MATEMATISK FORMELSAMLING

Storlek: px
Starta visningen från sidan:

Download "MATEMATISK FORMELSAMLING"

Transkript

1 Avdelningen för matematik och ämnesdidaktik (MOD) MATEMATISK FORMELSAMLING UPPLAGA 5

2 Innehåll Notation, mängdlära och logik Algebra Komplexa tal Punkter, vektorer och plan i rummet Geometri Trigonometri Några standardgränsvärden Derivator Integraler Differentialekvationer Numeriska metoder Dubbel- och trippelintegraler Vektoranalys Sannolikhetslära Matematisk statistik Fördelningstabeller i

3 Notation, mängdlära och logik Mängder och tal tomma mängden, { } Z mängden av heltal, {...,,, 0,,,...} Z + mängden av positiva heltal, {,, 3,...} Z mängden av negativa heltal, {..., 3,, } N mängden av naturliga tal, {0,,,...} {x Z : P } mängden av alla x i Z som uppfyller egenskapen P {x Z P } samma som {x Z : P } Q mängden av rationella tal, {p/q : p, q Z, q 0} R mängden av reella tal R + mängden av positiva reella tal, {x R : x > 0} R mängden av negativa reella tal, {x R : x < 0} [a, b] det slutna intervallet från a till b, {x R : a x b} (a, b) det öppna intervallet från a till b, {x R : a < x < b} ]a, b[ samma som (a, b) C mängden av komplexa tal, {a + ib : a, b R} De positiva primtalen 00, 3, 5, 7,, 3, 7, 9, 3, 9, 3, 37, 4, 43, 47, 53, 59, 6, 67, 7, 73, 79, 83, 89, 97 Symboler från mängdlära A = B A är lika med B A B A är inte lika med B a A elementet a finns i mängden A a A elementet a finns inte i mängden A A B unionen av mängderna A och B, {x : x A eller x B} A B snittet av mängderna A och B, {x : x A och x B} A B skillnaden mellan mängderna A och B, dvs. {x A : x B} A \ B samma som A B B den komplementära mängden till B, det vill säga om B är en delmängd till den universella mängden U så är B = {x U : x B} B c samma som B A B A är en delmängd till B, x A x B A B A är en äkta delmängd till B, dvs. A B och A B A B den kartesiska produkten av mängderna A och B, dvs. mängden av alla ordnade par (a, b) sådana att a A och b B P(A) potensmängden till A, dvs. mängden av alla delmängder till A

4 Viktiga likheter inom mängdlära Associativa lagar: (A B) C = A (B C) (A B) C = A (B C) Kommutativa lagar: A B = B A A B = B A Distributiva lagar: A (B C) = (A B) (A C) A (B C) = (A B) (A C) De Morgans lagar: A B = A B A B = A B Logiska symboler p icke p p q p eller q p q p och q p q p implicerar/medför q p q p är ekvivalent med q Viktiga ekvivalenser inom logik Associativa lagar: (p q) r p (q r) (p q) r p (q r) Kommutativa lagar: p q q p p q q p Distributiva lagar: p (q r) (p q) (p r) p (q r) (p q) (p r) De Morgans lagar: (p q) p q (p q) p q Logiska ekvivalenser för bevisföring Att bevisa p q är ekvivalent med att bevisa p q och q p Att bevisa p q är ekvivalent med att bevisa q p

5 Algebra Symboler för relationer mellan tal a = b a är lika med b a b a är inte lika med b a < b a är (strikt) mindre än b a > b a är (strikt) större än b a b a är mindre än eller lika med b a b a är större än eller lika med b a b heltalet a delar heltalet b Viktiga likheter för aritmetik Associativa lagar: (a + b) + c = a + (b + c), (ab)c = a(bc) Kommutativa lagar: a + b = b + a, ab = ba Distributiva lagen: a(b + c) = ab + ac Lagen om nolldelare: Om ab = 0 så är a = 0 eller b = 0 Kvadreringsreglerna och konjugatregeln (a + b) = a + ab + b (a b) = a ab + b (a + b)(a b) = a b Kubregler (a + b) 3 = a 3 + 3a b + 3ab + b 3 (a b) 3 = a 3 3a b + 3ab b 3 Summor av kuber a 3 + b 3 = (a + b)(a ab + b ) a 3 b 3 = (a b)(a + ab + b ) Andragradspolynom Ekvationen x + px + q = 0 har rötterna x = p p + 4 q och x = p p 4 q där x + x = p och x x = q 3

6 Absolutbelopp x = { x om x 0 x om x < 0 Kvadratrötter a b = ab a 0, b 0 a a = b b a 0, b > 0 a b = a b b 0 Potenser x, y, a, b, reella tal a, b > 0, och n ett positivt heltal a x a y = a x+y a x b x = (ab) x a x a = ( ) y ax y a x y = a xy a x ( a ) x b = x b a x = a x a 0 = a n = n a Logaritmer För positiva reella tal x, y, a, b, där a, b gäller log a xy = log a x + log a y log a x y = log a x log a y log a x p = p log a x log a x = log b x log b a lg xy = lg x + lg y lg x y = lg x lg y lg x p = p lg x lg x = ln x ln 0 där a y = x y = log a x 0 y = x y = lg x e y = x y = ln x log 0 skrivs oftast lg log e skrivs oftast ln 4

