt. Färg är reflektion av ljus. I ett mörkt rum inga färger.

Färglära. Ljus är en blandning av färger som tillsammans upplevs som vitt. Färg är reflektion av ljus. I ett mörkt rum inga färger. Ljus är en blandning av färger som tillsammans upplevs som vitt. Färg är reflektion av ljus. I ett mörkt rum inga färger. Människans öga är känsligt för rött, grönt och blått ljus och det är kombinationer

Läs mer

Ljuset påverkar människan på tre sätt:

Ljuset påverkar människan på tre sätt: Vad är ljus? Ljus är elektromagnetisk strålning inom ett våglängdsområde som ögat är känsligt för. Ljuset uppfattas först då det träffar en yta som återkastar vissa våglängder av strålningen. Men, vi kan

Läs mer

Visuell perception och synsinnets neurofysiologi

Visuell perception och synsinnets neurofysiologi Visuell perception och synsinnets neurofysiologi The spectrum of electromagnetic energy Mål redogöra för hur våra sinnesorgan och vår hjärna tolkar omvärlden i psykologiskt meningsfulla enheter och olika

Läs mer

Research. Erikdalsbadets utomhusbad i Stockholm

Research. Erikdalsbadets utomhusbad i Stockholm Framtidens färg Framtidens färg kommer varken att handla om nya kulörer eller färgkombinationer, vilket tidigare ofta har kännetecknat en viss tidsperiod. I framtiden får färgen sin betydelse genom kontexten

Läs mer

Produktinformation Gradallins klar lins spegellins (hel spegel) Polariserande lins Linser revo- & aka-lins Brun, grågrön, grå

Produktinformation Gradallins klar lins spegellins (hel spegel) Polariserande lins Linser revo- & aka-lins Brun, grågrön, grå eyewear Produktinformation Våra glasögon är kontrollerade och uppfyller EG Direktivet 89/686 enligt kraven i standard EN-1836:2005. Denna standard delar in linserna i fem olika kategorier utifrån den mängd

Läs mer

LJUSET Handledning inklusive praktiska lärarhandledningar

LJUSET Handledning inklusive praktiska lärarhandledningar LJUSET Handledning inklusive praktiska lärarhandledningar Hur du som lärare kan använda Färg och Seende Du kan använda dig av bilder och texter för att sedan låta eleverna självständigt arbeta vidare med

Läs mer

Optik Samverkan mellan atomer/molekyler och ljus elektroner atomkärna Föreläsning 7/3 200 Elektronmolnet svänger i takt med ljuset och skickar ut nytt ljus Ljustransmission i material Absorption elektroner

Läs mer

blå blomma öga sko kylskåp blomma bil kuvert ljus blus flagga boll bälte kök hus jacka Vit / Vitt Svart / Svart Röd / Rött Grön / Grönt

blå blomma öga sko kylskåp blomma bil kuvert ljus blus flagga boll bälte kök hus jacka Vit / Vitt Svart / Svart Röd / Rött Grön / Grönt Vit / Vitt Svart / Svart Röd / Rött Grön / Grönt Blå / Blått Brun / Brunt Gul / Gult EN ETT blå blomma öga sko kylskåp blomma bil kuvert ljus blus flagga boll bälte kök hus jacka Anders Svensson, Kunskapscentrum,

Läs mer

Manipulation med färg i foton

Manipulation med färg i foton Linköpings Universitet, Campus Norrköping Experimentrapport i kursen TNM006 Kommunikation & Användargränssnitt Manipulation med färg i foton Försöksledare epost facknr. David Kästel davka237@student.liu.se

Läs mer

MÄNNISKAN OCH LJUSET

MÄNNISKAN OCH LJUSET MÄNNISKAN OCH LJUSET Inom fysiken definierar man ljus som en elektromagnetisk strålning inom ett våglängdsområde som ögat är känsligt för. Det är alltså elektromagnetisk strålning som ger bilder på ögats

Läs mer

Genetik. Så förs arvsanlagen vidare från föräldrar till avkomma. Demokrati och struktur inom och mellan anlagspar

