En aktuaries synpunkter på könsneutrala premier

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "En aktuaries synpunkter på könsneutrala premier"

Transkript

1 En aktuaries synpunkter på könsneutrala premier Erland Ekheden och försäkringsmatematik Stockholms universitet

2 Bakgrund Introduktion Vi aktuarier har levt i Sus och Dus de senaste åren... Men i december 2012 är det slut med det!? Sus - Sjuklighetsundersökningen, 2011 Dus - Dödlighetsundersökningen, 2007 Syftade bl a till att klartlägga könsskillnader i sjuklighet och dödlighet.

3 Snabbkurs i matematisk statistik - Väntvärde Väntvärde = sannolikhetsviktat medelvärde av möjliga utfall = det förväntade genomsnittsvärdet vid många upprepade observationer. Ex tärningskast: utfall 1, , sannolikheter 1/6, Väntvärde = 1 1/ / /6 = 3, 5. Ex lotteri: Vinschans 1 på , vinst 1Mkr, Väntvärde = 0 0, kr 0, = 10kr.

4 Snabbkurs i matematisk statistik - Varians Varians = förväntad avvikelse från väntevärdet, dvs hur stor spridning har vi i utfallet av ett experiment eller i våra observationer. Ex tärningskast: varians = 2, 9. Ex lotteri: varians = kr 2. Standardavvikelse = roten ur variansen. Ibland mer praktiskt mått, har samma enhet som det vi observerar. Ex lotteri: Standardavvikelse = kr 2 = 3162kr. Relativt stor varians = stor variation, mycket slumpässighet i utfallet, våra observationer. Relativt liten varians = liten variation, relativt liten slumpmässighet i utfallet, våra observationer.

5 Statistisk modellering Statistisk modellering syftar till att skilja systematisk variation från slumpen. Generell modellbeskrivning: Observation = funktion av förklarande variabler + slump. En korrekt modell predikterar i medeltal rätt, dvs väntvärdet av slumptermen är lika med noll. Ex Hemförsäkring: Skadekostnad = f (försäkrat belopp, postnr, # i hushållet, larm...) + slumpen. Modellval: Få variabler - robust modell, förklarar mindre systematisk variation. Många variabler - kännsligare modell, förklarar mer, men risk för att slump misstas för systematik.

6 Betingat väntvärde Betingat väntvärde = väntvärdet givet att vi har extra information. Ex tärningskast: Väntvärdet betingat på att vi får ett jämnt antal ögon är 4. Ex Hemförsäkring: Medelskadan för en hemförsäkring = obetingat väntvärde. Medelskadan då vi vet att skadan är ett inbrott = betingat väntevärde.

7 Stora talens lag Introduktion Stora talens lag: medelvärdet av ett (stort) antal observationer väntevärdet. Stort beror på variansen, hög varians kräver fler observationer för att ge ett bra närmevärde. Ex försäkring: Det är tack vare stora talens lag som försäkring fungerar! Vi kan inte förutse resultatet för en enskild försäkring, men samlar vi ett antal risker så blir det totala resultatet förutsägbart. Ofta krävs dock en relativt stor portfölj för att uppnå stabila resultat.

8 Värdet av modellering Hitta kausala samband och prediktera utfall. Storkar och födslotal. Golfare och surdegsbagare. Skörbjugg och apelsinjuice. Cancer, morötter och betakaroten. Statistikern påvisar samband, medicinare, sociologer etc får avgöra sambandets natur: Direkt effekt, inderekt effekt eller nonsens?

9 Matematisk rättvisa Ett spel är rättvist om väntvärdet av vinsten minus insatsen är noll. Ex lotteri: Vinschans 1 på , vinst 1Mkr, väntvärde vinst 10kr. Rättvist om lotten kostar 10kr, för i medeltal vinner man 10kr per lott. Ex tärningsspel: Vinner 10kr per öga som tärningen visar. Rättvist om spelet kostar 35kr, eftersom väntvärdet av antal ögon är 3,5.