7 Några summationsformler n r = r= n r = r= n r= n r=0 n(n + ) n(n + )(n + ) 6 r 3 = n (n + ) 4 x r = xn+, där det reella talet x x Binomialsatsen där n är ett positivt heltal, (a + b) n = ( ) n = r n r=0 ( ) n a r b n r r n!, n! = n(n ) 3 och 0! =. r!(n r)! 5

8 3 Komplexa tal Definition Ett komplext tal z kan skrivas z = a + ib där a och b är reella tal och i är ett tal som uppfyller i =. Talen z = a + ib och z = a ib kallas konjugerade. Belopp Beloppet z av z = a + ib är z = r = a + b Polär form z = r(cos ϕ + i sin ϕ) = re iϕ, där r = z och ϕ = arg(z) De Moivre z n = r n( cos(nϕ) + i sin(nϕ) ) = r n e inϕ Multiplikationsregler Om z = r e iϕ och z = r e iϕ så är z z = r r e i(ϕ +ϕ ) z = r e i(ϕ ϕ ) z r 6

9 4 Punkter, vektorer och plan i rummet Avståndet mellan punkterna (x, y, z ) och (x, y, z ) x x + y y + z z Avståndet från punkten (x, y, z ) till planet ax + by + cz = d ax + by + cz d a + b + c Normen (längden) av vektorn a = (a, a, a 3 ) a = a + a + a 3 Skalärprodukten av vektorerna a = (a, a, a 3 ) och b = (b, b, b 3 ) där α är vinkeln mellan a och b. a b = a b + a b + a 3 b 3 = a b cos α, Projektion av vektorn u på vektorn a proj a u = u a a a Cauchy Schwarz olikhet u v u v 7

10 5 Geometri Cirkel r cirkelns radie, A area, O omkrets A = πr O = πr Cirkelsektor r cirkelsektorns radie, ϕ cirkelsektorns vinkel, A area, L båglängd A = ϕr L = ϕr Pyramid B bottenarea, h höjd, V volym V = Bh 3 Rak cirkulär cylinder r radie, h höjd, S mantelarea (ytarea), V volym S = πrh V = πr h Rak cirkulär kon r radie, h höjd, s sida, S mantelarea (ytarea), V volym S = πrs V = πr h 3 Sfär r radie, S mantelarea (ytarea), V volym S = 4πr V = 4πr3 3 8

11 6 Trigonometri Rätvinklig triangel c b ϕ a sin ϕ = b c cos ϕ = a c tan ϕ = b a Enhetscirkeln (x P, y P ) P ϕ { xp = cos ϕ y P = sin ϕ tan ϕ = sin ϕ cos ϕ cot ϕ = cos ϕ sin ϕ 9

12 γ b a α c β Areasatsen för triangeln area = bc sin α Sinussatsen sin α a = sin β b = sin γ c Cosinussatsen a = b + c bc cos α Additionsreglerna sin(ϕ + ψ) = sin ϕ cos ψ + cos ϕ sin ψ sin(ϕ ψ) = sin ϕ cos ψ cos ϕ sin ψ cos(ϕ + ψ) = cos ϕ cos ψ sin ϕ sin ψ cos(ϕ ψ) = cos ϕ cos ψ + sin ϕ sin ψ Trigonometriska ettan sin ϕ + cos ϕ = Formlerna för dubbla vinkeln sin(ϕ) = sin ϕ cos ϕ cos(ϕ) = cos ϕ sin ϕ = cos ϕ = sin ϕ Uttryck på formen a sin x + b cos x a sin x + b cos x = r sin(x + y) där r = a + b, cos y = a r och sin y = b r 0

13 Några exakta värden för trigonometriska funktioner Vinkel ϕ grader radianer sin ϕ cos ϕ tan ϕ π/6 / 3 / 3 / 3 45 π/4 60 π/3 / / 3 / / 3 90 π/ 0 ej def. 0 π/3 35 3π/4 3 / / 3 / / 50 5π/6 / 3 / 3 / 3 80 π π/6 / 3 / 3 / 3 5 5π/4 / / 40 4π/3 3 / / π/ 0 ej def π/3 3 / / π/4 / / 330 π/6 / 3 / 3 / π 0 0

14 7 Några standardgränsvärden lim x ± x = 0 lim x 0± x = ± sin(x) lim x 0 x = lim x 0 cos(x) x ( lim + x x = e lim x x) n x e = 0 x = 0 e x lim x 0 x ln(x) lim x x = lim x 0 ln( + x) x = 0 =

