Förändringsfaktor. Bilder: Akvareller av Ramon Cavaller; Geometriska konstruktioner och diagram av Nils-Göran Mattsson

Storlek: px
Starta visningen från sidan:

Download "Förändringsfaktor. Bilder: Akvareller av Ramon Cavaller; Geometriska konstruktioner och diagram av Nils-Göran Mattsson"

Transkript

1 Förändringsfaktor 1. Procentens ABC 2 Procentenheter, ppm och promille.13 Prisjämförelser och index finns i statistikavsnittet.. 2. Geometrisk summa med tillämpningar 15 Årliga insättningar..17 Annuiteter 20 Kreditkort med GeoGebra..22 Facit.. 24 Bilder: Akvareller av Ramon Cavaller; Geometriska konstruktioner och diagram av Nils-Göran Mattsson Författarna och Bokförlaget Borken,

2 1. Procentens ABC M atematiken i historien Vid den tiden utfärdade kejsar Augustus en förordning om att hela världen skulle skattskrivas. Det var den första skattskrivningen, och den hölls när Quirinius var ståthållare i Syrien. (Bibeln, Lukasevangeliet 2:1-2) Detta ägde rum omkring år 0, och romarriket under kejsar Augustus behärskade länderna kring Medelhavet samt en stor del av Europa. Romarna utkrävde skatt i de ockuperade områdena. Denna skatt utgjorde en viss bråkdel av vinsten vid en försäljning, till exempel 1/20 eller 1/24. Kejsar Augustus lär ha använt skattesatsen 1/100. Det blev bekvämt att betala med tiondelar och hundradelar. Om man skulle betala 20/100 i skatt så innebar detta helt enkelt att betala 20 mynt av 100 intjänade mynt.. Detta skrev romarna 20 per cento eller 20p100. På 1400-talet hade man övergått till att skriva 20 p c och på 1600-talet kort och gott 20 och hade därmed praktiskt taget kommit fram till vårt moderna skrivsätt 20 %. Procentandelar kan skrivas i tre olika former: 5 Procentform 5% Bråkform 100 Decimalform 0,05 2

3 Modell Procentens ABC Titta på detta påstående: 5% av 300 kr är lika med 15 kr. Helheten är 300 kr, delen är 15 kr och procenttalet 5%. Om vi vet två av talen kan vi beräkna det tredje. A. Vad är 5% av 300 kr? Vi räknar så här: 0, = 15. Svar: 15 kr B. Hur många procent är 15 kr av 300 kr? Det får vi på detta sät 15 = 0,05= 5% Svar: 5 %. 300 C. Vi vet att 5% av en summa pengar är 15 kr. Hur stor är summan? Låt summan vara x kr. Vi får ekvationen: 0,05 x=15 som har lösningen 15 x = ; x= 300 Svar: 300 kr. 0,05 I fallet C) kan man även resonera så här: 5 % av summan är 15 kr 15 1 % av summan är alltså kr= 3kr % av summan är då 3kr 100= 300kr Alla uppgifter som handlar om procent går tillbaka på någon av dessa tre typuppgifter A-uppgifter En vara kostar 400 kr. Priset höjs med 40%. Beräkna prishöjningen och varans nya pris. Lösning Priset är från början 400 kr. Prishöjningen är 0, kr = 160 kr Eftersom varan kostade 400 kr och ökade med 160 kr blir det nya priset ( )kr = 560 kr Svar: Varans pris höjs med 160 kr. Det nya priset blir 560 kr. 3

4 Beräkning av nya priset. Direkt metod: Det gamla priset är 400 kr. Efter höjningen är priset 100%+40%=140% av det gamla. Den första termen (100%) motsvarar det gamla priset. Priset efter höjningen blir alltså 1, kr = 560 kr. Vi kan räkna på liknande sätt vid sänkning med en viss procentandel. Vid sänkning med 40% återstår 100% 40%=60%. När 400 kr sänks med 40% blir resultatet 0,6 400 kr = 240 kr. Om priset går ner med 40% betalar vi 100% 40%=60%. Talen 1,40 och 0,60 kallas (för för)ändringsfaktorer. Vad händer om flera förändringar följer på varandra. Låt figuren nedan illustrera detta: Om ett värde genomgår successiva förändringar så gäller: Ursprungsvärdet Förändringsfaktor ndringsfaktor1 Förändringsfaktor ndringsfaktor2 Förä Förändringsfaktor ndringsfaktor3 = Slutvärdet 4

5 B-uppgifter Del och helhet. I en klass på 24 elever var 8 flickor. Hur många 8 procent var flickor? Svaret är = 0,333 33%. 24 Jämförelse. Bertil är 165 cm lång. Anders är 15 cm längre än Bertil. Hur många procent längre än Bertil är Anders? Ordet än uttrycker jämförelse, vilket betyder att 15 cm skall jämföras med 165 cm. Det som jämförs med ska stå i nämnaren. Anders är 15 = 9% längre än 165 Bertil. Från ett värde till ett annat. Värdet före ökning (det som ökar) eller minskning (det som minskar inskar) ska stå i nämnaren. Exempel 1: 1 Befolkningstalet på en ort har på några år minskat från till invånare. Hur stor är minskningen i procent? Befolkningen har från invånare minskat med 1000 personer Minskningen i procent blir = 0,077 = 7,7% Exempel 2: 2 Priset på ett par jeans ökade från 489 kr till 599 kr. Hur stor är prisökningen i procent? Priset ökar från 489 kr med 110 kr. 110 Ökningen i procent blir = 0,225 = 22,5% 489 C-uppgifter Exempel 1 En vara ökar i pris med 15 kr. Det är 5% av det varan kostade före ökningen. Vad kostade då varan? Lösning Priset var x kr före ökningen. Vi vet att 5% av detta pris är 15 kr. Det ger ekvationen 0,05 x =15 som ger x = 300. Svar: Varan kostade från början 300 kr. Exempel 2 Under kampanjvecka för skönlitteratur ger en bokhandel 10% rabatt på alla skönlitterära böcker. En bok får en rabatt på 20 kr. Vad fick man betala för denna bok under kampanjveckan? 5

6 Lösning Vi vet att 20 kr är 10% av bokens ordinarie pris x kr. Det ger ekvationen 0,10x =20 som ger lösningen x = 200. Priset med rabatten avdragen är alltså (200 20)kr= 180kr Svar: Boken kostade 180 kr med rabatt. Exempel 3 Hyran för en lägenhet ökar med 10% till 2761 kr. Hur stor var hyran före höjningen? Lösning Summan 2761 kr är 110% = 100% +10% där 100% är hyran före höjningen och 10% är höjningen. Vi får ekvationen 1,10x = 2761 som ger x = Svar: Hyran var 2510 kr före hyreshöjningen. G1.1 Beräkna utan räknare a) 15% av 300 b) 35% av 45 c) 9% av 800 d) 8% av 700 G1.2 Hur många procent är a) 37 kr av 453 kr b) 45 kg av 560 kg c) 0,45 m av 125 m? 6 e) 110% av 36 f) 0% av 3789 g) 1,5% av 25 h) 0,7% av 80 G1.3 Vilken är den procentuella förändringen om ändringsfaktorn är a) 1,32 b) 0,67 c) 0,15 d) 2,67 e) 0,885 G1.4 En säljare som inte ville missa Maria som kund gav 15% rabatt på en sjuväxlad cykel som egentligen kostade 4695 kr. Hur mycket fick Maria betala? G1.5 Hur mycket är 79% av 40 km? G1.6 Hur mycket är 23,2% av 705 liter? Avrunda svaret till hela liter.