10 Ex tärningsspel: Jessika och Vladimir vinner 10kr per öga som deras tärning visar, spelet kostar 35kr/omgång. Knasiga tärningar, Jessika har fått en jämn tärning (2,4,6), Vladimir en udda (1,3,5)! Rättvist spel ur husets synvinkel, om de spelar samtidigt. Men Jessika tjänar i snitt 5kr/omgång och Vladimir förlorar 5kr. Är spelet rättvist? Jessika spelar gärna mer då hon har en turkväll, men Vladimir som haft otur går hem tidigt. Nu börjar huset förlora och höjer priset för spelet till 40kr/omgång.

11 Könsskillnader - risk Delkasko: 18-27år, män 150% skadekostnad jmf kvinnor. Sjuk: 25-65år, män 50-70% skadekostnad jmf kvinnor. Liv (dödsrisk): 30-65år män jmf kvinnor oblig förs 200% oblig förs tjm 175% frivilligt förs 130%

12 Könsskillnader - livslängd Pension: Vid 65år är förväntad återstående livslängd 3år kortare för män än kvinnor, ca 10% kortare, men här spelar flera faktorer in: män kvinnor oblig förs 19år 22år oblig förs tjm 20år 23år frivilligt förs 21år 24år I vissa andra EU-länder är skillnaderna mer betydande. I Littauen är vid 65års ålder förväntad återstående livslängd 5år för en man men 15år för en kvinna. Rimligt med samma premie oavsett om pensionen förväntas räcka i 5 eller 15år?

13 Fysiska skillnader? Undantag från kravet på jämställdhet kan göras när fysiska skillnader föreligger. Ex Mammografi: En man anses inte diskriminerad då han inte kallas på kontroll. 8 män dör i bröstcancer varje år, att jämföra med 1500 kvinnor. Ex Aortan: Män över 65år erbjuds en aortaundersökning, mer än dubbelt så många män än kvinnor dör av brusten aorta. Ingen forskare har kunnat påvisa någon fysisk skillnad som förklarar varför det är på detta sätt, sambandet är bara statistiskt. Diskriminering?

14 Fysiska skillnader? Vem kan avgöra om en skillnad mellan män och kvinnor är fysisk? Debatt mellan biologister och sociala konstruktivister. Skillnad i livslängd mellan könen verkar finnas i alla kulturer, varierar mellan 2 och 15år till kvinnors fördel, och skillnader kvarstår då man tar hänsyn till socioekonomiska och andra faktorer. Rimligt att anta att det finns fysiska skillnader som gör kvinnor mer robusta, t ex XX ger bättre skydd mot genetisk sjukdom än XY. Riskbeteende? Är det fysiska skillnader i hjärnan som gör unga män riskbenägna?

15 Introduktion 1 Vissa tycker det är rättvist att alla betalar lika mycket. Typiskt för socialförsäkring och gruppförsäkring, alla är med och delar kostnaderna lika. 2 Vissa tycker det är rättvist att var och en betalar sina förväntade kostnader. Typiskt för individuell försäkring, var och en betalar sitt eget väntvärde. I slutändan en politisk fråga, båda kan hanteras aktuariellt, men...

16 Direkta konsekvenser Produkter för det billigare könet blir dyra/försvinner För det dyra som tidigare, tveksamt om det blir prissänkningar. Produkter med relativt liten skillnad ej problem, skillnader redan borta. Ny risk, könssammansättningsrisk! Selektiva uppsägningar? Massiv flytt av pensionsförsäkringar till nya med bättre villkor? Reservsättningen sker efter best estimate. Könsneutral premie, könsberoende reservsättning!

17 Indirekta konsekvenser Andra premieargument, yrke, lön, utbildning (=klass)? Hur tolka EUs rättighetsstadga art 21 som förutom förbjuder även social diskriminering? Gränsdragning mot indirekt diskriminering? Riktad marknadsföring? Marknadsför pensionsförsäkringar i motortidningar och liv- och bilförsäkring i skvallertidningar? Försäkringsnöd?

18 Frågeställningar Introduktion Könsneutral riskbedömning? Anemi: Hb 9 g/dl är svår anemi för män (avslag), moderat anemi för kvinnor (accept) (Hannover Life Res riskbedömningsmanual). Direktivet bör endast gälla försäkringar och pensioner som är privata, frivilliga och åtskilda från anställningsförhållandet, var går gränsen? Teckna försäkringar via jobbet? Gränsöverskridande handel, får mäklare rekomendera en billigare Schweizisk produkt? Får mäklaren låta bli? Resultatberoende provisioner? Differentiering mellan grupper ok, hur liten får en grupp vara? Barbiedockans vänner? Mansgruppen karlakarlarna? Åldersdiskriminering?