Genetik. Så förs arvsanlagen vidare från föräldrar till avkomma. Demokrati och struktur inom och mellan anlagspar Genetik Så förs arvsanlagen vidare från föräldrar till avkomma Hunden har 78st kromosomer i varje cellkärna, förutom i könscellerna (ägg och spermier) där antalet är hälften, dvs 39st. Då en spermie och

Läs mer

Färglära. En värld av färger så fungerar det! Distansskolan 1

Färglära. En värld av färger så fungerar det! Distansskolan 1 Färglära En värld av färger så fungerar det! Distansskolan 1 Färglära Egentligen existerar inte färg på det sätt vi vanligen tror. Färger existerar bara i vår tankevärld. Ljus träffar andra objekt och

Läs mer

m a d e b y SOLGLASÖGON

m a d e b y SOLGLASÖGON made by SOLGLASÖGON PRODUKTINFORMATION Våra glasögon är kontrollerade och uppfyller EG Direktivet 89/686 enligt kraven i standard EN-1836:2005. Denna standard delar in linserna i fem olika kategorier utifrån

Läs mer

Ljus- och Mörkerseende

Ljus- och Mörkerseende Ljus- och Mörkerseende Camilla Johansson Nathalie Nordgren Gamze Eken Nova Ogmaia Frida Heijel Hanna Samuelsson Maria Bengtsson Innehållsförteckning 5. Inledning s 3 5.1 Anatomi s 4 5.2 Fysiologi s 4-5

Läs mer

Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion)

Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Vågfysik Geometrisk optik Knight Kap 23 Historiskt Ljus Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Hooke, Huyghens (~1660): ljus är ett slags vågor Young

Läs mer

Kort introduktion till POV-Ray, del 1

Kort introduktion till POV-Ray, del 1 Kort introduktion till POV-Ray, del 1 Kjell Y Svensson, 2004-02-02,2007-03-13 Denna serie av artiklar ger en grundläggande introduktion och förhoppningsvis en förståelse för hur man skapar realistiska

Läs mer

Den här veckan. Kapitel 7 och 11. Kom ihåg att boka tiden för handledning på fredag. Uppsamling av missade övningar på onsdag

Den här veckan. Kapitel 7 och 11. Kom ihåg att boka tiden för handledning på fredag. Uppsamling av missade övningar på onsdag Den här veckan Kapitel 7 och 11 Kom ihåg att boka tiden för handledning på fredag Uppsamling av missade övningar på onsdag Making it look good Visuell design Färger Typografi Exempel och patterns Komplex

Läs mer

Instuderingsfrågor extra allt

Instuderingsfrågor extra allt Instuderingsfrågor extra allt För dig som vill lära dig mer, alla svaren finns inte i häftet. Sök på nätet, fråga en kompis eller läs i en grundbok som du får låna på lektion. Testa dig själv 9.1 1 Vilken

Läs mer

4. Allmänt Elektromagnetiska vågor

4. Allmänt Elektromagnetiska vågor Det är ett välkänt faktum att det runt en ledare som det flyter en viss ström i bildas ett magnetiskt fält, där styrkan hos det magnetiska fältet beror på hur mycket ström som flyter i ledaren. Om strömmen

Läs mer

LJUS FRÅN NOBLE LIGHT

LJUS FRÅN NOBLE LIGHT Noble Light..... the best for your sight! Elektromagnetisk strålning nm 10 13 MIL FUNK KM 10 11 MW KW 10 9 METER UKW 10 7 TV RADAR 10 5 IR-STRÅLNING 10 3 SYNLIGT LJUS 10 UV-STRÅLNING SOLEN 10-1 RÖNTGENSTRÅLNING

Läs mer

färger - för profil och känsla

färger - för profil och känsla industrialismen...och det blev viktigare för både producenter och tjänstemän att särskilja sig från andra... och skapa en egen grafisk profil en egen form och ett eget namn, att synas och särskiljas från

Läs mer

FÄRG. Färg. SPD Exempel FÄRG. Stavar och Tappar. Ögats receptorer. Sasan Gooran (HT 2003) En blåaktig färg

FÄRG. Färg. SPD Exempel FÄRG. Stavar och Tappar. Ögats receptorer. Sasan Gooran (HT 2003) En blåaktig färg FÄRG Färg Sasan Gooran (HT 2003) Det mänskliga ögat kan uppfatta ljus, elektromagnetiska strålningar, med vågländer mellan 380 till 780 nm. Ett exempel: Spectral Power Distribution (SPD). Se nästa bild.