15 8 Derivator Definition f (a) = lim h 0 f(a + h) f(a) h = lim x a f(x) f(a) x a Derivator av några funktioner Funktion Derivata x a ax a e x e x e ax ae ax a x, a > 0 x ln(x) log a (x) sin(x) a x ln(a) x x x ln(a) cos(x) cos(x) tan(x) arctan(x) arcsin(x) sin(x) cos (x) = + tan (x) + x x 3

16 Produktregeln ( f(x)g(x) ) = f (x)g(x) + f(x)g (x) Kvotregeln ( ) f(x) = f (x)g(x) f(x)g (x) ( ) g(x) g(x) Kedjeregeln h(x) = f ( g(x) ) h (x) = f ( g(x) ) g (x) Derivata av invers funktion d dx f (x) = f ( f (x) ) Taylors formel f(x) = f(a) + f (a)! (x a) + f (a)! för något tal ξ mellan x och a. (x a) + + f (n) (a) n! (x a) n + f (n+) (ξ) (x a)n+ (n + )! 4

17 9 Integraler Primitiva funktioner Funktion Primitiv funktion x a a + xa+ + c, a e x x sin(x) e x + c ln x + c cos(x) + c cos(x) cos (x) sin (x) x sin(x) + c tan(x) + c cot(x) + c arcsin(x) + c + x arctan(x) + c Partiell integration f (x)g(x) dx = f(x)g(x) f(x)g (x) dx Areaberäkning i polära koordinater A = β α ( f(θ) ) dθ 5

18 Rotationsvolymer Rotation kring x-axeln: Rotation kring y-axeln: V = π V = π b a b a ( f(x) ) dx xf(x) dx Båglängd s = s = s = b a b a β α (x (t) ) + ( y (t) ) dt x = x(t), y = y(t) + ( f (x) ) dx y = f(x) (f (θ) ) + ( f(θ) ) dθ r = f(θ), polära koordinater Rotationsytor Rotation kring x-axeln: Rotation kring y-axeln: A = π A = π b a b a f(x) + ( f (x) ) dx x + ( f (x) ) dx 6

19 0 Differentialekvationer Första ordningens linjära differentialekvationer Integrerande faktor till y + g(x)y = h(x) är e G(x), där G(x) = g(x) dx. Andra ordningens homogena linjära differentialekvationer Differentialekvationen y + ay + by = 0, där a och b är konstanter, har lösningar som ges av y = Ae r x + Be r x y = (Ax + B)e rx y = e αx( A cos(βx) + B sin(βx) ) om rötterna r och r till karaktäristiska ekvationen är reella och r r ; om rötterna r och r till karaktäristiska ekvationen är reella och r = r = r; om rötterna r = α+βi och r = α βi till karaktäristiska ekvationen inte är reella. 7

20 Numeriska metoder Approximering av lösning till ekvationen f(x) = 0 Newton-Raphsons metod: x n+ = x n f(x n) f (x n ) Numerisk integrering Trapetsmetoden: Mittpunktsmetoden: ( f(x0 ) T n = h + f(x ) + + f(x n ) + f(x ) n) ( ) M n = h f(m ) + + f(m n ) Approximering av lösningskurva till y = F (x, y), y(x 0 ) = y 0 { x n+ = x n + h Eulers metod: y n+ = y n + h f(x n, y n ) x n+ = x n + h Förbättring av Eulers metod: u n+ = y n + h f(x n, y n ) y n+ = y n + h f(x n, y n ) + f(x n+, u n+ ) 8

21 Dubbel- och trippelintegraler Dubbelintegraler över y -enkla områden För det begränsade området D givet genom a x b och f (x) y f + (x) b f+ (x) f(x, y) da = f(x, y) dy dx D a f (x) Variabelbyte i dubbelintegraler För en bijektiv transformation x = x(u, v) y = y(u, v) från ett område S i uv -planet till ett område D i xy -planet f(x, y) dx dy = f ( x(u, v), y(u, v) ) (x, y) (u, v) du dv där D S (x, y) (u, v) = det ( x u y u x v y v ). Polära koordinater x = r cos(θ) y = r sin(θ) dx dy = r dr dθ Cylindriska koordinater x = r cos(θ) y = r sin(θ) z = z dx dy dz = r dr dθ dz Sfäriska koordinater x = ρ sin(φ) cos(θ) y = ρ sin(φ) sin(θ) z = ρ cos(φ) dx dy dz = ρ sin(φ) dρ dφ dθ 9