19 Referenser Introduktion Försäkrade i Sverige - dödlighet och livslängder, prognoser (DUS), Svenska Försäkringsföreningen, 2007, ISBN Sjuklighetsundersökning inom svensk försäkring, insjuknande och avveckling , (SUS), Svenska Försäkringsföreningen, 2011, ISBN Stokastik - sannolikhetsteori och statistiskteori med tillämpningar, Alm & Britton, 2008, ISBN

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Vetenskaplig metod och statistik

Vetenskaplig metod och statistik Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på

Läs mer

Föreläsning 5, FMSF45 Summor och väntevärden

Föreläsning 5, FMSF45 Summor och väntevärden Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

SUS SjuklighetsUnderSökning inom svensk försäkring

SUS SjuklighetsUnderSökning inom svensk försäkring Presentation av SUS SUS SjuklighetsUnderSökning inom svensk försäkring Presenteras av Gunnar Andersson, FTN/Folksam (bakgrund och teori) Erik Alm, FTN/Hannover Re (resultat) I samarbete med 2011-03-29

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två

Läs mer

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4) Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative

Läs mer

Föreläsning 1, Matematisk statistik Π + E

Föreläsning 1, Matematisk statistik Π + E Introduktion Sannolikhetsteori Beroende Föreläsning 1, Matematisk statistik Π + E Sören Vang Andersen 4 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F1 1/26 Introduktion Sannolikhetsteori

Läs mer

Föreläsning 1, Matematisk statistik för M

Föreläsning 1, Matematisk statistik för M Föreläsning 1, Matematisk statistik för M Erik Lindström 23 mars 2015 Erik Lindström - erikl@maths.lth.se FMS035 F1 1/30 Tillämpningar Praktiska detaljer Matematisk statistik slumpens matematik Sannolikhetsteori:

Läs mer

Vetenskaplig metod och Statistik

Vetenskaplig metod och Statistik Vetenskaplig metod och Statistik Innehåll Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på Experiment NE:

Läs mer

Sannolikhetslära till pdf.notebook. May 04, 2012. Sannolikhetslära. Kristina.Wallin@kau.se

Sannolikhetslära till pdf.notebook. May 04, 2012. Sannolikhetslära. Kristina.Wallin@kau.se May 0, 0 Sannolikhetslära Kristina.Wallin@kau.se May 0, 0 Centralt innehåll Sannolikhet Åk Slumpmässiga händelser i experiment och spel. Åk 6 Sannolikhet, chans och risk grundat på observationer, experiment

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik, GA 08 januari 2015. Lösningar

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik, GA 08 januari 2015. Lösningar STOCKHOLMS UNIVERSITET MT712 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, GA 8 januari 215 Lösningar Tentamen i Livförsäkringsmatematik I, 8 januari 215 Uppgift 1 a) Först konstaterar

Läs mer

Three Monkeys Trading. Tärningar och risk-reward

Three Monkeys Trading. Tärningar och risk-reward Three Monkeys Trading Tärningar och risk-reward I en bok vid namn A random walk down Wall Street tar Burton Malkiel upp det omtalade exemplet på hur en apa som kastar pil på en tavla genererar lika bra

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse

Läs mer

Matematisk statistik for B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Beskriva Data Florence Nightingale. Forel.

Matematisk statistik for B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Beskriva Data Florence Nightingale. Forel. Matematisk statistik for B, K, N, BME och Kemister asning Forel 1 Johan Lindstrom 29 augusti 2016 Johan Lindstr om - johanl@maths.lth.se FMS086/MASB02 F1 2/21 Till ampningar Matematisk statistik slumpens

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U. Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna

Läs mer

Går det att prognosticera skillnaden mellan kvinnlig och manlig livslängd?