Läs mer

Hur påverkar färgade kontaktlinser färgseendet?

Hur påverkar färgade kontaktlinser färgseendet? Fakulteten för hälso- och livsvetenskap Examensarbete Hur påverkar färgade kontaktlinser färgseendet? Författare: Sofie Helgesson Ämne: Optometri Nivå: Grundnivå Nr: 2017:O9 i Hur påverkar färgade kontaktlinser

Läs mer

Grafiska system. Färgblandning. Samspel mellan ytor. Ögats. fysionomi. Ljusenergi. Signalbehandling och aliasing

Grafiska system. Färgblandning. Samspel mellan ytor. Ögats. fysionomi. Ljusenergi. Signalbehandling och aliasing Grafiska system Signalbehandling och aliasing Gustav Taxén gustavt@nada.kth.se Processor Minne Frame buffer 2D1640 Grafik och Interaktionsprogrammering VT 2006 Färgblandning Pigmentblandning för f att

Läs mer

Det finns två sätt att generera ljus på. Ge exempel på dessa och förklara vad som skiljer dem åt.

Det finns två sätt att generera ljus på. Ge exempel på dessa och förklara vad som skiljer dem åt. DEL 1 Bild Vi har alla sett en solnedgång färga himlen röd, men vad är det egentligen som händer? Förklara varför himlen är blå om dagen och går mot rött på kvällen. (Vi förutsätter att det är molnfritt)

Läs mer

Färger, RGB-er och riktiga bilder

Färger, RGB-er och riktiga bilder Färger, RGB-er och riktiga bilder Färger Färger baseras på ögats färgseende Men tolkas av hjärnan Färgseendet Ljuset är en del av ett elektromagnetiskt spektrum Vi tar det visuella spectret och böjer till

Läs mer

5. Elektromagnetiska vågor - interferens

5. Elektromagnetiska vågor - interferens Interferens i dubbelspalt A λ/2 λ/2 Dal för ena vågen möter topp för den andra och vice versa => mörkt (amplitud = 0). Dal möter dal och topp möter topp => ljust (stor amplitud). B λ/2 Fig. 5.1 För ljusvågor

Läs mer

Lessons sparvpapegojor genetik och mutationer

Lessons sparvpapegojor genetik och mutationer Lessons sparvpapegojor genetik och mutationer Latinskt namn: Forpus coelestis coelestis Engelskt namn: Lesson s Parrotlet / Pacific Parrotlet / Celestial Parrotlet Färger och mutationer: röna fåglar Naturfärg.

Läs mer

Färglära. Grundläggande kunskaper om färg och färgblandning

Färglära. Grundläggande kunskaper om färg och färgblandning Färglära Grundläggande kunskaper om färg och färgblandning Färger är olika frekvenser av elektromagnetisk strålning. En del frekvenser ligger inom det område våra ögon kan se, andra ligger utanför. Vad

Läs mer

Så skapas färgbilder i datorn

Så skapas färgbilder i datorn Så skapas färgbilder i datorn 31 I datorn skapas såväl text som bilder på skärmen av små fyrkantiga punkter, pixlar, som bygger upp bilden. Varje punkt har sin unika färg som erhålls genom blandning med

Läs mer

Kunskapsöversikt Syn och belysning för äldre i arbetslivet

Kunskapsöversikt Syn och belysning för äldre i arbetslivet Kunskapsöversikt Syn och belysning för äldre i arbetslivet ISSN 1650-3171 Rapport 2012:16 Susanne Glimne Universitetsadjunkt/Leg. Optiker/Doktorand Optikerprogrammet Karolinska Institutet 2012-10-15 susanne.glimne@ki.se

Läs mer

Filtersolglasögon från Multilens

Filtersolglasögon från Multilens Filtersolglasögon från Multilens Varför Filtersolglasögon och inte vanliga solglasögon? De flesta solglasögon har tagits fram med prioritet på en sak: Att de ska vara trendiga. Att de dessutom har skydd

Läs mer

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25 Geometrisk optik Syfte och mål Laborationens syfte är att du ska lära dig att: Förstå allmänna principen för geometrisk optik, (tunna linsformeln) Rita strålgångar Ställa upp enkla optiska komponenter

Läs mer

Exponering för grön laser. Light? Per Söderberg

Exponering för grön laser. Light? Per Söderberg Exponering för grön laser Per Söderberg, Ögonkliniken Inst. för Neurovetenskap Uppsala universitet http://www2.neuro.uu.se/ophthalmology/teaching/index.html Budskap Skademekanism beror av relationen mellan

Läs mer

Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du:

Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du: Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du: A.Mer av dig själv. B.Mindre av dig själv. C.Lika mycket av dig själv. ⱱ Hur hög måste en spegel vara för att du ska

Läs mer

LASER I TRAFIKEN Risker för yrkesförare vid laserangrepp

LASER I TRAFIKEN Risker för yrkesförare vid laserangrepp LASER I TRAFIKEN Risker för yrkesförare vid laserangrepp Informationsmaterial om risker med laserpekare i trafiken. Informationen är främst riktad till förare (buss, spårvagn, tåg, flyg), polis, räddningstjänst,

Läs mer

Filtersolglasögon_2013 02 04 FILTERSOLGLASÖGON

Filtersolglasögon_2013 02 04 FILTERSOLGLASÖGON Filtersolglasögon_2013 02 04 FILTERSOLGLASÖGON 2 Varför Filtersolglasögon och inte vanliga solglasögon? Vilken skillnad innebär Filtersolglasögon för dig? VarflrVarför De flesta solglasögon har tagits

Läs mer

Observera också att det inte går att både se kanten på fönstret och det där ute tydligt samtidigt.

Observera också att det inte går att både se kanten på fönstret och det där ute tydligt samtidigt. Om förstoringsglaset Du kan göra mycket med bara ett förstoringsglas! I många sammanhang i det dagliga livet förekommer linser. Den vanligast förekommande typen är den konvexa linsen, den kallas också

Läs mer

Här hittar du ett exempel på ritprogrammet: https://scratch.mit.edu/projects/82515788/

Här hittar du ett exempel på ritprogrammet: https://scratch.mit.edu/projects/82515788/ Termin 1 Block 4 Ritprogram Nu kommer du att få skapa ett ritprogram där du sedan kan göra egna konstverk! Programmet låter dig rita med olika färgpennor, sudda med suddgummi och måla med stämplar som

Läs mer

Nymfkakaduans färgvariationer och mutationer

Nymfkakaduans färgvariationer och mutationer Nymfkakaduans färgvariationer och mutationer Fjädrarnas pigment skapar fåglarnas färger genom att reflektera eller absorbera ljus. Papegojfåglar är kända för att ha många vackra färger, men kakaduorna

Läs mer

5Chans och risk. Mål. Grunddel K 5. Ingressen

5Chans och risk. Mål. Grunddel K 5. Ingressen Chans och risk ål När eleverna har studerat det här kapitlet ska de kunna: förklara vad som menas med begreppet sannolikhet räkna ut sannolikheten för att en händelse ska inträffa känna till hur sannolikhet

Läs mer

FÄRG förnyar ditt hem

FÄRG förnyar ditt hem FÄRG förnyar ditt hem Innehåll FÄRG Inred med färger Sida 5 Nordisk svalka - naturlig stillhet Sida 7 New York stil - en lite råare miljö Sida 9 DOMESTIC Standard Sida 11 Målning - grundläggande råd Sida

Läs mer

Användarmanual V2.2.2:maj MultiBit Syntest

Användarmanual V2.2.2:maj MultiBit Syntest Användarmanual V2.2.2:maj 2015 MultiBit Syntest 1 MultiBit Innehållsförteckning Inledning 3 MultiBit Syntest 16-21 Hantering av podden 4-8 Redovisning av resultat 22-24 Laddning 4 Bakgrunden till MultiBit

Läs mer

Hål i gula fläcken makulahål

Hål i gula fläcken makulahål Hål i gula fläcken makulahål 1 Lins Glaskropp Näthinna Gula fläcken Synnerv Hornhinna Gula fläcken Ögats insida är klädd med en tunn hinna, näthinnan. Den består av miljontals synceller och fungerar som

Läs mer

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 9januari2015 Skrivtid:

Läs mer

Kurs i oljemåleri Medborgarskolan

Kurs i oljemåleri Medborgarskolan Kurs i oljemåleri Medborgarskolan Lärare Ragnar Österlund Inledning Detta är en kort sammanfattning av de begrepp som vi går igenom på kursen. Det är tänkt som ett minnesstöd snarare än en introduktionstext

Läs mer

COBRA. Lars Gunnarsson Vattenfall Service. Vattenfall AB

COBRA. Lars Gunnarsson Vattenfall Service. Vattenfall AB COBRA Lars Gunnarsson Vattenfall Service Varför har vi gatljus För att se För att synas För säkerheten För tryggheten 2 COBRA Ljuskällan Ett flertal rapporter visar på samma resultat. Det mänskliga ögat

Läs mer

Upplägg. Perception. Olika slags perception. Sensorik och perception. Generella aspekter. Generella aspekter

Upplägg. Perception. Olika slags perception. Sensorik och perception. Generella aspekter. Generella aspekter Perception Pär Nyström www.babylab.se Upplägg Syn / Hörsel / Lukt / Smak / Känsel Från sensation till perception till kognition Summering Sensorik och perception Olika slags perception När ett sinnesorgan

Läs mer

Hinderbelysning. Stephanie Sales WSP Ljusdesign

Hinderbelysning. Stephanie Sales WSP Ljusdesign Hinderbelysning Stephanie Sales WSP LJUSDESIGN utför tjänster inom: Belysningsplanering Ljusgestaltning Belysningsteknik Visuell komfort Dagsljusplanering Energieffektivisering Ekonomi, livscykelkostnader

Läs mer

Tentamen i Fotonik - 2012-08-27, kl. 08.00-13.00

Tentamen i Fotonik - 2012-08-27, kl. 08.00-13.00 FAFF25-2012-08-27 Tentamen i Fotonik - 2012-08-27, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Kognitionsvetenskap C, HT-04 Mental Rotation

Kognitionsvetenskap C, HT-04 Mental Rotation Umeå Universitet 041025 Kognitionsvetenskap C, HT-04 Mental Rotation Grupp 3: Christina Grahn, dit01cgn@cs.umu.se Dan Kindeborg, di01dkg@cs.umu.se David Linder, c01dlr@cs.umu.se Frida Bergman, dit01fbn@cs.umu.se

Läs mer

Ljusflöde, källa viktad med ögats känslighetskurva. Mäts i lumen [lm] Ex 60W glödlampa => lm

Ljusflöde, källa viktad med ögats känslighetskurva. Mäts i lumen [lm] Ex 60W glödlampa => lm Fotometri Ljusflöde, Mängden strålningsenergi/tid [W] från en källa viktad med ögats känslighetskurva. Mäts i lumen [lm] Ex 60W glödlampa => 600-1000 lm Ögats känslighetsområde 1 0.8 Skotopisk V' Fotopisk

Läs mer

Måla med lackfärger. Väck liv i dina möbler och snickerier

Måla med lackfärger. Väck liv i dina möbler och snickerier Måla med lackfärger Väck liv i dina möbler och snickerier Måla med lackfärger Med Beckers lackfärger kan du måla de flesta snickerier inomhus som fönster, dörrkarmar, dörrar, fotlister och skåpluckor.

Läs mer

Instuderingsfrågor till Hörseln. HÖRSELN. Allt ljud vi hör är ljudvågor i luften, När ljudvågorna når in örat så hörs ljudet.

Instuderingsfrågor till Hörseln. HÖRSELN. Allt ljud vi hör är ljudvågor i luften, När ljudvågorna når in örat så hörs ljudet. HÖRSELN Allt ljud vi hör är ljudvågor i luften, När ljudvågorna når in örat så hörs ljudet. 1. Vad är allt ljud som vi hör? 2. När hörs ljudvågorna? I en radio, stereo eller en teve är det högtalarna som

Läs mer

Laboration i Fourieroptik

Laboration i Fourieroptik Laboration i Fourieroptik David Winge Uppdaterad 4 januari 2016 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p) UMEÅ UNIVERSITY Department of Mathematics and Mathematical Statistics Pre-exam in mathematics Linear algebra 2012-02-07 1. Compute the following matrix: (2 p 3 1 2 3 2 2 7 ( 4 3 5 2 2. Compute the determinant