22 3 Vektoranalys i = ( 0 ) ( 0, j = ) i R, och i = 0 0, j = 0 0, k = 0 0 i R 3 Linjeintegraler För en funktion f(x, y, z) och ett vektorfält F(x, y, z) = F (x, y, z)i + F (x, y, z)j + F 3 (x, y, z)k gäller f ds = b C a f ( r(t) ) dr dt (t) dt ( F dr = F (x, y, z) dx + F (x, y, z) dy + F 3 (x, y, z) dz ) C b ( ( )dx = F x(t), y(t), z(t) dt (t) + F ( )dy x(t), y(t), z(t) dt (t) C = a b a +F 3 ( x(t), y(t), z(t) )dz dt (t) F ( r(t) ) dr (t) dt dt ) dt där r(t) = x(t)i + y(t)j + z(t)k, a t b, är en parametrisering av kurvan C. Ytintegraler För en funktion f(x, y, z) och ett vektorfält F(x, y, z) = F (x, y, z)i + F (x, y, z)j + F 3 (x, y, z)k gäller f ds = S D f ( r(u, v) ) r u r v du dv S F ds = ± F ( r(u, v) ) ( r D u r ) du dv v där r(u, v), (u, v) D, är en slät parametrisering av ytan S. 0

23 Gradient, divergens och rotation = i x + j y + k z För ett vektorfält F(x, y, z) = F (x, y, z)i + F (x, y, z)j + F 3 (x, y, z)k och en funktion φ(x, y, z) grad φ = φ = φ x i + φ y j + φ z k div F = F = F x + F y + F 3 z ( F3 curl F = F = y F ) ( F i + z z F ) ( 3 F j + x x F ) k y Greens formel För ett vektorfält F(x, y) = F (x, y)i + F (x, y)j ( F (x, y) dx + F (x, y) dy ) = C D ( F x F ) da y där D är ett begränsat område i xy -planet med positivt orienterad rand C. Gauss divergenssats För ett vektorfält F(x, y, z) = F (x, y, z)i + F (x, y, z)j + F 3 (x, y, z)k div F dv = F ˆN ds V där ytan S är randen till det begränsade området V, orienterad så att ytans enhetsnormalvektor ˆN pekar ut från ytan. S Stokes sats För ett vektorfält F(x, y, z) = F (x, y, z)i + F (x, y, z)j + F 3 (x, y, z)k F dr = curl F ˆN ds C S där S är en orienterad yta med rand C och ˆN är enhetsnormalvektorn till ytan orienterad i enlighet med randkurvans orientering.

24 4 Sannolikhetslära Stokastiska variabler Varians: V (X) = E ( (X E(X)) ) = E(X ) ( E(X) ) Standardavvikelse: D(X) = V (X) Kovarians: C(X, Y ) = E ( (X E(X))(Y E(Y )) ) = E(XY ) E(X)E(Y ) Korrelationskoefficient: ρ(x, Y ) = C(X, Y ) D(X)D(Y ) Diskreta fördelningar Binomialfördelning: X Bin(N, p), där 0 < p < och N N, om ( ) N p X (k) = p k ( p) N k, k = 0,,,..., N. k E(X) = Np, V (X) = Np( p) För-första-gången -fördelning: X ffg(p), där 0 < p <, om p X (k) = p( p) k, k =,, 3,.... E(X) = p, V (X) = p p Hypergeometrisk fördelning: Låt 0 < p < och N, n N vara sådana att N, n < N och Np N. X Hyp(N, n, p) om p X (k) = ( Np )( N( p) k n k ) ( N n), 0 k Np, 0 n k N( p). E(X) = np, V (X) = np( p) N n N Poissonfördelning: X Po(µ), där µ > 0, om E(X) = µ, V (X) = µ p X (k) = µk k! e µ, k = 0,,,....

25 Kontinuerliga fördelningar Likformig fördelning: X U(a, b), där a < b, om för a < x < b f X (x) = b a 0 annars. E(X) = a + b (b a), V (X) = En likformig fördelning kallas även för Rektangelfördelning med beteckning R(a, b). Exponentialfördelning: X Exp(λ), där λ > 0, om { λe λx för x > 0 f X (x) = 0 annars. E(X) = λ, V (X) = λ Normalfördelning: X N(µ, σ), där µ R och σ > 0, om E(X) = µ, V (X) = σ f X (x) = σ (x µ) π e σ. Centrala gränsvärdessatsen Om X, X,..., X n är oberoende likafördelade stokastiska variabler med väntevärde µ och standardavvikelse σ, så är X = n X j n approximativt N ( µ, σ/ n ) för stora n. j= Approximation Hyp(N, n, p) är approximativt Bin(n, p), om n/n 0,. Bin(N, p) är approximativt Po(Np), om p 0,. Bin(N, p) är approximativt N ( Np, Np( p) ), om Np( p) 0. Po(µ) är approximativt N ( µ, µ ), om µ 5. 3