Går det att prognosticera skillnaden mellan kvinnlig och manlig livslängd? Går det att prognosticera skillnaden mellan kvinnlig och manlig livslängd? Debatten om könsneutrala premier har pågått under en tid. För att kunna sätta av reserver inom försäkringsbranschen - vilket man

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Vetenskaplig Metod och Statistik. Maja Llena Garde Fysikum, SU Vetenskapens Hus

Vetenskaplig Metod och Statistik. Maja Llena Garde Fysikum, SU Vetenskapens Hus Vetenskaplig Metod och Statistik Maja Llena Garde Fysikum, SU Vetenskapens Hus 2010 10 20 Innehåll Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet?

Läs mer

Mer om slumpvariabler

Mer om slumpvariabler 1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde

Läs mer

Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet

Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet Anna Lindgren 30+31 augusti 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F1: Sannolikhet 1/27 Praktiska

Läs mer

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,

Läs mer

Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING

Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING När vi gör en regressionsanalys så bygger denna på vissa antaganden: Vi antar att vi dragit ett slumpmässigt sampel från en population

Läs mer

Föreläsning 6, Matematisk statistik Π + E

Föreläsning 6, Matematisk statistik Π + E Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik Statistik Statistik betyder ungefär sifferkunskap om staten Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information. Verkligheten

Läs mer

TMS136. Föreläsning 2

TMS136. Föreläsning 2 TMS136 Föreläsning 2 Sannolikheter För en händelse E skriver vi sannolikheten att E inträffar som P(E) För en händelse E skriver vi sannolikheten att E inte inträffar som P(E ) Exempel Låt E vara händelsen

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4 LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja

Läs mer

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande

Läs mer

Matematisk statistik - Slumpens matematik

Matematisk statistik - Slumpens matematik Matematisk Statistik Matematisk statistik är slumpens matematik. Började som en beskrivning av spel, chansen att få olika utfall. Brevväxling mellan Fermat och Pascal 1654. Modern matematisk statistik

Läs mer

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik

Läs mer

F22, Icke-parametriska metoder.

F22, Icke-parametriska metoder. Icke-parametriska metoder F22, Icke-parametriska metoder. Christian Tallberg Statistiska institutionen Stockholms universitet Tidigare när vi utfört inferens, dvs utifrån stickprov gjort konfidensintervall

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Livförsäkringsmatematik II. Erik Alm Hannover Life Re Sweden

Livförsäkringsmatematik II. Erik Alm Hannover Life Re Sweden Erik Alm Hannover Life Re Sweden Kostnader Initial kostnad, proportionell mot försäkringens storlek. Exempel: Provision till säljare Fasta initialkostnader (inte proportionell mot försäkringens storlek).

Läs mer

Kvantitativ strategi Univariat analys 2. Wieland Wermke

Kvantitativ strategi Univariat analys 2. Wieland Wermke + Kvantitativ strategi Univariat analys 2 Wieland Wermke + Sammanfattande mått: centralmått n Beroende på skalnivån finns det olika mått, som betecknar variablernas fördelning n Typvärde eller modalvärde

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 5 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

Mål C-236/09 Association belge des Consommateurs Test-Achats ASBL och andra mot Conseil des Ministres (Belgien)

Mål C-236/09 Association belge des Consommateurs Test-Achats ASBL och andra mot Conseil des Ministres (Belgien) Mål C-236/09 Association belge des Consommateurs Test-Achats ASBL och andra mot Conseil des Ministres (Belgien) Vladimir Bastidas Venegas Doktorand, SU Fakta Direktiv 2004/113 om likabehandling av män

Läs mer

Kap 3: Diskreta fördelningar

Kap 3: Diskreta fördelningar Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen

Läs mer

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tid: Måndagen den 2015-06-01, 8.30-12.30. Examinator och Jour: Olle Nerman, tel. 7723565, rum 3056, MV, Chalmers. Hjälpmedel: Valfri

Läs mer

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka. Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för

Läs mer

732G01/732G40 Grundläggande statistik (7.5hp)

732G01/732G40 Grundläggande statistik (7.5hp) 732G01/732G40 Grundläggande statistik (7.5hp) 2 Grundläggande statistik, 7.5 hp Mål: Kursens mål är att den studerande ska tillägna sig en översikt över centrala begrepp och betraktelsesätt inom statistik.