7 G1.7 En radio för 795 kr prissänktes med 25%. Med hur många kronor sänktes priset? Svara i hela kronor. G1.8 En undersökning av Ungdomens nykterhetsförbund visade att 15 butiker av 21 på Södermalm sålde folköl till underåriga. Hur många procent av butikerna sålde folköl olagligt? G1.9 Stefan har en årslön på kr och betalar 37% i skatt. Hur mycket betalar Stefan i skatt under ett år? G1.10 När en ny väg öppnas får Sirkka 40% kortare väg till jobbet. Avståndet var 14 km då hon körde den gamla vägen. Hur långt har nu Sirkka till arbetet? G1.11 Bea fick 20% rabatt när hon köpte en grafritande räknare. På detta sätt fick hon räknaren 96 kr billigare. Vad fick Bea betala? G1.12 En veteranbil värd kr ökar i värde med 15%. Bestäm bilens nya värde. G1.13 En tavla ökar i värde med 15% till kr. Hur mycket var tavlan värd före ökningen G1.14 Man uppskattar att det bara är cirka 3% av de plockbara lingonen och blåbären som plockas i de svenska skogarna. Denna mängd är ton. Hur många ton plockbara lingon och blåbär finns det? G1.15 I en enkät svarade 34% eller 204 personer Nej på en av frågorna. Hur många hade besvarat frågan? 7

8 G1.16 Värdet av en aktie ökar på ett år med 25%. Hur mycket är aktien värd efter ökningen om den är värd 180 kr före? G1.17 En fotbollstrupp består av 20 spelare. Fyra av dem är skadade. Hur många procent är skadade? G1.18 På ett företag finns det bland de anställda 450 män och 620 kvinnor. Hur många procent av de anställda är kvinnor? Svara i helt antal procent. G1.19 En bil värd kr minskar i värde med 10% per år. Bestäm bilens värde efter 2 år. G1.20 Hur många procents rabatt motsvarar erbjudandet i annonsen? G1.21 Invånarantalet i en by minskar med 5,5% per år fanns det 940 bybor. Hur många fanns det 3 år senare? G1.22 En aktie värd 390 kr ökar i värde med 6,5% tre dagar i rad. Beräkna aktiens värde efter dessa tre dagar. Avrunda till hela kronor. G1.23 En laborant löser 30 g salt i 155 g vatten. Vilken salthalt får lösningen? Svara i hela procent. G1.24 Antalet kaniner på en ökar med 18% per månad. Vid ett tillfälle fanns det 1500 kaniner på ön. Hur många kaniner fanns det två månader senare? Avrunda till tiotal. 8

9 G1.25 I ett hyreshus finns det sammanlagt 20 män, 24 kvinnor och 19 barn. Hur många procent av hyresgästerna är män? Svara med en decimal. G1.26 Olof väger 85 kg och går ner i vikt till 78 kg. Med hur många procent minskar hans vikt? Svara med en decimal. G1.27 I en väljarundersökning sade 83 personer att de tänkte rösta på Folkpartiet. Detta motsvarade 6,9%. Hur många deltog i väljarundersökningen? Avrunda svaret till tiotal. G1.28 En teveapparat sänktes i pris med 22%. Detta innebar att priset sänktes med 1078 kronor. Hur mycket kostade teven utan rabatt? G1.29 Priset på en DVD-spelare sänktes med 20%. Hur mycket kostade DVD:n sedan rabatten dragits av, om den från början kostade 3200 kr? G1.30 År 1994 skördades sammanlagt ca 2,4 miljarder ton spannmål. I Kina blev skörden 445 miljoner ton och i USA 407 miljoner ton. Hur många procent blev skörden i resten av världen? G1.31 Priset på en vara ökar i två etapper, först med 8% och därefter med 5%. Med hur många procent har varans pris stigit totalt? G1.32 Under tre år ökar antalet invånare i en kommun med 3%, 4% och 5%. Med hur många procent har befolkningen ökat totalt under de tre åren? Svara med en decimals noggrannhet. G1.33 En akties värde ökar tre år i rad. Värdeökningarna är 18%, 30% och 11%. Bestäm den totala värdeökningen under de tre åren. Svara i procentform med tre gällande siffror. G1.34 En ishockeyklubba kortas av så att längden blir 123 cm. Detta innebär att längden minskas med 17%. Hur lång var klubban från början? G1.35 Priset på en dator ökar med 11% till kronor. Vad kostade datorn före prisökningen? 9

10 G1.36 Värdet av en aktie ökar med 2% per dag tio dagar i rad. Med hur många procent ökar värdet under de tio dagarna? Svara med en decimal. G1.37 Under den starka börsuppgången hösten 1999 var nyheter av följande slag vanliga: Ericsson B gick upp 22 kr till 568. Hur många procent gick därmed denna aktie upp? G1.38 Innehavaren av en klädbutik säljer ut fjolårets plagg för att få plats för nya sändningar kläder. Hon ger 15% rabatt. Efter en tid måste priset sänkas mer för att öka försäljningen. Hon sänker då priserna med ytterligare 15%. Bestäm den totala prissänkningen i hela procent. G1.39 En kommun avfolkas på grund av arbetslöshet. Under en treårsperiod minskar antalet invånare med 5,0%, 6,8% respektive 11%. Med hur många procent har invånarantalet minskat totalt under treårsperioden? Svara med en decimal. G1.40 Under fem dagar ändras en aktiekurs på följande sätt respektive dag: +2,5% 1,9% 1,2% +2,9% 0,7% Hur förändras aktiekursen totalt under de fem dagarna? Svara i procentform med en decimals noggrannhet. G1.41 Bengt avläser en amperemeter och får värdet 10,7 A. Han vet att instrumentet visar ett värde som är 7% större än det korrekta värdet. Hur stor är den verkliga strömstyrkan? G1.42 Värdet av en tavla förändras på följande sätt under en femårsperiod: +21% 9,5% 2,7% 5,0% +19% Hur förändras tavlans värde totalt under de fem åren? Svara i procentform med en decimal. 10

11 G1.43 Vinsten för den tyska telekoncernen Deutsche Telekom sjönk under en period med 45% till 1,20 miljarder euro. Hur stor var den tidigare vinsten? G1.44 Enligt uppgifter år 2000 är 71% av citrusskörden apelsiner. Det plockades totalt 223 miljarder apelsiner i 100 olika länder. Hur mycket väger skörden av alla citrusfrukter? En citrusfrukt väger i medeltal 200g. G1.45 Assisterad befruktning är ett samlingsnamn för de olika metoder som finns att sammanföra spermier och ägg i syfte att hjälpa ett infertilt par att få barn. Den vanligaste metoden har hittills varit provrörsbefruktning (in vitro-fertilisering, IVF). Under perioden ökade antalet fullbordade behandlingar med IVF från ca till Hur stor var den procentuella ökningen? G1.46 Nenad tjänade 5000 kr i veckan. Han fick sedan en löneförhöjning med 8%. Skatten på löneförhöjningen blev 35%. Hur många kronor mer kom han att tjäna i veckan? G1.47 Hur många massprocent syre finns i alkohol C 2H 5OH? Kol har atommassan 12,0 u, väte har atommassan 1,0 u och syre har atommassan 16,0 u. G1.48 I en vanna finns 500 g av en 3-procentig saltlösning. Hur många gram vatten skall avdunsta för att salthalten ska bli 5%? G1.49 Hur mycket ättika med halten 12% ( ättiksprit ) ska blandas med 2 dl ättika med halten 24% ( ättiksyra ) för att blandningens halt ska bli 16%? G1.50 Tre bröder, som är 20, 25 respektive 30 år gamla, skall dela på en lotterivinst på kr. Mellanbrodern skall ha 25% mer än den yngste och den äldste 50% mer än den yngste. Hur skall de dela upp vinsten? 11

12 G1.51 Beräkna förändringen av de 100 rikaste svenskarnas förmögenhet med ändringsfaktorer, G1.52 I presidentvalet i USA 2000 röstade 51 % av de röstberättigade, av dessa röstade 48 % på Al Gore och 48 % på George W Bush. Hur många procent av de röstberättigade röstade på var och en av dessa kandidater? V1.53 Man vet att andelen ljushåriga bland dem som har blå ögon är större än andelen ljushåriga av hela befolkningen: Måste då andelen med blå ögon av de ljushåriga vara större än andelen med blå ögon av hela befolkningen? (Uppgift nr 1 i kvalificeringsomgången den 6 oktober 1999 av Skolornas Matematiktävling arrangerad av Svenska Matematikersamfundet.) 12

13 Modell Procentenheter Exempel med lösning Vi antar att det görs två opinionsundersökningar i rad för att utröna hur stor del av befolkningen som är positiv till EMU-anslutning. I bägge fallen tillfrågas 2000 personer. I det första fallet var 45% positiva medan i det andra fallet endast 35% var positiva. Minskningen var 10 procentenheter.. (Varför måste -enheter läggas till?) Antalet som var för EMU var vid den första undersökningen 0, (=900)och vid den andra 0, (=700). Minskningen var % =0,22=22%. Resultatet kan man snabbt få så här: =0,22=22%. 45% Minskningen var alltså 10 procentenheter. Det var i detta fall 22 procent. Teori Promille och ppm (parts per million) 1 För jämförelse mellan tal där procent (= ) ger för små tal kan man 100 använda enheten 1 promille ( ) (= 1 1 ) och 1 ppm (= ) G1.54 Arbetslösheten minskade under ett år från 5,5% till 4,5%. a) Med hur många promilleenheter minskade arbetslösheten? b) Med hur många procent minskade arbetslösheten? G1.55 Hur mycket är 9 av 300 g? 13