26 5 Matematisk statistik Beskrivande statistik Ogrupperad data x = xj n s = (xj x) = ( ) x j nx = ( x j ( ) ) xj n n n n Grupperad data x = fj y j n s = fj (y j x) = ( ) fj yj nx = ( fj yj ( ) ) fj y j n n n n Korrelationskoefficient r = (xj x)(y j y) (xj x) (y j y) = n x j y j x j yj n x j ( xj ) n y j ( yj ) Maximum-likelihood-metoden Låt X vara en stokastisk variabel vars fördelning beror av en okänd parameter θ. Låt x,..., x n vara observationer av oberoende stokastiska variabler X,..., X n med samma fördelning som X. Det värde θ obs L(θ) = { p X (x ; θ) p X (x n ; θ) som maximerar L -funktionen f X (x ; θ) f X (x n ; θ) i det diskreta fallet i det kontinuerliga fallet kallas Maximum-Likelihood-skattningen (ML-skattningen) av θ. Minsta-kvadrat-metoden Låt x,..., x n vara observationer av de oberoende stokastiska variablerna X,..., X n med samma varians. Antag vidare att E(X j ) = m j (θ), där θ är en okänd parameter. Det värde som minimerar kvadratsumman θ obs Q(θ) = n ( xj m j (θ) ) j= kallas Minsta-Kvadrat-skattningen (MK-skattningen) av θ. 4

27 Vanliga stickprovsvariabler Ett stickprov: Låt X,..., X n X = n vara oberoende stokastiska variabler som är likafördelade. n j= X j, S = n n (X j X) j= Om X,..., X n N(µ, σ) så gäller X µ σ/ n N(0, ), X µ S/ n t(n ) och n S χ (n ). σ Poolad variansskattning från två stickprov: Låt X,..., X n vara likafördelade och låt Y,..., Y n vara likafördelade. Samtliga stokastiska variabler antas vara oberoende och med samma varians σ. ( n ) S n = (X j X) + (Y j Y ) n + n Om X,..., X n N(µ, σ) och Y,..., Y n N(µ, σ) så gäller j= j= X Y (µ µ ) S /n + /n t(n + n ). Konfidensintervall Låt x,..., x n vara observationer av oberoende stokastiska variabler X,..., X n N(µ, σ). Konfidensintervall för µ : Ett tvåsidigt konfidensintervall med konfidensgraden α är x x σ n λ α/ µ x + σ n λ α/ s t α/ (n ) µ x + s t α/ (n ) n n när σ är känd, när σ är okänd. Konfidensintervall för σ : Ett tvåsidigt konfidensintervall med konfidensgraden α är n χ α/ (n ) s σ n χ α/ (n ) s. 5

28 Hypotesprövning Konfidensmetoden: Förkasta H 0 : θ = θ 0 på nivån α om θ 0 ej faller inom ett lämpligt valt konfidensintervall med konfidensgraden α. χ -test: Test av fördelning. Ett försök ger något av resultaten A,..., A r med respektive sannolikheter P (A ),..., P (A r ). Man har n stycken observationer där frekvensen för händelse A j är x j. Om H 0 är sann blir H 0 : P (A ) = p,..., P (A r ) = p r Q obs = r (x j np j ) ett utfall av en approximativt χ (r ) -fördelad stokastisk variabel. j= Tumregel för god approximation: np j 5 Homogenitetstest. Ett försök ger något av resultaten A,..., A r. Man har s stycken försöksserier. Inom den i:te serien har man n i stycken observationer och frekvensen x ij för händelsen A j. H 0 : Sannolikheterna för A,..., A r Om H 0 är sann blir np j serie A A A r antal försök x x x r n x x x r n.... s x s x s x sr n s summa m m m r n är desamma i alla försöksserier. Q obs = s r (x ij n i p j,obs ), där p n i p j,obs = m j /n, j,obs i= j= ett utfall av en approximativt χ ( (r )(s ) ) -fördelad stokastisk variabel. Tumregel för god approximation: n i p j,obs 5 6

29 Linjär regression Låt Y,..., Y n vara oberoende stokastiska variabler sådana att Y j N(α + βx j, σ) för j =,..., n. Skattad regressionslinje: y = αobs + β obsx med koefficienter som ges av β obs = S xy S xx, α obs = y β obsx, där S xy = S xx = n n (x j x)(y j y) = x j y j nxy = j= n (x j x) = j= n x j nx = j= j= j= n x j y j n j= n x j ( n ). x j n j= n j= x j n y j, j= Fördelningar: β = n j= (x j x)(y j Y ) n j= (x j x) N (β, σ / ) Sxx ( ) α = Y β x N α, σ + x n S xx 7

30 6 Fördelningstabeller Normalfördelning Tabellen ger sannolikheten Φ(x) = P (X x), där X N(0, ). För negativa x -värden använd relationen Φ( x) = Φ(x). x

31 Normalfördelning (forts.) Tabellen ger det λ α -värde för vilket P (X > λ α ) = α, där X N(0, ). α λ α α λ α Binomialfördelning Tabellen ger sannolikheten P (X x) för givet x, där X Bin(n, p). För p > 0.5 använd P (X x) = P (Y n x) där Y Bin(n, p). n x p

32 n x p

33 n x p

34 t -fördelning Tabellen ger det t α (f) -värde för vilket P ( X > t α (f) ) = α, där X t(f). f α

35 χ -fördelning Tabellen ger det χ α(f) -värde för vilket P ( X > χ α(f) ) = α, där X χ (f) f α

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING Avdelningen för ämnesdidaktik och matematik (DMA) Avdelningen för kvalitetsteknik, maskinteknik och matematik (KMM) MATEMATISK FORMELSAMLING UPPLAGA (Utkast aug, 0) Innehåll Notation, mängdlära och logik........................