Läs mer

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Föreläsning 4 ffektiva marknader Påbyggnad/utveckling av lagen om ett pris ffektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Konsekvens: ndast ny information påverkar

Läs mer

Om erbjudandet för din pensionsförsäkring med traditionell förvaltning.

Om erbjudandet för din pensionsförsäkring med traditionell förvaltning. Om erbjudandet för din pensionsförsäkring med traditionell förvaltning. Friplan Länsplan Basplan Fakta om erbjudandet att ändra villkor till vår nya traditionella förvaltning Nya Trad Du har nu möjlighet

Läs mer

Regressionsmodellering inom sjukförsäkring

Regressionsmodellering inom sjukförsäkring Matematisk Statistik, KTH / SHB Capital Markets Aktuarieföreningen 4 februari 2014 Problembeskrivning Vi utgår från Försäkringsförbundets sjuklighetsundersökning och betraktar en portfölj av sjukförsäkringskontrakt.

Läs mer

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer

Läs mer

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Stokastiskavariabler Stokastisk variabel (eng: random variable) En variabel vars värde

Läs mer

Varför statistik? det finns inga dumma frågor, bara dumma svar! Serik Sagitov

Varför statistik? det finns inga dumma frågor, bara dumma svar! Serik Sagitov Summer Science Camp, Tjärnö, 8 August 2012 Varför statistik? Serik Sagitov http://www.math.chalmers.se/ serik/ Avdelningen för matematisk statistik Matematiska Vetenskaper Chalmers Tekniska Högskola och

Läs mer

PTK Rådgivningstjänst funktion och hur råden tas fram

PTK Rådgivningstjänst funktion och hur råden tas fram Datum 2010-04-08 PTK Rådgivningstjänst funktion och hur råden tas fram 1. Bakgrund PTK Rådgivningstjänst hjälper dig att säkerställa att du har ett pensionssparande och ett försäkringsskydd som motsvarar

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

Varför försäkringar?

Varför försäkringar? F5 - Försäkring 1 Varför försäkringar? Fullständig information, vad finns det då för skäl att försäkra sig? Osäkerhet (stokastiska utfall) Riskaversion => efterfrågan på försäkringar 2 Osäkerhet Livslängd

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013

Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013 Föreläsning 11 Slumpvandring och Brownsk Rörelse Patrik Zetterberg 11 januari 2013 1 / 1 Stokastiska Processer Vi har tidigare sett exempel på olika stokastiska processer: ARIMA - Kontinuerlig process

Läs mer

BERÄKNING AV KARAKTERISTISKA VÄRDEN laster, hållfasthet, öden (frekvensanalys)

BERÄKNING AV KARAKTERISTISKA VÄRDEN laster, hållfasthet, öden (frekvensanalys) Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF50: Matematisk statistik för L och V OH-bilder på föreläsning 1, 2017-10-30 BERÄKNING AV KARAKTERISTISKA VÄRDEN laster, hållfasthet, öden

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

Hur måttsätta osäkerheter?

Hur måttsätta osäkerheter? Geotekniska osäkerheter och deras hantering Hur måttsätta osäkerheter? Lars Olsson Geostatistik AB 11-04-07 Hur måttsätta osäkerheter _LO 1 Sannolikheter Vi måste kunna sätta mått på osäkerheterna för

Läs mer

SANNOLIKHET OCH SPEL

SANNOLIKHET OCH SPEL SANNOLIKHET OCH SPEL I ÖVNINGEN INGÅR ATT: Formulera, analysera och lösa matematiska problem samt värdera valda strategier, metoder och resultat (MA) Tolka en realistisk situation och utforma en matematisk

Läs mer

2 Dataanalys och beskrivande statistik

2 Dataanalys och beskrivande statistik 2 Dataanalys och beskrivande statistik Vad är data, och vad är statistik? Data är en samling fakta ur vilken man kan erhålla information. Statistik är vetenskapen (vissa skulle kalla det konst) om att

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, KORT OM BESKRIVANDE STATISTIK. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, KORT OM BESKRIVANDE STATISTIK. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 1 GRUNDLÄGGANDE SANNOLIKHETSTEORI, KORT OM BESKRIVANDE STATISTIK Tatjana Pavlenko 23 mars, 2015 KURSINFORMATION Blom m.fl. Sannolokhetsteori och statistikteori