14 G1.56 En elevrådsstyrelse på en gymnasieskola består av 5 elever från samhällsvetenskapsprogrammet och 3 elever från övriga program. En SP elev avgår ur styrelsen och ersätts av en elev från HR programmet. a) Hur många procentenheter ökade andelen elever från övriga program? b) Hur många procent ökade andelen elever från övriga program? G1.57 Skriv som ppm a) 0, b) 0,00045 G1.58 a) Hur många ppm är 3 g av 300 kg? b) Hur många promille är 0,14 ml av 35 ml? G1.59 I ett kopieringsrum uppmättes halten ozon till 0,3 ppm. Hur stor volym ozon fanns i rummet? Rummets totala volym var 93 m 3. Svara i ml (1 ml = 1 cm 3 ). G1.60 Ett alkotest visade att en person hade 0,90 alkohol i blodet. Hur mycket alkohol fanns det i blodet om personen hade 4,9 liter blod i kroppen? G1.61 I en guldgruva var guldhalten 3,70 ppm. Hur många kilogram guld kunde man utvinna från 115 ton malm? V1.62 Enligt rörelsen Attac konsumerar 20% av jordens befolkning 80% av jordens resurser. Hur många procent mer förbrukar i genomsnitt personerna i den rika världen av jordens resurser än personerna i den fattiga världen? Prisjämförelser och index finns i statistikavsnittet 14

15 2.Geometrisk summa med tillämpningar Teori Geometrisk talföljd Låt oss studera talföljder med speciella egenskaper, s k geometriska talföljder. Vi skriver följande räcka av tal 5, 10, 20, 60, 120, 240, 480,. Du har kanske redan upptäckt att det första elementet är 5 (=a) och att det andra elementet fås genom att multiplicera det första med talet 2, (= kvoten =k). Därefter fås varje nytt element genom att multiplicera det föregående med kvoten. Om vi kallar det n-te elementet för an får vi formeln an = a k n-1 för den geometriska talföljden. Elementnummer: n 1 Talföljden: Talföljden tecknad algebraiskt: a ak a k a k 3 a k 4 a k 5 a k 6 a k n-1 Vad blir summan av de första n elementen? Vi kallar denna summa för s och får: a + ak + a k 2 + a k 3 + a k 4 + a k a k n-1 = s Vi multiplicerar sedan alla termer med k och får: ak + a k 2 + a k 3 + a k 4 + a k a k n-1 + a k n = ks Om vi subtraherar denna rad med den närmast föregående får vi: a k n a = ks s eller a k n a 1 = ks s 1 Eftersom =5(3 1) får vi a(k n 1) = s(k 1) a ( k 1 ) Summan, s, av n termer i en geometrisk talföljd: s = k 1 Det n:e elementet i en geometrisk talföljd: an a = a k a n-1 n 15

16 Modell Geometrisk talföljd Exempel 1 Vad blir ? Lösning Enklast är naturligtvis att bara addera termerna, men vi använder formeln för summa. Varje term fås ur föregående genom multiplikation med 7. 3(7 5 1) Alltså k = 7, a = 3, n = 5 och s = = Exempel 2 Om jag vet att det 7:e talet i en geometrisk talföljd är 95 och att det 15:e talet är 3950, hur stor är då kvoten i denna geometriska talföljd? Lösning Vår geometriska talföljd har utseendet a, ak,..., ak 6,..., ak 14, Där ak 6 =95, och ak 14 =3950, och vi vill bestämma k. Alltså är 3950/95 = ak 14 /ak 6 =95k 8, vilket medför k=(3950/95) 1/8. G2.1 Sima som har ärvt kr placerar dessa på ett riksgäldskonto som har en räntesats på 3,8 %. Hur mycket finns på kontot efter 5 år om 30 % av räntan går till skatt varje år. G2.2 En TV kostar Johan får 10% rabatt men måste även betala 25% moms. Vilka två ändringsfaktorer påverkar priset Johan skall betala för TV:n. G2.3 En akties värde ökar tre år i rad. Värdeökningarna är 28%, 20% och 12%. Bestäm den totala värdeökningen under de tre åren. Svara i procentform med tre gällande siffror. G2.4 Förändringsfaktorn är användbar när flera procentuella förändringar sker efter varandra. En stor fördel är att något ursprungsvärde inte behövs när den totala procentuella förändringen ska bestämmas. Råvarupriset för bärnsten förändrades på följande sätt under fyra år: +12 %, 7 %, 3 % och +8% Hur stor blir den totala förändringen? G2.5 I ett flersiffrigt tal givet i decimalsystemet byter man plats på hundratalssiffran och entalssiffran. Det nya talet blir exakt 30% mindre än det ursprungliga talet. Vilket var det ursprungliga talet? 16

17 Fundera på detta Priset på en TV sänks med 20 %. En månad senare höjs priset med 20 %. Kostar TV:n nu mer, mindre eller lika mycket som den gjorde från början? Modell Årliga insättningar Exempel Emilia sätter in 3000 kr vid varje årsskifte (från och med årsskiftet 2001/2002 till och med årsskiftet 2006/2007) på ett konto som ger 3,0 % ränta. Hur mycket finns på bankkontot efter den sista insättningen? Lösning Värdet av alla insättningar är vid årsskiftet 2006/2007 enligt formeln för geometrisk summa: , , , , ,03 5 kr = , kr = kr 1,

18 G2.6 Beräkna det 8:e talet i talföljden a n = 5 2,4 n-1 G2.7 Bestäm det 14:e elementet i talföljden 1000, 700, 490, G2.8 Vilken är kvoten till talföljden 2, 6, 18, 54, G2.9 Beräkna det 11:elementet i den geometriska talföljd där a 1 = 10 och k = 1,2. G2.10 Beräkna summan av de 11 första talen i den geometriska talföljd där a 1 = 5 och k = 1, 5. G2.11 Beräkna summan , , , , , , , , , , G2.12 Mahsa sätter in 4700 kr i början av varje år i ett försäkringsbolag med räntesatsen 3,4 %. Hur mycket finns på hennes konto efter 6 insättningar? G2.13 Ett företag avsätter 0,6 Mkr till en investeringsfond varje årsskifte från och med årsskiftet 1998/1999. Hur stor är investeringsfonden 2006, om fonden väntas förränta sig med 5 %? G2.14 En patient vill bli av med sitt beroende av en medicin. Han trappar ned den dagliga dosen med 30 % varje dag. Hur mycket medicin går åt om han vill att nedtrappningen skall ske på en vecka. Innan han sätter igång med att minska dosen tog han 150 mg varje dag. 18

19 G2.15 Karin är 25 år och bestämmer sig för att ta en pensionsförsäkring. Av ett försäkringsbolag får hon veta att den garanterat lägsta årliga räntesatsen är 4 %. Hon bestämmer sig för att spara kr i början av varje år. Hon tänker göra den första inbetalningen det år hon fyller 26 och den sista inbetalningen det år hon fyller 65. Hur mycket är hennes pensionssparande värt just efter den sista inbetalningen om räntesatsen är 4 %? Skatt på sparandet betalas först när pensionen betalas ut. (NpC vt 98) G2.16 För att en viss medicin ska få avsedd effekt behöver en patient ha 15 mg av medicinen kroppen. Om man ger hela denna medicinmängd på en gång finns risk för allvarliga biverkningar. Patienten får därför små doser medicin med en timmes mellanrum. Efter 10 sådana lika stora doser upphör medicineringen och patienten ska då ha 15 mg av medicinen i kroppen. Hur stora skall dessa doser vara, om man vet att medicinen börjar verka omedelbart och att 16 % av den bryts ner i kroppen per timme? (NpC vt 96) 19

20 Modell Annuiteter och amorteringar Exempel Den som tar ett lån måste förutom räntan också betala lånebeloppet. Dessa inbetalningar som ofta sker efter en plan kallas amorteringar. Om du har fått ett lån på kr och långivaren och du kommit överens om en amortering på 1000 kr per år så får du (om räntesatsen är 9 %) efter första året betala ( ,09) kr, efter andra året ( ,09) kr, efter tredje året ( ,09) kr och så vidare. Du kan nu se att ränta plus amortering minskar från år till år. Varför? Banker tillämpar nu ofta en annan princip: Man gör upp en plan som går ut på att summan av ränta och amortering, annuiteten, är lika stor varje år. Vi beräknar nu annuiteten i exemplet ovan. Lösning Antag att annuiteten är x kr. När den sista annuiteten är betald så skall lånets värde vara lika med de inbetalda Annuiteternas nuiteternas sammanlagda värde. Lånet har efter tio år värdet: ,09 10 kr = kr. 20