Läs mer

BÄRARE: Hunden har genmutationen för PLL i enkel uppsättning, den andra genen är normal (Nm)

BÄRARE: Hunden har genmutationen för PLL i enkel uppsättning, den andra genen är normal (Nm) Primär Lins Luxation(PLL) TESTRESULTAT Ett forskarteam viduniversity of Missouri, College of Veterinary Medicine i USA fann under 2009 genmutationen för PLL och bara en kort tid senare meddelade Animal

Läs mer

Färglära. Olika sätt att sortera färger. Vilket system är det rätta? Peter Stenlund, Solviks folkhögskola

Färglära. Olika sätt att sortera färger. Vilket system är det rätta? Peter Stenlund, Solviks folkhögskola Färglära Olika sätt att sortera färger Titta dig omkring. Försök att urskilja några färger runt omkring dig. Vilken färg har stolen du sitter på? Vilken färg har golvet eller befinner du dig utomhus? Färgerna

Läs mer

Fysik. Laboration 3. Ljusets vågnatur

Fysik. Laboration 3. Ljusets vågnatur Fysik Laboration 3 Ljusets vågnatur Laborationens syfte: att hjälpa dig att förstå ljusfenomen diffraktion och interferens och att förstå hur olika typer av spektra uppstår Utförande: laborationen skall

Läs mer

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom

Läs mer

1 Information till patienter med hål i gula fläcken

1 Information till patienter med hål i gula fläcken 1 Information till patienter med hål i gula fläcken VAD ÄR HÅL I GULA FLÄCKEN? Gula fläcken (makula) är den centrala delen av näthinnan (retina) som svarar för synskärpan. Det är med gula fläcken man kan

Läs mer

Språkmöte främjar hjärnan. Emanuel Bylund Centrum för tvåspråkighetsforskning Stockholm universitet

Språkmöte främjar hjärnan. Emanuel Bylund Centrum för tvåspråkighetsforskning Stockholm universitet Språkmöte främjar hjärnan Emanuel Bylund Centrum för tvåspråkighetsforskning Stockholm universitet I vilken utsträckning formas hjärnans förmåga av erfarenheter? Taxiförare i London är hela tiden sysselsatta

Läs mer

Människans möte med den mänskliga kroppen. Ett pedagogiskt studiematerial

Människans möte med den mänskliga kroppen. Ett pedagogiskt studiematerial Människans möte med den mänskliga kroppen Ett pedagogiskt studiematerial Inledning I dag så påverkas vi medvetet och omedvetet av yttre ideal. Ofta så glömmer vi bort att ställa frågan till oss själva

Läs mer

Del I. Inledning. Utkast

Del I. Inledning. Utkast Del I Inledning 1 Innehåll I Inledning 1 1 Vad är Fysik? 3 1.1 Objekt och Rörelse............................... 3 1.2 Kan du förutsäga (komplettera) rörelser?................... 6 2 1 Vad är Fysik? Till

Läs mer

KIT 104, Kognitiva processer. Lecture 2: Colors , Thomas Porathe

KIT 104, Kognitiva processer. Lecture 2: Colors , Thomas Porathe KIT 104, Kognitiva processer Lecture 2: Colors 100330, Thomas Porathe Eye tracking Sackader Snabba ögonrörelser under vilka bildinhämtningen är undertryckt (visual smear). Typiska tider för en sackad:

Läs mer

Vad gör du för att må bra? Har du ont om tid? Vad gör du med din tid? Reptilhjärnan. När du mår bra, är det mer troligt att du är trevlig mot

Vad gör du för att må bra? Har du ont om tid? Vad gör du med din tid? Reptilhjärnan. När du mår bra, är det mer troligt att du är trevlig mot Firma Margareta ivarsson Nedärvda stressreaktioner Work Shop i Örserum 5 oktober 2006 Tema stress Vid hot förbereder sig kroppen på antingen kamp, flykt eller genom att spela död beroende på vilken typ

Läs mer

Störningar i ureacykeln och organiska acidurier För barn och ungdomar

Störningar i ureacykeln och organiska acidurier För barn och ungdomar Störningar i ureacykeln och organiska acidurier För barn och ungdomar www.e-imd.org Vad är störningar i ureacykeln/organisk aciduri? Maten vi äter bryts ned av kroppen med hjälp av tusentals kemiska reaktioner

Läs mer

FOR ACNE MOT AKNE AKNEN HOITOON IMOD AKNE

FOR ACNE MOT AKNE AKNEN HOITOON IMOD AKNE MANUAL ART NO SR09A 24h HEALING PROCESS Stimulates the bodys own healing powers naturally Stimulerar kroppens egen läkningskraft på ett naturligt sätt. FOR ACNE MOT AKNE AKNEN HOITOON IMOD AKNE MANUAL

Läs mer

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling

Läs mer

VIDVINKELOFTALMOSKOP BRUKSANVISNING

VIDVINKELOFTALMOSKOP BRUKSANVISNING VIDVINKELOFTALMOSKOP BRUKSANVISNING LÄS IGENOM ANVISNINGARNA OCH FÖLJ DEM NOGA Innehåll 1. Symboler 2. Varningar och försiktighetsåtgärder 3. Beskrivning av produkten 4. Komma igång 5. Apertur och filter

Läs mer

Wilson's disease for younger people

Wilson's disease for younger people Wilson's disease for younger people 1 / 23 Varför har den ett så märkligt namn? För att läkaren som först upptäckte sjukdomen 1905 hette Wilson. FRÅGA : Vad tror du att dessa personer upptäckte? SVAR :

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 35-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Lär dig. Din guide till rätt ljuskälla >>>>>>>>>>>>>>>>> Spara. Energi

Lär dig. Din guide till rätt ljuskälla >>>>>>>>>>>>>>>>> Spara. Energi 2011 Energi PHILIPS LJUSGUIDE 2011 Välj rätt lj s DIMBARA LED-NYHETER! Sid 4 Vad är luminans? Vad innebär den tredje receptorn. Vad talar man egentligen om när man säger ljusflöde? Vi ger dig svaren Lär

Läs mer

Hål i gula fläcken. makulahål

Hål i gula fläcken. makulahål Hål i gula fläcken makulahål Gula fläcken Ögats insida är klädd med en tunn hinna, näthinnan. Den består av miljontals små synceller och fungerar som ett slags film som fångar upp det vi ser. Syncellerna

Läs mer

LEGO Energimätare. Att komma igång

LEGO Energimätare. Att komma igång LEGO Energimätare Att komma igång Energimätaren består av två delar: LEGO Energidisplay och LEGO Energilager. Energilagret passar in i botten av energidisplayen. För att montera energilagret låter du det

Läs mer

ELEMENTÄR - SVÅRARE FÄRGGENETIK. Del 3

ELEMENTÄR - SVÅRARE FÄRGGENETIK. Del 3 ELEMENTÄR - SVÅRARE FÄRGGENETIK Del 3 av Maria Grönkvist Efter det att jag i förra numret av HR skrev en lista på den genetiska koden för en del färgvarianter har jag fått en fråga som lyder: hur får man

Läs mer

Utomhusbelysning och trygghet

Utomhusbelysning och trygghet Utomhusbelysning och trygghet Varför ser man bättre i vitt ljus jämfört med gul- orange ljus? Skillnad mellan glödlampans ljus och ljuset från LED Hur skall man tänka beträffande utomhusbelysning och trygghet

Läs mer

Ett nytt klassrum skulle skapas men hur ska det göras? Vi började

Ett nytt klassrum skulle skapas men hur ska det göras? Vi började Ett nytt klassrum skulle skapas men hur ska det göras? Vi började med att ta alla de mått som vi kunde tänkas behöva. För att få en större yta att nyttja bestämmer vi oss snabbt för att plock bort en av

Läs mer

Laboration i Fourieroptik

Laboration i Fourieroptik Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

En bild säger mer än tusen ord?

En bild säger mer än tusen ord? Faculteit Letteren en Wijsbegeerte Academiejaar 2009-2010 En bild säger mer än tusen ord? En studie om dialogen mellan illustrationer och text i Tiina Nunnallys engelska översättning av Pippi Långstrump

Läs mer