Läs mer

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING Avdelningen för ämnesdidaktik och matematik (DMA) Avdelningen för kvalitetsteknik, maskinteknik och matematik (KMM) MATEMATISK FORMELSAMLING UPPLAGA 4 Innehåll Notation, mängdlära och logik........................

Läs mer

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING Institutionen för naturvetenska, teknik och matematik (NAT) Institutionen för teknik och hållbar utveckling (THU) MATEMATISK FORMELSAMLING UPPLAGA 2 Innehåll Notation, mängdlära och logik........................

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska

Läs mer

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler

Läs mer

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1

Läs mer

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65 Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................

Läs mer

Tentamen MVE085 Flervariabelanalys

Tentamen MVE085 Flervariabelanalys Tentamen MVE85 Flervariabelanalys 5--5 kl. 4. - 8. Examinator: Dennis Eriksson, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten

Läs mer

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren och

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren och KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24 och 24-25 25-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C = (5, 1).

Läs mer

Tentamen TMA044 Flervariabelanalys E2

Tentamen TMA044 Flervariabelanalys E2 Tentamen TMA44 Flervariabelanalys E 4--3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, halmers Telefonvakt: Elin Solberg, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan från

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004

5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004 KTH Matematik 5B4 Matematik och modeller Lösningsförslag till tentamen den oktober 4. Två av sidlängderna i en triangel är 8 m och m. En av vinklarna är 6. a) Bestäm alla möjliga värden för den tredje

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016 Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer). Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och

Läs mer

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm

Läs mer

1. En kortlek består av 52 kort, med fyra färger och 13 valörer i varje färg.

1. En kortlek består av 52 kort, med fyra färger och 13 valörer i varje färg. Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 1 juni, 16, Eklandagatan 86. Examinator: Marina Axelson-Fisk. Tel: 7-88113. Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte

Läs mer

Lösningsförslag, preliminär version 0.1, 23 januari 2018

Lösningsförslag, preliminär version 0.1, 23 januari 2018 Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet

Läs mer

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

v0.2, Högskolan i Skövde Tentamen i matematik

v0.2, Högskolan i Skövde Tentamen i matematik v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.

Läs mer

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2 Lösningsförslag till tentamen TMA3 Flervariabelanalys E2 23--6 kl. 8.3 2.3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Adam Andersson, telefon: 73 88 3 Hjälpmedel: bifogat

Läs mer

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Onsdagen den 5 mars 7 DEL A. I nedanstående rätvinkliga koordinatsystem är varje ruta en enhet lång. (a) Bestäm de rymdpolära

Läs mer

FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski

FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski FACIT för Förberedelseuppgifter: SF9 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 206 KL 4.00 9.00. Examinator: Timo Koski - - - - - - - - - - - - - - - - - - - - - - - - 0. FACIT Problem

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 12 januari 2005

5B1134 Matematik och modeller Lösningsförslag till tentamen den 12 januari 2005 KTH Matematik B Matematik modeller Lösningsförslag till tentamen den januari. a) I en triangel är två av sidlängderna 7 respektive 8 längdeneter vinkeln mellan dessa sidor är. Bestäm den tredje sidans

Läs mer

Lösning till kontrollskrivning 1A

Lösning till kontrollskrivning 1A KTH Matematik Olle Stormark Lösning till kontrollskrivning 1A i SF1626 Flervariabelanalys för E, vt 28. Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 5 poäng sammanlagt. 1. Funktionen f(x,

Läs mer

Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A

Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Tisdagen den januari 7 DEL A. En partikel rör sig så att positionen efter starten ges av (x, y, z (t cos t, t sin t, t

Läs mer

Läsanvisningar till: R.A. Adams, Calculus, a Complete Course, 4th ed.

Läsanvisningar till: R.A. Adams, Calculus, a Complete Course, 4th ed. Läsanvisningar till: R.A. Adams, Calculus, a Complete Course, 4th ed. Del 2 (funktioner av flera variabler). Omfattning: Kapitel 8.2, 8.3 t.o.m. s 497, 8.4, endast båglängd, 8.5 tom s. 506, 10.1, 10.5,

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den januari 27 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan

Läs mer

SF1620 (5B1134) Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under tiden

SF1620 (5B1134) Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under tiden KTH Matematik 1 SF162 (5B1134) Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under tiden 23-26 27-8-31 1 Geometri med trigonometri Övning 1.1 Rita upp triangeln ABC med A = (1,

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x),

4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x), Lunds Tekniska Högskola Matematik Helsingborg Lösningar Analys, FMAA5 9-8-9. a) e sinx) cosx) dx e sinx) + C. b) 4x dx polynomdivision] x + x + x + dx x x + ] ln x + + ) ln) + ) ln) ln). c) Trigonometriska