21 De sammanlagda annuiteterna har efter tio år värdet x 1, x 1, x 1, x 1, x 1, x 1, x 1, x 1, x 1, x = x 1,09 x 1,09 1 = = x = 15,193x 1,09 1 1,09 1 Alltså får vi ekvationen 15,193x = vilket ger x = 1558 Annuiteten är 1558 kr V Eddie skall betala tillbaka ett lån på kr, som han tog årsskiftet 1998/1999, med fem lika stora annuiteter så att den sista annuiteten betalas vid årsskiftet 2003/2004. Hur stora skall annuiteterna vara om räntesatsen är 10,25 %? V Jens sätter in lika stort belopp i början av varje år på ett bankkonto med räntesatsen 3,4 %. Hur mycket sätter han in om det två år efter den tionde och sista insättningen ska finnas kronor på kontot? Avrunda svaret till hela kronor. V Ett bostadsrättslån på kronor ska börja återbetalas två år efter det att lånet tagits. Hur stor ska varje annuitet vara om lånet ska vara återbetalt i och med den tjugonde annuiteten och den bundna räntesatsen är 7,2 %? V Hugo tar ett lån på sitt hus på kr. Det skall amorteras med kr per år. Räntesatsen är 6,5 %. Hur stor blir den första och den sista inbetalningen (ränta på kvarvarande lån + amortering)? V Hugo betalar i stället sitt lån genom 25 lika stora annuiteter, där den första erläggs efter ett år. Hur stor blir annuiteten? 21

22 Modell Kreditkort Exempel Johan skaffar ett kreditkort rt den 1 januari år 1 (t ex år 2011). Han köper samma dag en 42'' LED-TV. Hans tanke är att vid varje lönetillfälle, den sista i varje månad, första gången den sista februari år 1, sätta in ett belopp på bankgirot som är knutet till hans kreditkort. Den första mars börjar räntan att ticka med procenten, p, på krediten. Observera att p% i decimaltal blir p/100. Därmed kan man skriva räntefaktorn p (=förändringsfaktorn): (1 + ) 100 (Banken ger högst två månaders kredit. Köp under januari, t ex Johans LED-TV, tickar ränta fr o m den första mars.) p Banken beräknar räntan månadsvis [dvs räntan blir %] vilket 12 p innebär att räntefaktorn är (1 + ) Vi använder variabeln n för 1200 antalet månader som passerat sedan den första mars. Johans skuld efter n månader är 0 (1+ p 1200 ) n K (om han inte gör några inbetalningar). Vi antar att Johan sätter in K kr på bankgirot (knutet till krediten) i slutet på varje månad fr o m månaden med n-värdet = 0 t o m månad n. Enligt 'Modellen - Årliga insättningar' är värdet på dessa insättningar: p n+1 K (1+ ) K 1200 p Eftersom Johans skuld till banken är: p n+1 K (1+ ) K 0 (1+ p 1200 ) n K 1200 p får detta belopp inte överskrida 1200 kreditgränsen som han har på sitt kreditkort. 22

23 Om du har tillgång till GeoGebra-programmet: Kredit för simuleringar lös uppgiften V2.22. V2.22 Vi antar att TV:n kostar kr samt att Johans kreditgräns är kr a) När drar banken tillbaks krediten om Johan inte gör några inbetalningar dvs K = 0. b) Räcker månadsinbetalningar på 100 kr? c) 200 kr? d) 300 kr? V Sara har genom hårt arbete sparat ett kapital på kr till sin pensionering årsskiftet 2011/2012. Pengarna är placerade på ett konto som ger 5% ränta per år. Naturligtvis tar staten sin vanliga skatt på 30% av räntan vid varje årsslut. Sara hade tänkt att ta ut kr per år vid varje års början från och med 2012/2013. Till hur många hela uttag räcker kapitalet. Lös gärna problemet med kalkylprogram. 23

24 Facit G1.1 a) 45 b) 15,75 c) 72 d) 56 e) 39,6 f) 0 g) 0,375 h) 0,56 G1.2 a) 8,17% b) 8,04% c) 0,36% G1.3 a) +32% b) 33% c) 85% d) +167% e) 11,5% G1.4 [A-uppgift] 0, = 3991 kr G1.5 [A] 31,6 km G1.6 [A] 164 liter G1.7 [A] 0, kr = 199 kr G1.8 [B] 15/21 = 71% G1.9 [A] kr G1.10 [A] 0,60 14 km = 8,4 km G1.11 [C] 96/0,20 kr = 480 kr Alltså fick hon räknedosan för kr = 384 kr G1.12 [A] 1, kr = kr G1.13 [C] /1,15 kr = kr G1.14 [C] 10000/0,03 ton = ton G1.15 [C] 600 personer G1.16 [A] 1, = 225 kr G1.17 [B] 4/20 = 20% G1.18 [B] 620/1070 = 57,9% 24

25 G1.19 [A] 0,90 0, = kr G1.20 [B] 5700 / ( ) = 4,0 % G1.21 [A] 0, = 793 invånare G1.22 [A] 1, = 471 kr G1.23 [B] 30 = 16% G1.24 [A] 2090 kaniner G1.26 [B] 78/85 = 0,918 Han har alltså gått ner 8,2% G1.27 [C] 1200 personer G1.28 [C] 4900 kronor G1.29 [A] 2560 kr G1.30 [B] [ (2,4 0,445 0,407)/2,4 = 64,5 % G1.31 [A] 1,08 1,05 = 1,134 Priset totalt ökat med 13,4% G1.32 [A] 1,03 1,04 1,05 = 1,125 Befolkningen har alltså ökat med 12,5% G1.33 [A] 70,3% G1.34 [C] 123 / 0,83 =148 cm G1.35 [C] 1,11 x = x = kr G1.36 [A] 1,02 10 = 1,219 Aktien har totalt ökat med 21,9% G1.37 [B] 22/546 = 4% G1.38 [A] 0,85 0,85 = 0,7225 Priserna är sänkta totalt 28% G1.39 [A] 21,2% G1.40 [A] 1,025 0,981 0,988 1,029 0,993 = 0,9865 Aktiens totala förändring under fem dagar är +1,5 % 25

26 G1.46 [C] 10,7/1,07 = 10 A G1.42 [A] +20,5% G1.43 [C] 2,18 miljarder euro G1.44 [C] Hela citrusskörden är 223/0,71 = 314 miljarder st Denna väger 0, kg = 6, kg G [B] 5700 / 2700 = 2,11 Antalet behandlingar ökade med 111 % G1.46 [A][ 0,08 0, = 260 kr 16u G [B] = 16/46 = 34,8% 2 12u+ 6 u+ 16u G1.48 [A] Mängden salt är 0, = 15 g. Antag att x g vatten skall avdunsta. [B] x = 0,05 vilket ger 15 = 0,05(500 x) med lösningen x = 200. Det skall avdunsta 200 g salt. G1.49 Antag att det behövs x dl 12% ättiksprit. [A] Mängden ren ättika är 0,12 x + 0,24 2. Den totala mängden är (x + 2) [B] 0,12 x+ 0,48 = 0,16 vilket ger 0,12x + 0,48 = 0,16x + 0,32 förenklat till 0,16 = x+ 2 0,04x med lösningen x = 4 Det behövs 4 dl 12% ättiksprit. G1.50 Antag att den yngste skall ha x kr. [C] 1,50x +1,25x +x = ,75x = med lösningen x = De skall ha kr, kr och kr. G1.52 Eftersom valdeltagandet var 51 % så röstade 0,51 0,48 = 0,24 (=24 %) % på Al Gore och lika många på George W Bush. G1.53 blåa ögon Icke blåa ögon Ljushåriga a b Icke ljushåriga c d Vi vet att a a + b > a + c a + b + c + d Alltså blir svaret ja på frågan. Alltså är även G1.54 a) 10 promille-enhet enheter er b) [B] 1/5,5 = 18% 26 a a + c > a + b a + b + c + d

27 G1.55 [A] 0, g = 2,7 g G1.56 [B] Andelen elever från yrkesprogrammen ändras från 3/8 till 4/8, dvs från 37,5% till 50%. a) Andelen ökar med 12,5 procenrenheter 12,5% b) = 0,333.. dvs 37,5% 33% G1.57 a) 5 ppm b) 450 ppm G1.58 a) 3/ = 10 ppm b) 0,14/35 = 4 G1.59 0, cm 3 = 28 cm 3 = 28 ml G1.60 Volymen 0,90 av 4,9 liter alkohol = 0,0009 4,9 = 0,00441 l = 4,41 cm 3 (ml). G1.61 Mängden guld är 3, g = 426 g. G1.62 Den rika världen förbrukar 0,8/0,2 (= 4) andelar av resurserna per person. Den övriga världen förbrukar 0,2/0,8 (= 0,25) andelar av resurserna per person Alltså förbrukar den rika världen i genomsnitt [(4/0,25) 1] = 15 gånger mer (= 1500 %) mer än den fattiga delen av världen. 2.1 Efter 5 år har Sima (1 + 0,038 0,7) 5 kr = kr 2.2 De två ändringsfaktorerna är 0,9 och 1, , ,12 = 1,720 dvs +72,0% 2.4 1,12 0,93 0,97 1,08=1,091 dvs +9,1% 2.5 Värdet av det första antas vara x + 100a + b. Värdet av det andra antas vara x + 100b + a. Alltså är 0,70(x + 100a + b) = x + 100b + a 69a 99,3b = 0,3x 230a 331b = x. Använd nu ett kalkylprogram för att avgöra vilka kombinationer av a och b som ger nollor i både hundratal och ental. Du vet att 230a 331b > 0. Varför? Detta innebär att a > b. a = 9 och b = 0 är det enda talpar som ger en nolla i både hundratals- och entalssiffran, vilket ger x = 2070 och talet Kontroll: 0, = 2079, som är korrekt. 2.6 a 8 = 5 2,4 8-1 = a 14 = ,7 13 =9,69 27

28 2.8 Kvoten är a 11= 10 1,2 10 = 61, (1,5 1) s = = 855 1, (1,029 1) s = = , (1, 034 1) s = = (kr) 1, , 6(1,05 1) s = = 6, 616(Mkr) 1, Hans doser är 150 0,70; 150 0,70 2 ; 150 0,70 3 ; 150 0,70 4 ; 150 0,70 5 ; 150 0,70 6 ; 150 0,70(0,70 1) 150 0,70 7 ; Medicinen som åtgår är mg = 321mg 0, Värdet av de 40 sparade beloppen är Hans doser är 150 0,70; 150 0,70 2 ; 150 0,70 3 ; 150 0,70 4 ; 150 0,70 5 ; 150 0,70 6 ; 150 0,70 7 ; Medicinen som åtgår är (1,04 1) mg = kr 1,04 1 x(0,84 1) 2.16 Antag att doserna skall vara på x mg. Alltså gäller = 15 Ekvationen 0,84 1 har lösningen x = 2,9. Dosernas storlek bör vara 2,9 g 2.17 Lånet har efter fem år värdet: , kr = kr. De sammanlagda x(1,1025 1) annuiteterna har efter 5 år vuxit till = 16,1356 x. Alltså får vi ekvationen 1, ,1356x = vilket ger x = 7965 kr. Annuiteten är kr 2.18 Antag att Jens sätter in x kr i början på varje år. Hans insättningar är två år efter den sista värd; x 1, x 1, x 1, x 1, x 1, x 1, ,034 x (1,1034 1) +x 1, x 1, x 1, x 1, = = 12, 4849 x. 1, Eftersom de tio insättningarna är värda kr får vi 12,4849x = vilket ger x = 3604 Jens sätter in 3604 kr tio år i rad

Utvärdering av dina matematiska förmågor - Procent

Utvärdering av dina matematiska förmågor - Procent Utvärdering av dina matematiska förmågor - Procent Göra beräknar med promille och ppm 1. En person med 4,8 liter blod i kroppen har en alkoholhalt i blodet som är 0,25 promille. Hur många centiliter alkohol

Läs mer

ARBETSBLAD 1. 2 Procent. 1. Hur stor del är färgad? Bråkform Decimalform Procentform

ARBETSBLAD 1. 2 Procent. 1. Hur stor del är färgad? Bråkform Decimalform Procentform ARBETSBLAD 1 Procent i olika form 1. Hur stor del är färgad? Bråkform Decimalform Procentform a) b) c) d) 2. Skriv i procentform. a) 0,06 b) 0,19 c) 0,024 d) 0,801 e) 1,07 f) 0,003 3. Skriv i decimalform.

Läs mer

Procent anger hundradelar och kan användas när man vill jämföra andelar.

Procent anger hundradelar och kan användas när man vill jämföra andelar. Repetition kapitel 2 2.1 Andelen, delen och det hela Viktiga begrepp Procent Hundradel, 1 procent skrivs 1 % Andel Promille Tusendel, 1 promille skrivs 1 ppm Miljondel (parts per million), skrivs 1 ppm

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 2 Kapitel 2.1 2101, 2102, 2103, 2104 Exempel som löses i boken. 2105 Hela cirkeln är 100 %. Den ofärgade delen är 100 % - 45 % = 55 % 2106 a) Antalet färgade rutor 3 = b) 3 = 0, 6 c) 0,6 = 60 % Totala antalet

Läs mer

52 = 1041. 1040 1.00096 Vi kan nu teckna hur mycket pengar han har, just när han har satt in sina 280 kr den tredje måndagen + 280 1040

52 = 1041. 1040 1.00096 Vi kan nu teckna hur mycket pengar han har, just när han har satt in sina 280 kr den tredje måndagen + 280 1040 Tillämpningar på främst geometriska, men även aritmetiska summor och talföljder. Att röka är ett fördärv. Förutom att man kan förlora hälsan går en mängd pengar upp i rök. Vi träffar Cigge, som röker 20

Läs mer

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form.

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form. Steg 9 10 Bråk och procent Godkänd 9 10 1 Skriv 0,03 i procentform. 16 2 Skriv i blandad form. 5 3 Vilket eller vilka av talen är lika med en åttondel? 0,8 2 8 2 16 0,12 1,8 4 Skriv 7 % i decimalform.

Läs mer

Sammanfattningar Matematikboken Y

Sammanfattningar Matematikboken Y Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller

Läs mer

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor. Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att

Läs mer

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk.

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk. täljare bråkstreck ett bråk nämnare Vilket bråk är störst? Ett bråk kan betyda mer än en hel. Olika bråk kan betyda lika mycket. _ 0 två sjundedelar en hel och två femtedelar > 0 > 0 < > > < > Storlek

Läs mer

c) a) b) c) tre och en halv miljon

c) a) b) c) tre och en halv miljon REPETITION 1 A 1 Hur många procent av figurerna är gula a) b) c) 2 Hur mycket är a) 10 % av 7 kr b) 30 % av 600 kr c) 7 % av 20 000 kr 3 Skriv bråken i enklaste form. a) 4 28 b) 1 2 c) 16 40 4 Skriv i

Läs mer

3Procent. Mål. Grunddel K 3

3Procent. Mål. Grunddel K 3 Procent Mål När eleverna har studerat det här kapitlet ska de kunna: förstå och utföra de tre olika typerna av procentberäkningar räkna ut delen räkna ut hur många procent något är räkna ut det hela använda

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2 Kapitel.1 101, 102 Exempel som löses i boken 10 a) x= 1 11+ x= 11+ 1 = 2 c) x= 11 7 x= 7 11 = 77 b) x= 5 x 29 = 5 29 = 6 d) x= 2 26 x= 26 2= 1 10 a) x= 6 5+ 9 x= 5+ 9 6= 5+ 5= 59 b) a = 8a 6= 8 6= 2 6=

Läs mer

3-7 Procentuella förändringar

3-7 Procentuella förändringar Namn: 3-7 Procentuella förändringar Inledning Du har arbetat mycket med procent, rabatter och påslag. Nu skall du lära dig konsten att beräkna procentuella förändringar. Som alltid gäller att du måste

Läs mer

Repetitionsuppgifter på Höstens Matematik NV12, 2012, Origo Ma1c, kap. 1-3, 5-6

Repetitionsuppgifter på Höstens Matematik NV12, 2012, Origo Ma1c, kap. 1-3, 5-6 Repetitionsuppgifter på Höstens Matematik NV12, 2012, Origo Ma1c, kap. 1-3, 5-6 Kap.1 Tal E1. På tallinjen nedan är två tal A och B markerade med ett kryss. Ange talen. Endast svar fordras. a) b) (Nationellt

Läs mer

Tal Repetitionsuppgifter

Tal Repetitionsuppgifter epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Är talet a) 5 ett heltal b) 9 ett naturligt tal c) π ett rationellt tal d) 5 ett reellt tal 6 2 Rita av figuren och placera in talen rätt talmängd. naturliga tal hela tal rationella

Läs mer

Lathund, bråk och procent åk 7

Lathund, bråk och procent åk 7 Lathund, bråk och procent åk 7 Är samma som / som är samma som en tredjedel och samma som en av tre. är täljaren (den säger hur många delar vi har), tänk täljare = taket = uppåt är nämnaren (den säger

Läs mer

Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5

Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5 OH 1 Addition och subtraktion Vilka uträkningar visas på tallinjerna nedan? 1 = 7 6 1 0 1 + = 7 6 1 0 1 7 + = 7 6 1 0 1 1 = 7 6 1 0 1 Beräkna med huvudräkning 8 6 6 8 7 + 7 8 9 7 9 1 8 10 1 + 0 Kopiering

Läs mer

3-4 Procent Namn: Inledning. Vad menas med procent?

3-4 Procent Namn: Inledning. Vad menas med procent? 3-4 Procent Namn: Inledning Du har kommit i kontakt med begreppet procent i många sammanhang tidigare. Kan du nämna några? Visst, det finns hur mycket som helst. Prisökningar, rabatter, arbetslöshet, partisympatier

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

Lästal från förr i tiden

Lästal från förr i tiden Lästal från förr i tiden Nedan presenteras ett antal problem som normalt leder till ekvationer av första graden. Inled din lösning med ett antagande. Teckna sedan ekvationen. Då ekvationen är korrekt uppställt

Läs mer

Nyckelord Grundläggande matematik. Ord- och begreppshäfte. Elisabet Bellander ORD OCH BEGREPP. Matematik

Nyckelord Grundläggande matematik. Ord- och begreppshäfte. Elisabet Bellander ORD OCH BEGREPP. Matematik Nyckelord Grundläggande matematik Ord- och begreppshäfte Elisabet Bellander ORD OCH BEGREPP Matematik 1. BANK - VARDAGSORD 1. Minst 2. Uttag 3. Insättning 4. Kontonummer 5. Uttaget belopp kvitteras 6.

Läs mer

Sammanfattningar Matematikboken X

Sammanfattningar Matematikboken X Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för

Läs mer

Formula 9 facit. 1 Beräkningar med positiva tal 1

Formula 9 facit. 1 Beräkningar med positiva tal 1 Beräkningar med positiva tal Formula 9 facit a) 5,5 (5,50) b) 5,59 c) 5,99 d) 5,54 2 a) 3 (3,00) b) 3,09 c) 3,49 d) 3,04 3 a) 6, (6,0) b) 6,0 c) 5,6 d) 6,06 4 a) 9,04 b) 8,95 c) 8,55 d) 9 (9,00) 5 a) 25

Läs mer

1 25 % = 4 1 % = 0,01 10 % = 0,10 40 % = 0,40 7 % = 0,07 3,5 % = 0,035

1 25 % = 4 1 % = 0,01 10 % = 0,10 40 % = 0,40 7 % = 0,07 3,5 % = 0,035 % = 00 0 % = 0 20 % = 5 25 % = 4 50 % = 2 % = 0,0 0 % = 0,0 40 % = 0,40 7 % = 0,07 3,5 % = 0,035 -----------------------------------------------------------------------------------------------------------------

Läs mer

Algebra, exponentialekvationer och logaritmer

Algebra, exponentialekvationer och logaritmer Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen

Läs mer

Lokala mål i matematik

Lokala mål i matematik Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal

Läs mer

Övning log, algebra, potenser med mera

Övning log, algebra, potenser med mera Övning log, algebra, potenser med mera Uppgift nr 1 Förenkla uttrycket x 3 + x 3 + x 3 + x 3 + x 3 Uppgift nr 2 Förenkla x x x+x x x Uppgift nr 3 Skriv på enklaste sätt x 2 x x x 8 x x x Uppgift nr 4 Förenkla

Läs mer

1 Skriv med siffror a) tolvtusen femton b) fem hela och fyra hundradelar. b) 1000 0,04. 3 Skriv i kilogram a) 0,2 ton b) 4 hg c) 6400 g

1 Skriv med siffror a) tolvtusen femton b) fem hela och fyra hundradelar. b) 1000 0,04. 3 Skriv i kilogram a) 0,2 ton b) 4 hg c) 6400 g 1 Skriv med siffror a) tolvtusen femton b) fem hela och fyra hundradelar 2 Beräkna a) 0,7 50 d) 45110 b) 1000 0,04 e) 78,2/100 c) 0,08 0,5 f) 555511000 3 Skriv i kilogram a) 0,2 ton b) 4 hg c) 6400 g 4

Läs mer

Matematik A Testa dina kunskaper!

Matematik A Testa dina kunskaper! Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer

Läs mer

Prov kapitel 3-5 - FACIT Version 1

Prov kapitel 3-5 - FACIT Version 1 Prov kapitel 3-5 - FACIT Version 1 1. Lös ekvationerna algebraiskt a. 13 x + 17 = 7x + 134 Svar: x = 117 / 6 = 19.5 b. x 10 = 84 Svar: x = 84 0.1 = 1.5575 2. Beräkna a. 17 % av 3500 = 595 b. 3 promille

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

matematik Prov, Övningsblad och Aktiviteter SANOM A UT B IL DNI NG

matematik Prov, Övningsblad och Aktiviteter SANOM A UT B IL DNI NG matematik b Prov, Övningsblad och Aktiviteter SANOM A UT B IL DNI NG Övningsblad Potenser Multiplikation och division av potenser samt potens av potens Potenslagar Multiplikation av potenser med samma

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Vilka tal pekar pilarna på? a) b) Skriv talen med siffror 2 a) trehundra sju b) femtontusen fyrtiofem c) tvåhundrafemtusen tre 3 a) fyra tiondelar b) 65 hundradelar c) 15 tiondelar

Läs mer

Sammanfattningar Matematikboken Z

Sammanfattningar Matematikboken Z Sammanfattningar Matematikboken Z KAPitel procent och statistik Procent Ordet procent betyder hundradel och anger hur stor del av det hela som något är. Procentform och 45 % = 0,45 6,5 % = 0,065 decimalform

Läs mer

(1) Vid den första prishöjningen ökade priset med 4 procent och vid den andra likaså med 4 procent.

(1) Vid den första prishöjningen ökade priset med 4 procent och vid den andra likaså med 4 procent. Högskoleverket 2 1. Priset på en vara förändrades två gånger på ett år. Båda gångerna höjdes priset och efter den andra höjningen kostade varan 1 352 kr. Hur stor var prishöjningen i kronor detta år? (1)

Läs mer

4. En aktie ökade med 60 % ett år. Hur mycket var den värd då om den från början hade värdet 80kr?

4. En aktie ökade med 60 % ett år. Hur mycket var den värd då om den från början hade värdet 80kr? D. Beräkna och svara i enklaste form. 7 a) b) c) d) 7 e) f). Pedro, Lina och Amir spelar på lotto. Pedro har betalat % av insatsen. Lina har satsat 0 % och Amir har betalat resten, dvs. 0 kr.. I Sverige

Läs mer

Facit Läxor. Tal. Tian Siffrans värde blir tio gånger mindre. 40 till 04 11 67, 69 och 71 12 a) 10, 22 och 15, 14 b) 15, 27 och 10, 9

Facit Läxor. Tal. Tian Siffrans värde blir tio gånger mindre. 40 till 04 11 67, 69 och 71 12 a) 10, 22 och 15, 14 b) 15, 27 och 10, 9 Tal Läxa 1 1 a) 307 b) 55 c) 00 003 a) 131 > 113 b) 1 > 1 c) 99 < 9 99 3 a) 1 170 b) 5 75 c) 91 a) 3 hundra b) 3 ental c) 3 tusen 5 a) 370 b) 0 a) 31 b) 1 3 c) 1 3 7 a) 99 b) 13 a) 37 b) 19 00 9 5 15 50

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 =

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 = Arbetsblad NAMN: Addition och subtraktion i flera steg + 3 + 3 + + 3 + 3 + 9 3 3 9 9 9 39 3 3 + 39 3 + 99 0 3 Kopiering tillåten Matematikboken Författarna och Liber AB Arbetsblad Addition och subtraktion

Läs mer

Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -

Kap 1: Aritmetik - Positiva tal -  -  -  -  - -  -  -  -  - År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel

Läs mer

Tal Räknelagar. Sammanfattning Ma1

Tal Räknelagar. Sammanfattning Ma1 Tal Räknelagar Prioriteringsregler I uttryck med flera räknesätt beräknas uttrycket i följande ordning: 1. Parenteser 2. Potenser. Multiplikation och division. Addition och subtraktion Exempel: 5 22 1.

Läs mer

3-6 Procent: rabatt och pålägg

3-6 Procent: rabatt och pålägg Namn: 3-6 Procent: rabatt och pålägg Inledning Nu börjar du bli en hejare på procenträkning. Du vet vad som menas med procent, och du kan räkna ut hur mycket en viss procent är av t.ex. ett belopp. I detta

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4

Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,9 0 1 2 0 1 3 1,1 1 2 4 0,8 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar

Läs mer

lång och 15 cm bred. Hur stor area har tomten i verkligheten? 4,5 2 l b) 2-2- 3 4

lång och 15 cm bred. Hur stor area har tomten i verkligheten? 4,5 2 l b) 2-2- 3 4 LÄXA 12 1 Beräkna med huvudräkning a) En kvadrat har arean 81 cm 2. Hur stor är omkretsen? b) Hur mycket kostar 600 g fläskfile, om priset per kilogram är 120 kr? c) En burk energidryck innehåller 200

Läs mer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna

Läs mer

1. Amanda tänker på ett femsiffrigt heltal. Talet börjar med 1 och slutar med 8. Vilket är talet?

1. Amanda tänker på ett femsiffrigt heltal. Talet börjar med 1 och slutar med 8. Vilket är talet? 2 1. Amanda tänker på ett femsiffrigt heltal. Talet börjar med 1 och slutar med 8. Vilket är talet? (1) Tiotalssiffran är dubbelt så stor som tusentalssiffran. (2) Hundratalssiffran är hälften så stor

Läs mer

Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18

Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18 Innehåll 1 Allmän information Seriens uppbyggnad Lärobokens struktur 6 Kapitelinledning 7 Avsnitten 7 Pratbubbleuppgifter Aktivitet Taluppfattning och huvudräkning 9 Resonera och utveckla 9 Räkna och häpna

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

Matematik 1A 4 Potenser

Matematik 1A 4 Potenser Matematik 1A 4 Potenser förklara begrepp t ex. potens, bas, exponent och grundpotensform (Nivå E C) tolka, skriva och räkna med tal i grundpotensform (Nivå E A) helst kunna redogöra för räkneregler för

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

PROBLEMLÖSNINGSUPPGIFTER

PROBLEMLÖSNINGSUPPGIFTER PROBLEMLÖSNINGSUPPGIFTER ADDERA RÄTT 1. Bestäm vilka siffror bokstäverna A, B, C, och D bör bytas ut mot i additionen nedan för att additionen ska vara riktig. A 6 3 7 B 2 + 5 8 C D 0 4 2 2. Gör ett eget

Läs mer

Algebra - uttryck och ekvationer

Algebra - uttryck och ekvationer Förenkla: Tänk så här: Du går till affären och köper 3 äpplen och 2 bananer och lösgodis för 7 kr. Din kompis köper 1 äpple och 3 bananer och lösgodis för 10 kr. Hur många äpplen och hur många bananer

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Matematik EXTRAUPPGIFTER FÖR SKOLÅR 7-9

Matematik EXTRAUPPGIFTER FÖR SKOLÅR 7-9 Matematik EXTRAUPPGIFTER FÖR SKOLÅR 7-9 Matematik Extrauppgifter för skolår 7-9 Pärm med kopieringsunderlag. Fri kopieringsrätt inom utbildningsenheten! Författare: Mikael Sandell Copyright 00 Sandell

Läs mer

Föreläsning 4: Aritmetik, forts. Tal i bråkform Tal i decimalform Sambandet mellan tal i bråkform och decimalform Procentbegreppet och Procenträkning

Föreläsning 4: Aritmetik, forts. Tal i bråkform Tal i decimalform Sambandet mellan tal i bråkform och decimalform Procentbegreppet och Procenträkning Föreläsning 4: Aritmetik, forts. Tal i bråkform Tal i decimalform Sambandet mellan tal i bråkform och decimalform Procentbegreppet och Procenträkning Algebra Läroplanen om algebra och algebraiskt tänkande

Läs mer

2-5 Decimaltal Namn: Inledning. Vad är ett decimaltal, och varför skall jag arbeta med dem?

2-5 Decimaltal Namn: Inledning. Vad är ett decimaltal, och varför skall jag arbeta med dem? 2-5 Decimaltal Namn: Inledning Tidigare har du jobbat en hel del med bråktal, lagt ihop bråk, tagit fram gemensamma nämnare mm. Bråktal var lite krångliga att arbeta med i och med att de hade en nämnare.

Läs mer

Blandade uppgifter om tal

Blandade uppgifter om tal Blandade uppgifter om tal Uppgift nr A/ Beräkna värdet av (-3) 2 B/ Beräkna värdet av - 3 2 Uppgift nr 2 Skriv (3x) 2 utan parentes Uppgift nr 3 Multiplicera de de två talen 2 0 4 och 4 0 med varandra.

Läs mer

MATEMATIK KURS A Våren 2005

MATEMATIK KURS A Våren 2005 MATEMATIK KURS A Våren 2005 1. Vilket tal pekar pilen på? 51 52 53 Svar: (1/0) 2. Skugga 8 3 av figuren. (1/0) 3. Vad är 20 % av 50 kr? Svar: kr (1/0) 4. Hur mycket vatten ryms ungefär i ett dricksglas?

Läs mer

Facit följer uppgifternas placering i häftet.

Facit följer uppgifternas placering i häftet. Facit följer uppgifternas placering i häftet. Sidan 2: Ringa in talet som är närmast en hel. 0,9 Skriv talet i decimalform. tre tiondelar 0,3 en tiondel 0,1 två tiondelar 0,2 sex tiondelar 0,6 sju tiondelar

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR

Läs mer

Frivilligt kapitaltillskott. Information till medlemmar i RB Brf Silfverdalen

Frivilligt kapitaltillskott. Information till medlemmar i RB Brf Silfverdalen Frivilligt kapitaltillskott Information till medlemmar i RB Brf Silfverdalen Agenda Presentation av Stefan Engberg, Fristående Affärsutveckling AB En titt bakåt i tiden Balansräkningen och avgiften idag

Läs mer

a) 4a + a b) 4a 3a c) 4(a + 1)

a) 4a + a b) 4a 3a c) 4(a + 1) REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin

Läs mer

0,1 0,3 0,6 0,9 0,2 + 0,3 = 0,5 0,7 + 0,1 = 0,8 0,3 + 0,5 = 0,8 0,5 + 0,4 = 0,9 0,3 + 0,3 = 0,6 0,4 + 0,3 = 0,7

0,1 0,3 0,6 0,9 0,2 + 0,3 = 0,5 0,7 + 0,1 = 0,8 0,3 + 0,5 = 0,8 0,5 + 0,4 = 0,9 0,3 + 0,3 = 0,6 0,4 + 0,3 = 0,7 Facit följer uppgifternas placering i häftet. Sidan 2: Tal i decimalform Tiondelar 0,9 är närmast en hel Skriv talet i decimalform. sju tiondelar 0,7 en tiondel 0,1 fyra tiondelar 0,4 fem tiondelar 0,5

Läs mer

MATEMATIKPROV, KORT LÄROKURS BESKRIVNING AV GODA SVAR

MATEMATIKPROV, KORT LÄROKURS BESKRIVNING AV GODA SVAR MATEMATIKPROV, KORT LÄROKURS 4.9.04 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte bindande för studentexamensnämndens bedömning. Censorerna beslutar

Läs mer

Välkommen till Borgar!

Välkommen till Borgar! Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter

Läs mer

Kontroll 13. Uppgift 1. Uppgift 2. Uppgift 3. Uppgift 4. Uppgift 5. Uppgift 6. Uppgift 7

Kontroll 13. Uppgift 1. Uppgift 2. Uppgift 3. Uppgift 4. Uppgift 5. Uppgift 6. Uppgift 7 Kontroll 13 Uppgift 1 Avståndet, r parsec, till en stjärna kan bestämmas med formeln M = m + 5 5 lgr där M =stjärnans absoluta ljusstyrka och m =stjärnans skenbara ljusstyrka. (1 parsec= 3.26 ljusår= 9.46

Läs mer

De här symbolerna kommer du att möta i boken. De visar vilken nivå övningarna är på.

De här symbolerna kommer du att möta i boken. De visar vilken nivå övningarna är på. Symboler i boken De här symbolerna kommer du att möta i boken. De visar vilken nivå övningarna är på. Symbolerna finns i tre olika nivåer: Nivå 1 De flesta tal är med enbart siffror. Här ska du räkna ut

Läs mer

Övningsuppgifter för sf1627, matematik för ekonomer. 1. Förenkla följande uttryck så långt det går: 6. 7. 8. 9. 10. 2. Derivator 1. 2. 3. 4. 5. 6.

Övningsuppgifter för sf1627, matematik för ekonomer. 1. Förenkla följande uttryck så långt det går: 6. 7. 8. 9. 10. 2. Derivator 1. 2. 3. 4. 5. 6. KTH matematik Övningsuppgifter för sf1627, matematik för ekonomer Harald Lang 1. Förenkla följande uttryck så långt det går: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Svar: 1. 2. 5 3. 1 4. 5 5. 1 6. 6 7. 1 8. 0 9.

Läs mer

1Mer om tal. Mål. Grunddel K 1

1Mer om tal. Mål. Grunddel K 1 Mer om tal Mål När eleverna har studerat det här kapitlet ska de: kunna multiplicera och dividera med positiva tal mi ndre än veta vad ett negativt tal är kunna addera och subtrahera negativa tal kunna

Läs mer

Ma C - Tek Exponentialekvationer, potensekvationer, logaritmlagar. Uppgift nr 10 Skriv lg4 + lg8 som en logaritm

Ma C - Tek Exponentialekvationer, potensekvationer, logaritmlagar. Uppgift nr 10 Skriv lg4 + lg8 som en logaritm Exponentialekvationer, potensekvationer, logaritmlagar Uppgift nr 1 10 z Uppgift nr 2 10 z = 0,0001 Uppgift nr 3 10 5y 000 Uppgift nr 4 10-4z Uppgift nr 5 Skriv talet 6,29 i potensform med 10 som bas.

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Familjens ekonomi. Skatter Det finns många olika slags skatter. Huvudsakligen kan man dela in dem i Varuskatter och Inkomstskatter.

Familjens ekonomi. Skatter Det finns många olika slags skatter. Huvudsakligen kan man dela in dem i Varuskatter och Inkomstskatter. Bilaga 3 1. Ur Samhällskunskap A Familjens ekonomi Olika familjer Det finns många olika sorters familjer. Man kan leva i en s k kärnfamilj, med mamma, pappa och barn. Man kan leva som ensamstående. Det

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1b Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

REPETITION 1 A. a) naturligt tal b) rationellt tal c) reellt tal. 0, p. a) b) 0,09 c) 0, x + 11 b) 16 3z = 1 c) 7y 6 = 14 3y

REPETITION 1 A. a) naturligt tal b) rationellt tal c) reellt tal. 0, p. a) b) 0,09 c) 0, x + 11 b) 16 3z = 1 c) 7y 6 = 14 3y REPETITION A Vilket eller vilka av talen nedan är ett a) naturligt tal b) rationellt tal c) reellt tal 7 0,67 9 p Skriv talen i grundpotensform. a) 0 000 b) 0,09 c) 0,000 Lös ekvationerna. a) 5 = 5 x +

Läs mer

1 Aritmetik. Base camp 1. Uppgifter

1 Aritmetik. Base camp 1. Uppgifter Aritmetik Base camp, a) 9, d) 0 e) 00 f) g) h) a), >,0 > 9,, kr/kg, 9,0 kr a) 000 0, 0 Hundratalet ska ändras. Det ska vara 00 i stället för 00.,, 00 Kontoutdraget visade 00 kr fel. 0 a) 0 + 9 d) 9 9 Ett

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

Aktuell Analys från FöreningsSparbanken Institutet för Privatekonomi

Aktuell Analys från FöreningsSparbanken Institutet för Privatekonomi Aktuell Analys från FöreningsSparbanken Institutet för Privatekonomi 2005-05-03 Räkna med amortering Svenska hushåll ökar sin skuldsättning, framförallt vad gäller lån på bostäder. När räntan är låg är

Läs mer

Detaljplanering. Matematik 1A LÅ 2013/2014. Jonas Bengtsson

Detaljplanering. Matematik 1A LÅ 2013/2014. Jonas Bengtsson Detaljplanering Matematik 1A Jonas Bengtsson Läromedel: Matematik 00 1a, Natur & Kultur Information Detta är en detaljplan i kursen Matematik 1A för läsåret 2013/2014. Varje vecka innehåller 3 st lektionspass

Läs mer

Arbetsblad 1:1. Poängkryss. Arbeta tillsammans > <

Arbetsblad 1:1. Poängkryss. Arbeta tillsammans > < Arbetsblad : Arbeta tillsammans > < Poängkryss Materiel: Spelplan, 3 4 tärningar och penna. Antal deltagare: 2 4 st Utförande: Spelare nr slår alla tärningarna samtidigt. De tal som tärningarna visar ska

Läs mer

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1:

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1: Som en inledning till begreppet derivata, ska vi här diskutera genomsnittlig förändingshastighet. Utan att veta vad som hänt mellan två givna tider t 1 och t 2 kan vi läsa av temperaturen, beloppet, hastigheten,

Läs mer

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.

Läs mer

DE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING

DE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING DE FYRA RÄKNESÄTTEN (SID. 11) 1. Benämn med korrekt terminologi talen som: adderas. subtraheras. multipliceras. divideras.. Addera 10 och. Dividera sedan med. Subtrahera 10 och. Multiplicera sedan med..

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Volym liter och deciliter

Volym liter och deciliter Volym liter och deciliter Måla så volymen stämmer. Skriv så volymen stämmer. : l och dl l dl l och 8 dl 0 l 9 dl dl l dl Hur många dl ska du hälla i för att få l? 7 9 dl dl dl dl dl Hur mycket? Skriv.

Läs mer

HÖGSKOLAN I BORÅS. REDOVISNING OCH EKONOMI INOM OFFENTLIG VERKSAMHET 15 Högskolepoäng

HÖGSKOLAN I BORÅS. REDOVISNING OCH EKONOMI INOM OFFENTLIG VERKSAMHET 15 Högskolepoäng HÖGSKOLAN I BORÅS REDOVISNING OCH EKONOMI INOM OFFENTLIG VERKSAMHET 15 Högskolepoäng Provmoment: Tentamen Ladokkod: SRO011 Tentamen ges för: Administratör inom offentlig verksamhet Namn:.. Personnummer:..

Läs mer

matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall

matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall Koll på 2B matematik FACIT Läxbok Hanna Almström Pernilla Tengvall Sanoma Utbildning 7 7Addition, subtraktion Dubbelt. Skriv. 2 + 2 = 5 + 5 = + = + = 6 8 9 + 9 = 7 + 7 = 8 + 8 = 6 + 6 = 8 6 2 Tiokamrater.

Läs mer

Uppgifter till Första-hjälpen-lådan

Uppgifter till Första-hjälpen-lådan Uppgifter till Första-hjälpen-lådan Många Stockholmslärare har fått en första-hjälpen-låda i matematik då de deltagit i de kurser som letts av Karin Kairavuo, matematiklärare från Mattelandet i Helsingfors.

Läs mer

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 02 10 25. RÄNTA 1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

Läs mer

Matematik Åk 9 Provet omfattar stickprov av det centrala innehållet i Lgr-11. 1. b) c) d)

Matematik Åk 9 Provet omfattar stickprov av det centrala innehållet i Lgr-11. 1. b) c) d) 1. b) c) d) a) Multiplikation med 100 kan förenklas med att flytta decimalerna lika många stg som antlet nollor. 00> svar 306 b) Använd kort division. Resultatet ger igen rest. Svar 108 c) Att multiplicera

Läs mer

Matematik F- 6 Checklista för matematik K L A R A T Begreppsbildning år år år år år år år Kunna ord om: F 1 2 3 4 5 6 storlek ex störst, minst antal ex flera, färre volym ex mest, minst vikt ex tyngst,

Läs mer

Dra streck. Vilka är talen? Dra pil till tallinjen. Skriv på vanligt sätt. Sätt ut <, > eller =

Dra streck. Vilka är talen? Dra pil till tallinjen. Skriv på vanligt sätt. Sätt ut <, > eller = n se ta l l ta al u at sen nt al rat l r l d d n iotu se hun tiot a ent a hu t tu + + 7 tiotusental tusental 7 tiotal 7 7 7 7 Ju längre till höger, desto större är talet. 7 > 7 Siffran betyder tiotusental

Läs mer

Bolån 60+ Upptäck lånet som frigör ditt bundna kapital.

Bolån 60+ Upptäck lånet som frigör ditt bundna kapital. Bolån 60+ Upptäck lånet som frigör ditt bundna kapital. Min syster och hennes man tog ett lån före mig. Boel 67 år Frigör pengar som finns låsta i din bostad. Är du över 60 år och bor i en helt eller nära

Läs mer

1 Julias bil har har gått kilometer. Hur långt har den gått när den har (3) körts tio kilometer till? km

1 Julias bil har har gått kilometer. Hur långt har den gått när den har (3) körts tio kilometer till? km Test 8, version, lärarversion Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad.

Läs mer

LENDO - STORYBOARD. 1. Välkommen & Introduktion till privatlån

LENDO - STORYBOARD. 1. Välkommen & Introduktion till privatlån 1. Välkommen & Introduktion till privatlån Hej och välkommen till Lendo! Hos oss på Lendo kan du låna från 5.000 kr. till 350.000 kr. De lån vi erbjuder är så kallade privatlån, vilket innebär att ingen

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje.

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje. En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 7 = + + 7 Siffran 6 betyder 6 tusental = 6 tusental hundratal 4 8 7 6 9 tiotal ental Siffran 9 betyder 9 tiotal

Läs mer

Högskoleverket. Delprov NOG 2003-04-05

Högskoleverket. Delprov NOG 2003-04-05 Högskoleverket Delprov NOG 2003-04-05 2 1. Sven använder 40 procent av sin nettolön, d.v.s. lön efter skatt, till att betala hyran. Hur stor är Svens nettolön? (1) Efter att Sven betalat hyran har han

Läs mer

Högskoleverket. Delprov NOG 2002-10-26

Högskoleverket. Delprov NOG 2002-10-26 Högskoleverket Delprov NOG 2002-10-26 1. Det ordinarie priset på en skjorta, som såldes på rea, var 600 kr. Inför slutrean sänktes priset till halva ursprungliga reapriset. Vad var det ursprungliga reapriset

Läs mer