Läs mer

Statistikens grunder (an, 7,5 hsp) Tatjana Nahtman Statistiska institutionen, SU

Statistikens grunder (an, 7,5 hsp) Tatjana Nahtman Statistiska institutionen, SU Statistikens grunder (an, 7,5 hsp) Tatjana Nahtman Statistiska institutionen, SU KURSENS INNEHÅLL Statistiken ger en empirisk grund för ekonomin. I denna kurs betonas statistikens idémässiga bakgrund och

Läs mer

Något om sannolikheter, slumpvariabler och slumpmässiga urval

Något om sannolikheter, slumpvariabler och slumpmässiga urval LINKÖPINGS UNIVERSITET Matematiska institutionen Statistik Stig Danielsson 004-0-3 Något om sannolikheter, slumpvariabler och slumpmässiga urval 1. Inledning Observerade data innehåller ofta någon form

Läs mer

Försäkringstekniska riktlinjer inom PP Pension Fondförsäkring AB

Försäkringstekniska riktlinjer inom PP Pension Fondförsäkring AB Försäkringstekniska riktlinjer inom PP Pension Fondförsäkring AB Fastställda av PP Pension Fondförsäkring AB:s styrelse 2010 03 23 Dessa försäkringstekniska riktlinjer träder i kraft den 24 mars 2010.

Läs mer

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval

Läs mer

4.2.1 Binomialfördelning

4.2.1 Binomialfördelning Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten

Läs mer

Livåterförsäkring II Lönsamhetsanalys

Livåterförsäkring II Lönsamhetsanalys Livåterförsäkring II Lönsamhetsanalys Erik Alm Livåterförsäkringschef Hannover Life Re Sweden Stockholm November 2007 Fondförsäkring Kostnader Nuvärde Portoföljtänkande Känslighetsanalys Tillstånd Portföljvärde

Läs mer

!! 1. Feminism för alla. Nu äntligen kan feminister få mer makt. Rösta på Feministiskt initiativ i valet 14 september!

!! 1. Feminism för alla. Nu äntligen kan feminister få mer makt. Rösta på Feministiskt initiativ i valet 14 september! Feminism för alla Nu äntligen kan feminister få mer makt. Rösta på Feministiskt initiativ i valet 14 september Vi har en feministisk politik som också arbetar med antirasism och mänskliga rättigheter.

Läs mer

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)

Läs mer

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två

Läs mer

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Hjälpmedel: Valfri räknare, egenhändigt handskriven formelsamling (4 A4-sidor på 2 blad) och till skrivningen medhörande tabeller. Onsdagen

Läs mer

Livförsäkringsmatematik II

Livförsäkringsmatematik II Livförsäkringsmatematik II Embedded value Erik Alm, Hannover Re 2013 Value Business in Force (portföljvärde) (andra benämningar finns) Nuvärde av framtida kassaflöde på existerande affär Eventuell framtida

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Om erbjudandet för din pensionsförsäkring med traditionell förvaltning.

Om erbjudandet för din pensionsförsäkring med traditionell förvaltning. Om erbjudandet för din pensionsförsäkring med traditionell förvaltning. Privat Pension Pensionskonto LRF MedlemsPension Fakta om erbjudandet att ändra villkor till vår nya traditionella förvaltning Nya

Läs mer

Stockholms Universitet Statistiska institutionen Termeh Shafie

Stockholms Universitet Statistiska institutionen Termeh Shafie Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade

Läs mer

Kap 2: Några grundläggande begrepp

Kap 2: Några grundläggande begrepp Kap 2: Några grundläggande begrepp Varför sannolikhetslära är viktigt? Vad menar vi med sannolikhetslära? Träddiagram? Vad är den klassiska, empiriska och subjektiva sannolikheten? Vad menar vi med de

Läs mer

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi

Läs mer

Lärare 1. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum

Lärare 1. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum Lärare 1 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum Lärare 2 Att utföra undersökningar Sneda statistiska underlag

Läs mer

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2 Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level

Läs mer

Att prissätta olika risker är inte diskriminering

Att prissätta olika risker är inte diskriminering 2011-11-22 Ståndpunkts-PM: Att prissätta olika risker är inte diskriminering 1 (9) Sammanfattning Privat försäkringsverksamhet handlar om att identifiera och prissätta risker. Riskbedömning är en metod

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:

Läs mer

Lotto, ett skicklighetsspel!

Lotto, ett skicklighetsspel! 79 Lotto, ett skicklighetsspel! Jan Grandell KTH 1. Inledning. Du håller nog med om att om man köper en lott så är det bara en fråga om tur om man vinner och hur mycket man vinner. På samma sätt håller

Läs mer

För din älskade. vovve Försäkring för hundar 1 januari 2009

För din älskade. vovve Försäkring för hundar 1 januari 2009 För din älskade vovve Försäkring för hundar 1 januari 2009 Hur mycket betyder din hund? Säkert är du mån om att din hund ska ha det bra. Det bästa du kan göra för att skydda den är att skaffa en riktigt

Läs mer

Blandade problem från elektro- och datateknik

Blandade problem från elektro- och datateknik Blandade problem från elektro- och datateknik Sannolikhetsteori (Kapitel 1-10) E1. En viss typ av elektroniska komponenter anses ha exponentialfördelade livslängder. Efter 3000 timmar brukar 90 % av komponenterna

Läs mer

Miniprojektuppgift i TSRT04: Femtal i Yatzy

Miniprojektuppgift i TSRT04: Femtal i Yatzy Miniprojektuppgift i TSRT04: Femtal i Yatzy 22 augusti 2016 1 Uppgift I tärningsspelet Yatzy används fem vanliga sexsidiga tärningar. Deltagarna slår tärningarna i tur och ordning och försöker få vissa

Läs mer

FÅ FRAM INDATA. När inga data finns!? Beslutsfattarens dilemma är att det är svårt att spå! Särskilt om framtiden!

FÅ FRAM INDATA. När inga data finns!? Beslutsfattarens dilemma är att det är svårt att spå! Särskilt om framtiden! FÅ FRAM INDATA När inga data finns!? Beslutsfattarens dilemma är att det är svårt att spå! Särskilt om framtiden! (Falstaff Fakir) Svårigheter att få fram bra information - en liten konversation Ge mig

Läs mer

Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning

Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning Slumpen och hur vi uppfattar den - med och utan tärning Ingemar Holgersson Högskolan Kristianstad grupper elever Gr, 7, 9 och. grupp lärarstudenter inriktning matematik Ca i varje grupp Gjord i Israel

Läs mer

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F5 Diskreta variabler Kursens mål beskriva/analysera data formellt verktyg strukturera omvärlden innehåll osäkerhet

Läs mer

Psykologi som vetenskap

Psykologi som vetenskap Psykologi som vetenskap Begrepp och metoder Forskningsetik Av Jenny Wikström, KI till Psykologprogrammet HT10 Kurslitteratur: Myers Psychology, Kap.1 Kurs: Introduktion till psykologi 7,5 hp Psykologi

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

1 Mätdata och statistik

1 Mätdata och statistik Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt

Läs mer

1. En kontinuerlig slumpvariabel X har följande täthetsfunktion (för någon konstant k). f.ö.

1. En kontinuerlig slumpvariabel X har följande täthetsfunktion (för någon konstant k). f.ö. UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för tekniska fysiker, MSTA6, 4p Peter Anton Per Arnqvist LÖSNINGSFÖRSLAG TILL TENTAMEN 7-- LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

LMA521: Statistisk kvalitetsstyrning

LMA521: Statistisk kvalitetsstyrning Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens

Läs mer

LMA521: Statistisk kvalitetsstyrning

LMA521: Statistisk kvalitetsstyrning Föreläsning 7 Föregående föreläsningar Acceptanskontroll: Enkel provtagningsplan Dubbel provtagningsplan Kontrollomfattning Styrande kontroll: Medelvärdesdiagram R-diagram/ s-diagram Felantalsdiagram Dagens

Läs mer

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER Statistiska institutionen Annika Tillander TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2015-04-23 Skrivtid: 16.00-21.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller text, samt bifogade

Läs mer