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 16-8-18 DEL A 1. Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x och y =

Läs mer

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik

Läs mer

Tentamen TMA044 Flervariabelanalys E2

Tentamen TMA044 Flervariabelanalys E2 Tentamen TMA44 Flervariabelanalys E 5-- kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Gustav Kettil, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan från

Läs mer

x ( f u 2y + f v 2x) xy = 24 och C = f

x ( f u 2y + f v 2x) xy = 24 och C = f Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 13 januari T = 1 ab sin γ. b sin β = , 956 0, 695 0, 891

5B1134 Matematik och modeller Lösningsförslag till tentamen den 13 januari T = 1 ab sin γ. b sin β = , 956 0, 695 0, 891 KTH Matematik 5B1134 Matematik modeller Lösningsförslag till tentamen den 13 januari 6 1. a) Bestäm sidlängderna i en triangel med vinklarna 44, 63 73 om arean av triangeln är 64 cm. Ange svaren som närmevärden

Läs mer

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24, 24-25 och 25-26 26-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C =

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska

Läs mer

Meningslöst nonsens. December 14, 2014

Meningslöst nonsens. December 14, 2014 December 4, 204 Fråga. Hur visar man att sin(x) x tan(x)? Fråga. Hur visar man att sin(x) x tan(x)? Fråga 2. Hur visar man att a > lim n a n =? Fråga 2. Hur visar man att a > lim n a n =? Röd: Det är ett

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1

Instuderingsfrågor för Endimensionell analys kurs B1 Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Johan Lindström Repetition Johan Lindström - johanl@maths.lth.se FMS86/MASB2 1/44 Begrepp S.V. Fördelning Väntevärde Gauss CGS Grundläggande begrepp (Kap.

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1 2011

Instuderingsfrågor för Endimensionell analys kurs B1 2011 Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp

Läs mer

Tentamen i Flervariabelanalys, MVE , π, kl

Tentamen i Flervariabelanalys, MVE , π, kl Tentamen i Flervariabelanalys, MVE35 216-3-14, π, kl. 14.-18. Hjälpmedel: Inga, ej räknedosa. Telefon: anknytning 5325 Telefonvakt: Raad Salman För godkänt krävs minst 2 poäng. Betyg 3: 2-29 poäng, betyg

Läs mer

Omtentamen (med lösningar) MVE085 Flervariabelanalys

Omtentamen (med lösningar) MVE085 Flervariabelanalys Omtentamen (med lösningar) MVE85 Flervariabelanalys 26--4 kl. 8.3 2.3 Examinator: Dennis Eriksson, Matematiska vetenskaper, Chalmers Telefonvakt: Anna Persson, telefon: 73 88 34 Hjälpmedel: endast bifogat

Läs mer

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi A1:an Repetition Philip Larsson 6 april 013 1 Kapitel 1. Grundläggande begrepp och terminologi 1.1 Delmängd Om ändpunkterna ska räknas med används symbolerna [ ] och raka sträck. Om ändpunkterna inte skall

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A SF669 Matematisk och numerisk anals II Lösningsförslag till tentamen 7-3-5 DEL A. I nedanstående rätvinkliga koordinatsstem är varje ruta en enhet lång. (a) Bestäm de rmdpolära (sfäriska) koordinaterna

Läs mer

Repetitionsföreläsning

Repetitionsföreläsning Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson

Läs mer

Tentamen MVE085 Flervariabelanalys

Tentamen MVE085 Flervariabelanalys Tentamen MVE85 Flervariabelanalys 28-8-3 kl. 8.32.3 Examinator: Dennis Eriksson, Matematiska vetenskaper, Chalmers Telefonvakt: Felix Held, telefon: 6792 Hjälpmedel: bifogat formelblad, ej räknedosa För

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017 Institutionen för matematik SF66 Flervariabelanalys Tentamen Onsdagen den 5 mars 7 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanalys Lösningsförslag till tentamen 4-3-7 EL A. Betrakta funktionen f, y y. a Beräkna riktningsderivatan av f i punkten, i den riktning som ges av vektorn 4, 3. p b Finns det någon riktning

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE , kl

Tentamen i Flervariabelanalys F/TM, MVE , kl Tentamen i Flervariabelanalys F/TM, MVE35 26-4-2, kl. 4-8 Hjälpmedel: Inga, ej räknedosa. Telefon: anknytning 5325 Telefonvakt: Edvin Wedin För godkänt krävs minst 2 poäng. Betyg 3: 2-29.5 poäng, betyg

Läs mer

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar

Läs mer

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Torsdagen den 2 augusti 215 Skrivtid: 8:-1: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall

Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F9: Konfidensintervall 1/19 Stickprov & Skattning Ett stickprov, x 1, x 2,...,

Läs mer

AB2.5: Ytor och ytintegraler. Gauss divergenssats

AB2.5: Ytor och ytintegraler. Gauss divergenssats AB2.5: Ytor och ytintegraler. Gauss divergenssats Ytor på parameterform Låt xyz vara ett cartesiskt koordinatsystem i rummet. En yta på parameterform ges av tre ekvationer x = x(u, v), y = y(u, v), z =

Läs mer

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Campus och distans Flervariabelanalys mag ATM-Matematik Mikael Forsberg och Yury Shestopalov (Mikael Forsberg)

Campus och distans Flervariabelanalys mag ATM-Matematik Mikael Forsberg och Yury Shestopalov (Mikael Forsberg) ATM-Matematik Mikael Forsberg och Yury Shestopalov 734-4 3 3 (Mikael Forsberg) Campus och distans Flervariabelanalys mag3 7 6 5 Skrivtid: 9:-4:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 11 Johan Lindström 13 november 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F11 1/25 Repetition Stickprov & Skattning Maximum likelihood

Läs mer

AB2.4: Kurvintegraler. Greens formel i planet

AB2.4: Kurvintegraler. Greens formel i planet AB2.4: Kurvintegraler. Greens formel i planet Kurvintegralener Kurvor på parameterform Låt xyz vara ett cartesiskt koordinatsystem i rummet. En rymdkurva på parameterform ges av tre ekvationer x = x(t),

Läs mer

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1)

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1) ATM-Matematik Mikael Forsberg 734 41 3 31 Flervariabelanalys mag31 1669 Skrivtid: 9:-14:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Algebra Negativa tal, Parenteser, Potenser, Bråk, Kvadreringsreglerna, Konjugatregeln

Algebra Negativa tal, Parenteser, Potenser, Bråk, Kvadreringsreglerna, Konjugatregeln Bastermin HT, Matematik Högskolan i Halmstad Version 00-08-0/0-08-5 Bertil Nilsson/Mats Gunnarsson Häfte A Algebra Negativa tal, Parenteser, Potenser, Bråk, Kvadreringsreglerna, Konjugatregeln. Förenkla

Läs mer

LUNDS TEKNISKA HÖGSKOLA MATEMATIK. LÖSNINGAR FLERDIMENSIONELL ANALYS, FMA kl 8 13

LUNDS TEKNISKA HÖGSKOLA MATEMATIK. LÖSNINGAR FLERDIMENSIONELL ANALYS, FMA kl 8 13 LUNS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR FLERIMENSIONELL ANALYS, FMA40 04-0- kl 8. Vi börjar med att rita triangelskivan. Linjen genom, och, har ekvationen y x+, linjen genom, och, har ekvationen y 4

Läs mer

Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall

Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Anna Lindgren 7+8 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F11: Konfidensintervall 1/19 Stickprov & Skattning Ett

Läs mer

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 24-8-2 DEL A. Bestäm och skissera definitionsmängden till funktionen fx, y) = x 2 + y 2 + 2x 4y + + x. Är definitionsmängden kompakt? 4 p) Lösning.

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion Avd. Matematisk statistik TENTAMEN I 5B57 MATEMATISK STATISTIK FÖR T och M ONSDAGEN DEN 9 OKTOBER 25 KL 8. 3.. Examinator: Jan Enger, tel. 79 734. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

9. Konfidensintervall vid normalfördelning

9. Konfidensintervall vid normalfördelning TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE31 Sannolikhet, statistik och risk 218-1-12 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016

Läs mer

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.) Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 KTH Matematik 5B114 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 1. a) Om två av sidorna i en triangel är 5 meter respektive 6 meter. Vilka längder på den tredje sidans längd

Läs mer

Kontrollskrivning KS1T

Kontrollskrivning KS1T Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski 15.09.2008 Jan Grandell &

Läs mer

Föreläsning 11, FMSF45 Konfidensintervall

Föreläsning 11, FMSF45 Konfidensintervall Repetition Konfidensintervall I Fördelningar Konfidensintervall II Föreläsning 11, FMSF45 Konfidensintervall Stas Volkov 2017-11-7 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F11: Konfidensintervall

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-8- EL A 1. Betrakta funktionen f som är definierad i området där x + y genom f(x, y, z) x z x + y. (a) Beräkna gradienten f(x, y, z). (1 p) (b)

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Tentamen i Matematisk Statistik, 7.5 hp

Tentamen i Matematisk Statistik, 7.5 hp Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tentamen i Flervariabelanalys F/TM, MVE5 kl.. 8.. jälmedel: Inga, ej räknedosa. Telefon: Lennart Falk, 77 56 För godkänt krävs minst oäng. Betyg : -5 oäng, betyg : 6-7 oäng, betyg 5: 8 oäng eller mera.

Läs mer

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 26-3-2 DEL A. Låt D vara fyrhörningen med hörn i punkterna, ), 6, ),, 5) och 4, 5). a) Skissera fyrhörningen D och beräkna dess area. p) b) Bestäm

Läs mer

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Anna Lindgren 27+28 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F6: linjärkombinationer 1/21 sum/max/min V.v./var Summa av

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF194 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 1 AUGUSTI 019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer