% &C6D% &E>>):D4 F GIHJGLKMONQPRKTSVUXW Y[Z]\8 &4^>_\0%"à&b+ & c % &C6D% &E>>):D4 F GIHJGLKMONQPRKTSVUXW Y[Z]\8 &4^>_\0%"à&b+ & c

Postadress: Internet: Matematisk statistik Matematiska institutionen Stockholms universitet Stockholm Sverige

Storlek: px
Starta visningen från sidan:

Download "Postadress: Internet: Matematisk statistik Matematiska institutionen Stockholms universitet 106 91 Stockholm Sverige"

Transkript

1 "!# " $ % &('*),+.-0/0%'&%3) &(' 9;:<6=)?> % &C6D% &E>>):D4 F GIHJGLKMONQPRKTSVUXW Y[Z]\8 &4^>_\0%"à&b+ & c<d<daegfh jlkjkjmon5prq5ptsutjvwrt

2 Postadress: Matematsk statstk Matematska nsttutonen Stockholms unverstet 06 9 Stockholm Sverge Internet:

3 !#" $% '&%(%(*)*+ / ,.- %7 97 P QSRTNUA5VFCWA5VWX ;>=YNU;Z=[V\V]A5R^L _[` a`cbedgfhjbmk\lm noo bmlqpsrutvtxw y{z} ~ z} Z z 6 ƒ J Z ˆ 5 }ŠŒ.ŠŽ v ' 9 H v 5.. ' 6 H ' 6 š4 ' 6 œšm 6 š ' ' # ž. 5 ' ' ŸU c 6š4š '. 5 8 Ž 6 4 j ˆ 5š#jY ' 6 ˆ 5 Œ. '.. O ' 6 š4 D ŠM K. 5 8 Ž. 6. j[ ˆ 6š#j j. 5 #ŠŽ T # 5 '. œ }Š8 Ž 'Ÿ š4 ' Ž 4 9 # 6 ' 6. 4 ' œ ª #Š8ŸH ŠŽ œÿ^ 6œ 5 «' 6 5 #ŠŽš 4 s #Š8 Tš4. Ž.ŠUŸ^ c 5š4š 6 x j ˆ S Ÿ^ Ž # ' 6.ŠŽ Š8 š 4 Ž 5š4 c c s.š8 # Ž. 6 9 # S c ž '.ŸUŠ s # ' Š± Ž ² 5 8ŠŽš 6 Š± eÿu c 6š4š 8Š8šq ³Y 6 5 #ŠŽ S µsš8 # TŠ8 8 Ž YŸ^ 5 Ž Ž ls ŠŽš4 6 4 O. 'Ÿ. '. # 5. 4 Ÿ ' ¹ 9 # 5 º[. MŠ8š4 ' '.ŸU 5 x x» 5 4 ' ± Ž Y¼] 6 6 ŠŽ 8 Ž ' Š #Š Š8 Š8š4 5 Š # 6 Ž '. 6 Ž Š8. 6 ' ' ŠŽš 8ŠŽ 4Š8 š #ŠŽŸI ˆ ' 8Š8. 4 v 5š. #ŠŽ 9 '.ŸUŠ # ' x Fµ[ 6. }ŠŽš4ŠŽ }ŠŽš ć I ŠŽ 6 W½ ŠŽ 9 ¾Ž 5 O 6 5 HŠ8 š4 s 5 6 #Š8 ± ˆ 5š j j j ¾ 5 ± }Š ŠŽ 5 MÀ> } Ž. 5. v ' 9 8ŠŽ ŠŽ v 5š4 ŸU }ŠO 5. ¹š ¾Ž v S ŠŽš4Š8 # [ # š4š ŠŽ ŠÁ 6šš4 5 s * 5 jµ[ 6 š #Š8 # 5 ^. 8Ÿ^ ' sÿ^ 6 9 # 6 º[ 4 MŠŽš ' ' #Ÿ^ 5 K #k ³ kj kc. 6 º[ 4. 6ŠŽš4 Ž '. #Ÿ^ 5 ŸU 5 ¹š 4 Ž 6š c s #Š # Ž. 6 > c ¹ Ž '. 9 8ŠŽš 4 5 #Š8 >. '. # 5. 4 Ÿ ' 5 [ ' cšá 6. š Š M Ã. 6 O #¾8 5 K } 8 ŠÁŸ^ c 5š4š 6. Š. Š8 6 Ä}Å ÆŽÇ5ÈÉʃƎË*ÉË9Ì.Í ÎÏŽÇSÌЃÑÓÒ Ô\ÈqË9Î9Ð8Õ Ö Í *Î5ÍMØJÕDÐ ÙÚËÙ ÕDÌËSʃÛx܃ÇSÖYÕSÈ>ØZÝ5ÞSÚ߃Р٠Í

4 5 ƒz Ž Y ^ 6 v ' ^ v 5 ^ # S ' 6š ' Ÿ^ 6 U Ž Šž 6 6 U 6 ' 4 Ÿ^ c 5šY. š4 s '. 4 Œ 6 Ž Ž x \ŠŽ OjU ' ' 5 KŠ 4 9 # '. Œ ' #š4 B Ž I '. \ŠŽ Oj j v 5 Tš4 ' Ž 4 9 # Á. 6 Ž. 6. ' ~ 4. 6 Ž # c H Ž ª # U ' 6 5 #ŠŽš 5 6š4 6ŠŽ ¹Ÿ^ c 6šq Y U ŠŽš4 5 6 U Ž ª. Uš4 Ž 6š c c s%.š8. # 5 ± # K 4 Ž.ŸUŠ8. ' ž 6 # 5. 4ŠO 4 ¹ŸU 8 # s 8Š # 6 { ³Y 6 5 #ŠŽ S 4 Œ Á. 6 «º[. «5. ' ls ŠŽš4 }Š8. 4 Ž œšž ^Šž. ' s 6. # 5. 4 Ž ~ ' #. 6 º[ 4. KŠŽš4 ' Ž.. Ÿ J» 6 ' ^ Ž ¼] 6 6 K Á. 5 #. 5 5 # O c ŸT v 6 Ž MŠ8. 6 ' Ž. 4 5 U 4 6Š8 # 5 ' '. MŠŽšª 8ŠŽ ŠŽ š 6 UŠ8 Ž ^ ŠŽ. 4ŠŽ š O. #ŠŽ 9 '.ŸUŠ8. 4 Ž x Y ŠŽ ŠŽšć. [ 8 \. 6 4 ŠŽš4 Y 4 [. 5. 6x Y ±ŠŽ v ' sÿu 5 # ' 5 4 MŠŽ sšž 4 \Š8 j j j ŠŽ š4 6. BŠK }Š8 #ŠŽ. S MÀZº[ v Ž. 8Š8. Š8 š4 Á 4 4 6Š8 # 5 ¹º[ S # 5 HŠKš ŠŽ ºªŠ8 ˆ 6 }Š8 4K ' s Ž 6 Y I 6. š ¹ 6 'Ÿ^ }ŠŽ 6 º[ #. ±. 6 ºY 4. ;s*šžš ' ' # Ÿ k ³ kj Y T. 6 º[ 4. HŠŽš4 Ž '.. Ÿ º[. Bš4 Ž 6š4 c c s.š8. ^. 6. ŠŽ Œ 6 '. s 8Š8š4 4Š8 # 5. ' s 6. # 5. ' K. ƒº[ ' c câ v 5 ' Ÿ ŠŽ 6 8 W. ŠŽ 4š *é 'Ÿ. I v 6 9 Ÿ^ c 6šF 5 # Ÿ Š # 6 { ˆ 5 }ŠO #Š8 v ' # Ž ' ŸU. Š8ŸU 5 #Š8. v 5. ^!KŠ8 # 5Ÿ Š8. 4 Bkc Š # 4 9 # }¾Oprne j s Ž œ.¾ž kc. c D 'šÿ^ ' 6. # 5 6Àª c D ŠM c.š ŠŽ eÿu Ÿ Š8 ' 4 9 # 5.. 4š ~ ¾ Š # 6ŸUŠ8. 4. s% Š8 Š8š4 Ž '. Uš4 Ž kc # ' 9 F #ŠŽ # 6š 6 }ŠY ' Z # Ž F #¾Žš Š8ŸU c ±. 4š4š& Y ŽŸ ŠŽ ' Žš4 ¹ }¾.kc # c s Žš4Ÿ^ "s ' [ Ž Y 4 4 # 9 š4š{ }Š8 š4 5 p

5 Innehåll Inlednng... 4 Del I. Kredtvärderngens hstora... 5 Kredtmarknaden fram tll Statstsk kredtvärderng... 5 Del II. Teoretska resultat... 8 Logstsk regresson... 8 Den generalserade lnjära regressonsmodellen... Maxmum-lkelhoodmetoden... Maxmum-lkelhoodmetoden för logstsk regresson... 4 Defnton av lkelhoodfunktonen för den logstska regressonsmodellen... 4 Maxmerng av lkelhoodfunktonen för den logstska regressonsmodellen... 4 Asymptotska resultat för den logstska regressonsmodellen... 5 Lkelhood-ratotestet... 6 Modellval... 7 Stepwsealgortmen... 7 Informatonskrtera... 9 Informatonskrtera stepwsealgortmen... Modellvalderng... Korsvalderng... 4 Korsvalderng och stepwsealgortmen... 4 Resdualer... 4 Förbehandlng av kategoralvarabler... 6 WoE-kodnng... 7 Del III. Modellerngsexempel... 8 Databerednng... 8 Datakarakterstk... 8 Bevljnngsprocess... 9 Tllvägagångssätt vd betalnngsförsummelse Defnton av ett bra, dålgt samt obestämt kontrakt Tdga observatoner... 3 Lån avslutade av andra anlednngar än försummelse... 3 Sammanfattnng, uteslutna lån... 3 Identfkaton av felaktga data Hanterng av saknade data Förbehandlng av varabler Kategoralvarabler Intervallvarabler Modellerng Modellerngsresultat: Kontroller av modellen... 4 Orsaker tll lågt AR... 4 Studum av resdualer... 4 Modellvalderng Jämförelse med det generska scorekortet Appendx - Alternatva ansatser Ltteratur

6 Inlednng Ordet kredt kommer från latnets credo, som betyder att tro. En långvare lånar ut pengar tll en låntagare tro att han kommer betala tllbaka lånet. Låntagaren betalar emellertd nte alltd tllbaka, så långvaren försöker därför uppskatta rsken av att låntagaren nte betalar tllbaka lånet nnan pengarna är utlånade. Långvaren bevljar endast lånet tll dem, som han tror kommer betala tllbaka tllräcklgt mycket av lånet för att han ska gå med vnst. Statstska modeller används fltgt nom fnanssektorn. Ett av tllämpnngsområdena är credt scorng, eller kredtvärderng. Kredtvärderng syftar tll att förutsäga sannolkheten att en klent kommer att betala tllbaka det lån han söker tll. Förbättrad kredtvärderng ger företaget högre nkomster för samma låneprodukt, eftersom företaget antngen kan acceptera fler ansöknngar med bbehållen rsknvå eller sänka förlusterna med bbehållen acceptatonsnvå. Företag med god kredtvärderng kan tllåta sg att erbjuda en enskld konsument lån med lägre ränta än konkurrenterna med samma vnstmargnal som konkurrenterna. På skt kan förbättrad kredtvärderng förväntas ge lägre ränta för konsumenten. 4

7 Del I. Kredtvärderngens hstora Kredtmarknaden fram tll 950 I början 800-talet var största delen av Sverges nvånare bönder. Banker bevljade endast lån tll välbärgade. Insttutonella lån från olka kassor, som fattgkassan eller kyrkokassan, förekom lten skala. 800-talets lantbrukare lånade mest nom socknen eller av den lokala lanthandlaren. Lantbrukarna brukade nte flytta och handlaren hade det svårt att vnna nya kunder utanför stt handelsområde, då vägar och kommunkatoner fungerade dålgt. När lantbrukarna behövde pengar tll utsäde på våren gav lanthandlaren eller en vän kredt. Efter skörden på hösten betalade man tllbaka, förutsatt att skörden blev den förväntade. Detta samarbete fungerade tack vare nskten om att man hade ett gemensamt hjälpbehov. Det var vanlgt att man både var gäldenär och borgenär på samma gång. Indrvnng skedde sällan. Handlarna och köpmännen bevljade nästan uteslutande kredt tll folk de kände väl. De hade förstahandsnformaton om sna kunders fnanser, och kunde vara säkra på vem som hade god rskprofl. När skörden slog fel, eller gäldenären dog, hände det dock ofta att handlaren gck konkurs. Från slutet av 800-talet tll 950, skedde en massv nflyttnng tll storstäderna. Andelen jordbrukare mnskade och andelen arbetare tllverknngsndustrn växte kraftgt. Sverge gck från att vara ett fattgt lantbruksland tll att bl ett välmående folkhem. 800-talets kredtmarknad var baserad på ömsesdgt beroende, god nskt låntagarens fnanser, säsongsbundna nkomster och på en geografskt begränsad marknad. I och med den stora nflyttnngen tll städerna och den ökade moblteten bröts som ndustralserngen nnebar slutade lånemodellen från 800-talet att fungera. Långvarens nsyn låntagarens ekonom var begränsad och nkomsterna var nte längre säsongsbundna. Under början av 900-talet var de vanlgaste kredtnsttutonerna pantbanken och den lokala lånehajen. Pantbanken gav lån mot säkerhet. Lantbrukarens höstskörd ersattes med slver, smycken eller andra ägodelar. Lånehajen lånade ut pengar utan säkerhet men tll hög ränta. Den som nte betalade kunde råka lla ut. Allt eftersom levnadsstandarden ökade Sverge, stadsbefolknngen stablserades och masstllverknngen tog fart, uppkom också en reguljär lånemarknad. Efter krget blev det vanlgare att ta amorterngslån för möbel- och fordonsnköp. Räntenvån för lån utan säkerhet var fortfarande hög. Statstsk kredtvärderng Grundaren tll statstskt baserad kredtvärderng USA anses vara Davd Durand. I sn artkel från 94, Rsk elements n consumer nstalment fnancng (Durand, 94) använde Durand dskrmnantanalys för att bedöma rsk för betalnngsförsummelse hos konsumentlån. 5

8 Dskrmnantanalysen hade utvecklats av Ronald Fsher fem år tdgare när han studerade karakterstska parametrar för olka typer av rs hos blommor och den geografska härkomsten för olka typer av kranum. Vd samma td hade postorderfrmor och fnansföretag problem med att bedöma låneansöknngar. Flertalet rskanalytker hade lämnat sna arbeten för att tjäna som soldater under andra världskrget. Det fanns nte tllräcklgt med folk som kunde bedöma betalnngsförmågan hos klenterna. Innan rskanalytkerna gck ut krget skrev de ned tumregler för kredtbedömnng. Dessa regler användes sedan av lekmän för att bevlja eller avvsa kredtansöknngar, och utgjorde ett av de första exemplen på ett expertsystem. 956 grundades det första konsultbolaget för rskvärderng av Bll Far och Earl Isaac, som sålde tumregler för kredtvärderng baserade på dskrmnantanalys tll postorder- och fnansföretag, så kallade scorekort. Förklarande parametrar dessa scorekort var t.ex. nkomst, ålder och utbldnng. Varje nvå hos respektve parameter hade ett Ronald Fsher antal poäng, som representerade vkterna dskrmnantfunktonen. Poängen sammanräknades, och om poängsumman var högre än en bestämd konstant, en s.k. cut-off, var rsken för uteblven återbetalnng acceptabel och lånet bevljades. Tabell är ett exempel på ett scorekort. Enlgt detta scorekort får en 30-årg manlg akademker 50 poäng (0 för ålder, 30 för yrke och 0 för kön), vlket är mer än cut-off på 40 poäng. Hans låneansökan blr sålunda bevljad. En 0-årg kvnnlg försäljare får enlgt samma tabell 5 poäng. Hennes ansökan blr avvsad. Statstska scorekort ersatte rskbedömnngen som långvaren tdgare var utförde med hjälp av stt goda omdöme. Rskanalyser massproducerades och antalet försummade lån sjönk med 50% tll följd av den förbättrade kvalteten på rskanalysen, som scorekorten medförde. Räntenvån sänktes med p.g.a. den lägre rsknvån. Tabell. Exempel på ett scorekort Kredtbyråer var den andra nödvändga förutsättnngen för att man den ndustralserade världen skulle kunna erhålla samma nformaton som handelsmannen byn tdgare hade tllgänglg för att bedöma om han skulle låna ut pengar tll en kund eller ej. Det fanns gott om kunder som nte betalade tllbaka sna lån. Dessa kunde ta lån olka banker, utan att betala tllbaka. Tdgt uppkom en nskt om att kredtnsttutonerna hade ett gemensamt ntresse av att dela med sg nformaton om dålga och bra kunder. De första större kredtregstren uppkom USA på 960-talet. De utgjorde en lösnng som koperade den lokala handelsmannens nformaton om bynnevånarna. Kredtregstren var den moderna världens svar på byskvallret. Personer som nte betalade tllbaka stt lån regstrerades Blden på Ronald Fsher är hämtad från: 6

9 kredtregstret. När samma person sökte stt nästa lån kunde lånensttutonen begära ut en regsterutskrft som vsade att kunden hade försummat att betala stt tdgare lån. En sådan person fck det svårt att få stt nästa lån bevljat. Å andra sdan var det lättare att få lån om man betalat sna tdgare lån utan dröjsmål. På 80-talet snabbades kredtbedömnngsprocessen upp med datorernas ntrång. Scorekort automatserades och kunden kunde omedelbart få besked om huruvda hans lån var bevljat eller ej. Dskrmnantanalysen byttes ut mot den något robustare men mer beräknngsntensva logstska regressonsmodellen, vlken utgör fokus för denna rapport. Det tog det ndustralserade samhället ett sekel att ersätta bygemenskapens och den lokala köpmannens roll det agrara samhället. 7

10 Del II. Teoretska resultat I denna del vsar v teoretska resultat, för den logstska regressonsmodellen. Logstsk regresson används för att förutsäga en händelse, t.ex. att klenten nte betalar tllbaka stt lån td. V går genom teorn den logstska regressonsmodellen som ett specalfall av den generalserade lnjära modellen. Vdare dskuteras verktyg, som används tllsammans med den logstsk regresson: modellval, korsvalderng, resdualer samt förbehandlng av kategoralvarabler. Särsklt nrktar v oss på modferngar av stepwsealgortmen SAS. Verktygen från Del II används sedan Del III för att utveckla en kredtvärderngsmodell på ett dataset med nformaton om personlån. Logstsk regresson Logstsk regresson använder sg lkhet med lnjär regresson av tränngsdata, X, som beskrver omständgheterna för ett antal händelser Y. X och Y nnehåller observatoner av ett antal varabler. Varablerna X kallas för förklarande varabler eller parametrar och varabeln Y kallas för responsvarabel. Utfrån X och Y försöker v konstruera en modell, som gör en kvalfcerad gssnng av sannolkheten för att en ny händelse nträffar, gvet specfka värden på de förklarande varablerna. De förklarande parametrarna X kan exempelvs nnehålla parametrar rörande en låneansökan, som yrke, ålder och nkomst, och responsvarabeln Y kan anta värdet om lånet avslutats p.g.a. betalnngsförsummelse och 0 annars. V söker att så bra som möjlgt förutsäga sannolkheten för att responsvarabeln antar värdet, gvet några värden de förklarande varablerna. Formellt har v en ( n k) datamatrs X, och en ( ) n kolumnvektor Y. X nnehåller k parametrar och n oberoende observatoner av dessa parametrar. Y nnehåller n oberoende observatoner av utfallet från en stokastsk varabel. Mot observaton nummer svarar en rad X, kallad X och en observaton y Y. V kommer att koncentrera oss på att fnna sannolkheten p för en händelse Y = y, n, y { 0,}, gvet en stuaton, som beskrvs av parametrarna radvektorn X. V söker med andra ord fnna: Y y ( y ) ( ) ( ) E( ) p Y = y X, där p p Be p, och Y är oberoende, gvet X. (). Från Bernoullfördelnngen har v att ( ) Var Y = p ( p ). 8

11 En nav ansats för att försöka förutsäga där ( ) p p är en lnjär regressonsmodell: = X β, (),..., T β β β k är en kolumnvektor med k parametrar. Det gäller således att () kan skrvas som p β X,+ β X, βkx, k, där X, j anger värdet för rad, kolumn j X. Ansats () har dock den kontrantutva egenskapen, att för stora, eller små värden på X, kan det hända att skattnngen p ˆ är större än ett eller mndre än noll, vlket borde vara omöjlgt. V försöker stället fnna en länkfunkton g, sådan att det aldrg kan nträffa att p < 0 eller p >, oavsett hur stora eller små värdena X är. V ändrar således () tll: ( ) g p = X β Tre funktoner används ofta som länkfunkton g : p. Logtfunktonen, logt( p ) ln, (3) p. Komplementära log-logfunktonen, ln( ln( )) 3. Inversen tll fördelnngsfunktonen (kvantlfunktonen) för normalfördelnngen med µ = 0 och σ =: probt( p ) Φ ( p ), För alla dessa funktoner gäller att dess nvers ( ) p g β p g har värdemängden ( 0, ). Då = X, kan stuatonen att p < 0 eller p > aldrg nfnna sg. V väljer logtfunktonen (3) ovan som länkfunkton. Logtfunktonen (3) har följande önskvärda egenskaper: P(händelse) Oddsfunktonen kan tolkas som P(ngen händelse) Logtfunktonen är symmetrsk: modellen för P(händelse) är ekvvalent med modellen för P(ngen händelse) med omvänt tecken påβ Koeffcenternaβ betecknar hur log-oddset förändras när parametrarna X ökar med ett. Summan av alla resdualer för en modell med ntercept är noll. 3 Valet av länkfunkton kan göras mer komplcerat, se Fahrmer och Tutz (00) för en ntrodukton. 3 Gäller för alla generalserade lnjära modeller med ntercept och kanonsk länkfunkton, se Woods (006). 9

12 V är ntresserade av att ha ett ntercept modellen, så v låter alltd fortsättnngsvs kolumn X, bara nnehålla :or, d.v.s. p = β+ β X, β X,. k k Den logstska regressonsmodellen v kommer arbeta fortsättnngen med har således följande form: p T ln = Xβ, p E( Y ), Y Be( p ), Y oberoende gvet X, β { β,..., βk} (4) p Det följer att exp( Xβ ) p = g ( Xβ ) = =. (5) + exp( Xβ ) + exp( Xβ ) Efter att ha skattat β kan v från (5) skatta p gvet Oddsfunktonen, logtfunktonen och den nversa logtfunktonen vsas Fgur a, b och c nedan. X. p Fgur a. Oddsfunktonen:. p Fgur b. Logtfunktonen: ln p. p odds l p odds l p 0

13 Fgur c. Inversa logtfunktonen: p = g ( X β ) p X*Beta Värt att nämnas är att varansen den lnjära regressonsmodellen är konstant för alla observatoner, medan varansen för den logstska regressonsmodellen (), p ( p ) mnskar med avståndet från p=0,5. Den generalserade lnjära regressonsmodellen Den logstska regressonsmodellen är ett specalfall av den generalserade lnjära regressonsmodellen: där µ E( Y ), Y är oberoende stokastska varabler, gvet Y { y } g ( µ ) = X β, n, (6) exp θ b( θ ) /a( φ) + c( y, φ), vlket betecknar den kanonska formen för den exponentella famljen. Denna famlj nnehåller många kända fördelnngar som bland annat normal-, bnomal-, posson- och gamma-fördelnngarna. θ kallas för den kanonska parametern. β är en kolumnvektor {,..., T β β k} med k okända parametrar, g är en monoton kontnuerlgt dfferenterbar funkton. g kallas för länkfunkton. För den generalserade lnjära modellen gäller följande resultat för väntevärde och varans: E( Y ) µ = b ( ) θ X., Var( Y ) b ( θ )a( φ) =. (7) V motverar nedan att den logstska regressonsmodellen (4) uppfyller vllkoren för generalserad lnjär modell enlgt (6) ovan.

14 Först vsas att Bernoullfördelnngen () och (4) är tllhör den exponentella famljen: y ( ) ( ) ( ) y exp ln( y p p ( ) y = p p = exp[ y ln( p ) + ( y ) ln( p )] p = exp y ln + ln( p ) = exp { yθ b( θ )} / a( φ ) + c( y, φ ), p p θ θ ln logt ( p), b( θ ) ln( + e ), a( φ )=, c( y, φ ) 0. p Logtfunktonen (3) uppfyller vllkoret för monotonctet och derverbarhet (6). Monotonctet följer från att oddsfunktonen och logartmfunktonen båda är monotont växande. Kontnuerlg derverbarhet får v från faktumet att dervatan av ln ( x) är x och att oddsfunktonen aldrg antar värdet 0. Från (7) har v de kända resultaten att b ( θ ) = µ = p och b ( θ ) = Var( Y ) = p ( p ). (9) En annan akttagelse är att den kanonska parametern θ (8) är ekvvalent med länkfunktonen g. I dessa fall kallas länkfunktonen g för kanonsk länkfunkton. Logtfunktonen (3) är således den kanonska länkfunktonen tll Bernoullfördelnngen. (8) Maxmum-lkelhoodmetoden I vår modell (4) är parametrarnaβ nte kända. Dessa parametrar måste således skattas, för att v ska kunna beräkna skattnngen av sannolkheten pˆ P ( Y =) från nversen tll den kanonska länkfunktonen (5). V kallar skattnngen tll β för ˆβ. Nedan vsas några olka skattnngsmetoder och ansatser för att fnna ˆβ : Maxmum-lkelhoodmetoden, Mnsta kvadratmetoden, Bayes-skattnngar, Momentmetoden, MCMC-skattnngar, Bootstrappng, Rao-Blackwell skattnngar. V kommer att använda oss av maxmum-lkelhoodmetoden som skattnngsmetod för ˆβ. V defnerar lkelhoodfunktonen L, som följande funkton: ( ) ( ) ( ), L L θ L θ y f θ y (0)

15 T T där n, L : Θ R, θ= { θ,..., θk} Θ, y = { y,..., yn}, Y fθ( y). V kallar funktonen L( θ y ) för lkelhoodfunkton, eftersom den är defnerad på parameterrummet Θ, tll skllnad från fördelnngsfunktonen f θ ( y ) som är defnerad på mängden av alla utfall y från den stokastska varabelvektorn Y. θ är en parameter och nte en stokastsk varabel. V kommer fortsättnngen omväxlande att beteckna lkelhoodfunktonen som L, L( θ) eller L( θ y ). Maxmum-lkelhoodmetoden söker fnna den skattnng ˆθ, som maxmerar lkelhoodfunktonen: ( ) ˆ ˆ ˆ L θ y L θ y, θ Θ Det kan vsas att maxmum-lkelhoodskattnngen (ML-skattnngen) är nvarant: om ˆθ är en ML-skattnng, så är ˆ γ g( ˆ θ) också en ML-skattnng. () Egenskapen () ger oss genom nversen tll länkfunktonen (5) att p ˆ är en MLskattnng, om ˆβ är en ML-skattnng. Vdare kan man för ML-skattnngar under mlda vllkor för den generalserade lnjära modellen vsa 4, att om: (). log-lkelhood funktonen, ln(l) är två gånger derverbar och. I 0, I( θ) ln E θ ( L). I( θ ) kallas för Fshers nformatonsmatrs, så gäller att ˆθ är en asymptotskt optmal skattnng följande bemärkelse:. ˆθ är asymptotskt konsstent: Om θ ˆ n är baserad på n observatoner y,..., y och θ 0 är det sanna värdet av θ, så gäller att lm P ˆ ( n 0 < ε) n N (, I θ0 θ ) θ θ, för alla postva ε, (3). ˆθ är asymptotskt ( ), där ( ) I θ är Fshers nformatonsmatrs. (4) 3. ˆθ är asymptotskt effektv: ngen estmator har asymptotskt lägre varans än maxmumlkelhoodskattnngen ˆθ. (5) Ovanstående egenskaper gör Maxmum-lkelhoodmetoden tll en lämplg skattnngsmetod för den logstska regressonsmodellen. n 4 Vllkoren gäller för alla normala modeller, förutsatt att antalet förklarande varabler X nte växer för fort med antalet observatoner n. Se Fahrmer och Tutz (00) för en utförlgare dskusson. 3

16 ˆθ kan vanlgtvs nte uttryckas analytskt, utan får uppskattas med hjälp av numerska metoder. Maxmum-lkelhoodmetoden för logstsk regresson Maxmum-lkelhoodmetoden för att skatta β (4) kan delas upp två steg:. Defnton av lkelhoodfunktonen. Beräknng av det ˆ β som maxmerar lkelhoodfunktonen V avslutar kaptlet med att beskrva de asymptotska resultaten (3), (4) och (5) för den logstska regressonsmodellen (4). Defnton av lkelhoodfunktonen för den logstska regressonsmodellen Låt oss börja med att defnera lkelhoodfunktonen för β den logstska regressonsmodellen (4). V har från (4) att Y Be( p ), Y oberoende. V söker således maxmum för: ( β) ( β y ) = ( y) L L L f β = y n n y ( y ) p p ( p ) = ( p) = = p, (6) där den första lkheten följer från (0), och den andra lkheten följer från att Y är oberoende. V utnyttjar att max ( ) = max( ln( )) L L och väljer att maxmera p ln ln ln = p = n n ( L( β y n n )) = y + ( p) = ln ( X ) y β + e β där den ssta lkheten följer från logtfunktonen (4). X, (7) = = Maxmerng av lkelhoodfunktonen för den logstska regressonsmodellen Olka metoder kan användas för att fnna maxmum av en funkton. En vanlg metod är att sätta de partella dervatorna för varje parameter β tll noll, och sedan lösa ut värdet förβ teratvt. Komponent j vektorn av de partella dervatorna tll ln(l) är: ( L) n n n ln = yx, j X, j = X, j( y p) J j( β), j k. β + j Xβ = = ( e ) = där X, j betecknar värdet för rad, kolumn j modellmatrsen X. Den första lkheten är dervatan av (7). Den andra lkheten följer från (5). V får att: 4

17 ln ( L) β T X ( Y - P ) J( β), P ( ) =,..., T p p n Då β är en vektor med k parametrar har v således k ekvatoner att lösa. β varerar cke-lnjärt med X och Y, och går ej att lösa ut analytskt, tll skllnad från normalekvatonerna lnjär regresson. V använder oss stället av numerska metoder för att fnna maxmum av lkelhoodfunktonen (6). En vanlg metod för att fnna maxmum av lkelhoodfunktonen kallas för Fsher scorng. Fsher scorng är dentsk med Newton-Raphson algortmen för bnär respons och logtfunktonen som länkfunkton, dvs den typ av logstsk regresson som v behandlar denna rapport. V beskrver Newton-Raphson algortmen nedan. Alogrtmen uppdaterar skattnngen ˆβ teratvt enlgt nedan: där I är Fshers nformatonsmatrs från (). ( ) J( ) ˆ ˆ ˆ ˆ j j I j j β = β + β β, Som ntalskattnng algortmen sätter v 0 ˆβ = 0. I SAS anses algortmen konvergerat, när T ( ˆ β ) ( ˆ ) ( ˆ j β j β j) 6 ln L( ˆ β j) + 0 J I J ( ) < 0 8 Den konvergerade skattnngen är vår ML-skattnng avβ. Låt oss beteckna den med ML ˆβ. Asymptotska resultat för den logstska regressonsmodellen Man kan vsa att vllkoren () är uppfyllda för den logstska regressonsmodellen. 5 Nedan sksseras bevset. V börjar med att vsa att ln(l) (7) är två gånger derverbar: ( L) J( β) Xβ T Xβ ( ( e ) ) ( e ) ln T X Y - X = = + = + = β β β β ( ( Xβ Xβ e ) )( e ) ( ) Var ( Y ) + = X T X T X T P P X = X T X T ( ) Var( ) T I β = X Y X X VX (8) 5 Se Fahrmer och Tutz (00) 5

18 där (,..., T Y Y Y n ). Då Y Y är oberoende gäller att Var( ) V, = Var( Y) = p( p) I( β) 0 om nte Y V är en dagonalmatrs med. Log-lkelhood funktonen är således två gånger derverbar. p =0 eller p = för alla. Resultaten (3), (4) och (5) är således tllämpbara. V sammanfattar med att ML ˆβ för den logstska regressonsmodellen är asymptotskt väntevärdesrktg, effektv och normalfördelad med ( ) ˆβ ( T ) ML N β, X VX (9) De asymptotska resultaten ovan nnebär att v för stora n kan skatta konfdensntervall förβ och följdaktlgen även för p =. Dessa konfdensntervall är dock nte + exp( X β ) effektva om v nte vårt n är stort. Test baserade på normalfördelnngen (9) kallas för Wald-test och kan även användas för sgnfkanstest och konfdensntervall av ensklda parameterskattnngar ˆβ. Lkelhood-ratotestet Ofta vll v testa om en modell blr bättre och med att v lägger tll en parameter. Tll det kan v använda oss av konfdensntervallen Wald-testet ovan. I ltteraturen föredras dock ett annat test framför Wald-testet (se Hosmer och Lemeshow (000)). Detta test kallas för Lkelhood-ratotestet och beskrvs nedan. Antag att v vll testa hypotesen H : g( µ ) = X β mot hypotesen H : g( µ ) = Xβ, där H0 och H beskrver två generalserade lnjära modeller (6), µ är väntevärdesvektorn för en responsvektor Y, och där 0 och vlka gäller att X0 X. ˆ ( ) Låt vdare ln L( β0) och ( ˆ ) n m 0 X X är två ( ) resp ( ) ( ) från föregående kaptel. Om H0 är sann, så gäller att: n m modellmatrser för ln L β vara de ML-maxmerade log-lkelhood funktonerna ( L( ˆ )) L( ˆ ) ( ) λ ln β ln β χm m 0, 0 0. (0) 6

19 V kan således testa om någon parameterβ a β är noll genom att defneraβ 0 som parametervektorn β utan denna parameter. Det är värt att notera att (0) kan skrvas som ett uttryck nnehållande kvoten mellan ˆ L ˆ β : L( β ) och ( 0) ( ˆ β0) ( ˆ β) L λ0, ln ( Λ), Λ, L därav namnet lkelhood-ratotestet. λ0, är således stor, när kvoten Λ är lten. I den logstska regressonsmodellen använder v log-lkelhooden från (7) tll detta test. Modellval Modellval utförs för att undvka att brusvarabler kommer n modellen och försvagar dess predktva förmåga. Frågan är vlka varabler som ska väljas tll modellen. Antalet möjlga varabelkombnatoner växer fort. För ett dataset med 50 varabler är antalet möjlga modeller = = 0. Det är omöjlgt att undersöka alla dessa modeller, så ett alternatvt = tllvägagångssätt krävs. V kommer att använda oss av en metod för modellval, som kallas för stepwse selecton eller stepwsealgortmen. Denna metod kan också lätt ta med brusvarabler, vlket gäller för alla metoder för modellval som fnns tllgänglga SAS. Det gäller även att p-värdena för varablerna nte är exakta, utan endast anger den relatva vkten hos en varabel jämfört med de andra varablerna. I Del III förbehandlar v de förklarande varablerna och använder oss av stepwsealgortmen med lkelhood-ratotestet och korsvalderng för att mnska rsken för att brusvarabler kommer med den slutlga modellen. Stepwsealgortmen 6 Detta avsntt sksserar stepwsealgortmen som en metod för modellval. Stepwsealgortmen: Antag att v har en generalserad regressonsmodell med en modellmatrs X, där v lagt tll en parameter som antar värdet för alla observatoner. Låt parametervektorn tll X varaβ. Defnera ˆr β, som en parametervekor vd teratonssteg r, med ensklda ˆ( j ) ˆ( j ) parameterskattngar β, där j anger att β nkluderades ˆr β vd teratonssteget j, j r. Antalet parametrar ˆr β är mndre än eller lka med r. Exempelvs kan 6 Se Hosmer och Lemeshow (000) för en utförlgare dskusson 7

20 ( ) ( ) ( 4) ( ) v ha att ˆ β ˆ β, ˆ β,0, ˆ β,0,0 T, där 4 ( ) β ι betecknar nterceptet och X har sex förklarande varabler. ˆ β + β ˆ som parametervekorn ˆr β utvdgad med en unvarat Defnera ( r ) 4 ( ) varabel nummer 3 X, så har v att ( ˆ ( ) ( 4) ( ) β ˆ 4 β ) ( ˆ β ˆ β ˆ β ˆ β ) ( ) Defnera ( ˆ β ˆ j r β ) som parametervektorn ˆr β med sn komponent ( ) satt tll noll. Exempel: ( ˆ ( ) ( 4) β4 ˆ β ) ( ˆ β, ˆ β,0,0,0,0) T, 4 parameterskattnng ˆβ ( ) ( 4) ( ). Exempel: om ˆ β ˆ β, ˆ β,0, ˆ β,0,0 T, och ˆβ skattar +,,,,0,0 T. ˆ j ( ) ˆβ enlgt ovan. β, j r Låt B r beteckna mängden av alla varabelnamn X, som nte skattas ˆr β. Exempel: om X nnehåller observatoner för varablerna ntercept, nkomst, utbldnng och anställnngstd, och ˆr β nnehåller skattnngar för ntercept och anställnngstd är r {'nkomst', 'utbldnng'} Låt p P χ ( m m ) λ B, ( ) >, beteckna p-värdet för lkelhood-ratotestet b, a b a a, b ( ) ( ) (0) mellan ln L( ˆ β a) och ln ( ˆ b) parametrar ˆa β och ˆb β. Inför två stoppkrtera: ( 0,) Inttalsteg: Låt r=, ˆ β ( ι ) att fnna ML skattnngen för nterceptet. L β, där ˆ β ˆ β och α och δ [ α,) a b ma och m b är antalet,0,...,0 T, där ι betecknar nterceptet. V börjar således med Addtonssteg - utvdga modellen med den mest sgnfkanta varabeln med p<α :. Beräkna ˆtmp ˆ β + β ˆ, och därefter p tmp, r för alla unvarata skattnngar ˆβ tll β =( r ) varablerna B. r. Låt ˆadd β vara den parameterskattnng ˆtmp β, som fck lägst p ˆtmp, r. () 3. Stoppkrterum: Om sätt ˆr β + ˆadd β. Låt ˆ βr + p ˆadd, r <α, () ˆ β annars. Låt r r+. r Subtraktonssteg - reducera modellen med den mnst sgnfkanta varabeln med p<δ :. Beräkna ˆtmp β =( ˆ β ˆ r β ) komponenterna ˆr β., och därefter p r, tmp för alla unvarata skattnngar ˆβ av ˆ r tmp. Låt ˆdel β vara den parameterskattnng ˆtmp β, som fck lägst p,. (3) 3. Stoppkrterum: Om 8

21 sätt ˆr β + ˆdel β. Låt ˆ βr + p ˆr, del <δ, (4) ˆ β annars. Låt r r+. r Algortmen har konvergerat när nga fler varabler läggs tll eller tas bort från modellen, dvs när: ˆ β = ˆ β ˆ = β. (5) r r r Förenklng: Om alla parametrar β har samma antal frhetsgrader, så gäller att den parameter som har högst, () ersättas med: *** ( ) p ˆ r+ r, alltd har högst ln ( ˆ r ) L β + (se (0)). I detta fall kan således Låt ˆadd β vara den parameterskattnng ˆtmp β som fck högst ln( L ). (6) (6) gäller analogt för ˆdel β (3). SAS använder sg av ett annat test än lkelhood-ratotestet (0) för beräknng av p ˆtmp, r addtonssteget (). Detta test kallas för scoretest och är baserat på dervator av loglkelhooden 7. Testet subtraktonssteget (3) är baserat på Wald-testet (9). Hosmer och Lemeshow (000) nämner att lkelhood-ratotestet för () och (4) har bättre statstska egenskaper och är att föredra stepwsealgortmen framför testen SAS. V kommer att jämföra stepwsealgortmen SAS mot den lkelhood-rato baserade stepwsealgortmen. Hosmer och Lemeshow (000) rekommenderar vdare som lämplgt värde på α och δ. V kommer att dskutera denna rekommendaton avsnttet Informatonskrtera och stepwsealgortmen. I kaptlet Korsvalderng presenterar v ett alternatvt stoppkrterum. Låt oss fortsätta med att presentera ett alternatv tll lkelhood-ratotestet (0), som belyser svårgheten att välja lämplga värden på α och δ stepwsealgortmen. Informatonskrtera När v söker fnna den bästa modellen, kan det vara användbart att ha ett mått på hur bra ett antal modeller är, utan att kräva att de är herarkskt ordade, begränsnngar som det lkelhood-rato baserade testet (0) medför. V kallar sådana mått för nformatonskrtera. V kommer nästa avsntt vsa hur nformatonskrtera är relevanta för lkelhoodratotestet. Akakes nformatonskrterum (AIC) är det mest kända nformatonskrteret. AIC söker skatta ln ( L( β µ )), µ E[ Y], stället för ( ( )) ln L β y, (0). 7 Se SAS Insttute Inc (999), kaptel 39. 9

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff FÖRDJUPNINGS-PM Nr 6. 2010 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15-10 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng

Läs mer

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff FÖRDJUPNINGS-PM Nr 6. 20 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15- Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng

Läs mer

Beräkna standardavvikelser för efterfrågevariationer

Beräkna standardavvikelser för efterfrågevariationer Handbok materalstyrnng - Del B Parametrar och varabler B 41 Beräkna standardavvkelser för efterfrågevaratoner och prognosfel En standardavvkelse är ett sprdnngsmått som anger hur mycket en storhet varerar.

Läs mer

Experimentella metoder 2014, Räkneövning 5

Experimentella metoder 2014, Räkneövning 5 Expermentella metoder 04, Räkneövnng 5 Problem : Två stokastska varabler, x och y, är defnerade som x = u + z y = v + z, där u, v och z är tre oberoende stokastska varabler med varanserna σ u, σ v och

Läs mer

Utbildningsavkastning i Sverige

Utbildningsavkastning i Sverige NATIONALEKONOMISKA INSTITUTIONEN Uppsala Unverstet Examensarbete D Författare: Markus Barth Handledare: Bertl Holmlund Vårtermnen 2006 Utbldnngsavkastnng Sverge Sammandrag I denna uppsats kommer två olka

Läs mer

Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08

Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08 Prmär- och sekundärdata Undersöknngsmetodk Prmärdataundersöknng: användnng av data som samlas n för första gången Sekundärdata: användnng av redan nsamlad data Termeh Shafe ht01 F1-F KD kap 1-3 Olka slag

Läs mer

Dödlighetsundersökningar på KPA:s

Dödlighetsundersökningar på KPA:s Matematsk statstk Stockholms unverstet Dödlghetsundersöknngar på KPA:s bestånd av förmånsbestämda pensoner Sven-Erk Larsson Eamensarbete 6: Postal address: Matematsk statstk Dept. of Mathematcs Stockholms

Läs mer

Modellering av antal resor och destinationsval

Modellering av antal resor och destinationsval UMEÅ UNIVERSITET Statstska nsttutonen C-uppsats, vt- 2005 Handledare: Erlng Lundevaller Modellerng av antal resor och destnatonsval Aron Arvdsson Salh Vošanovć Sammanfattnng V har denna uppsats analyserat

Läs mer

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( )

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( ) Tentamen Matematsk statstk Ämneskod-lnje S1M Poäng totalt för del 1 5 (8 uppgfter) Poäng totalt för del 3 (3 uppgfter) Tentamensdatum 9-3-5 Kerstn Vännman Lärare: Robert Lundqvst Mkael Stenlund Skrvtd

Läs mer

Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y

Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y F12: sd. 1 Föreläsnng 12 Sammanfattnng V har studerat ekonomn påp olka skt, eller mer exakt, under olka antaganden om vad som kan ändra sg. 1. IS-LM, Mundell Flemmng. Prser är r konstanta, växelkurs v

Läs mer

Fördelning av kvarlåtenskap vid arvsskifte

Fördelning av kvarlåtenskap vid arvsskifte NATIONALEKONOMISKA INSTITUTIONEN Uppsala unverstet Magsteruppsats Författare: Lars Björn Handledare: Henry Ohlsson HT 2008 Fördelnng av kvarlåtenskap vd arvsskfte En analys av ntergeneratonella fnansella

Läs mer

Arbetslivsinriktad rehabilitering för sjukskrivna arbetslösa funkar det?

Arbetslivsinriktad rehabilitering för sjukskrivna arbetslösa funkar det? NATIONALEKONOMISKA INSTITUTIONEN Uppsala Unverstet Uppsats fortsättnngskurs C Författare: Johan Bjerkesjö och Martn Nlsson Handledare: Patrk Hesselus Termn och år: HT 2005 Arbetslvsnrktad rehablterng för

Läs mer

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring PROMEMORIA Datum 01-06-5 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq och Erk Elvers Box 6750 SE-113 85 Stockholm [Sveavägen 167] Tel +46 8 787 80 00 Fax +46 8 4 13 35 fnansnspektonen@f.se www.f.se

Läs mer

Introduktionsersättning eller socialbidraghar ersättningsregim betydelse för integrationen av flyktingar? 1

Introduktionsersättning eller socialbidraghar ersättningsregim betydelse för integrationen av flyktingar? 1 UPPSALA UNIVERSITET Natonalekonomska Insttutonen Examensarbete D-uppsats, Ht-2005 Introduktonsersättnng eller socalbdraghar ersättnngsregm betydelse för ntegratonen av flyktngar? 1 Författare: Henrk Nlsson

Läs mer

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring PROMEMORIA Datum 007-1-18 FI Dnr 07-1171-30 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq och Erk Elvers P.O. Box 6750 SE-113 85 Stockholm [Sveavägen 167] Tel +46 8 787 80 00 Fax +46 8 4 13 35

Läs mer

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00 (4) B Ingenjörsmetodk för IT och ME, HT 004 Omtentamen Måndagen den :e aug, 00, kl. 9:00-4:00 Namn: Personnummer: Skrv tydlgt! Skrv namn och personnummer på alla nlämnade papper! Ma ett tal per papper.

Läs mer

Fond-i-fonder. med global placeringsinriktning. Ett konkurrenskraftigt alternativ till globalfonder? En jämförelse med fokus på risk och avkastning.

Fond-i-fonder. med global placeringsinriktning. Ett konkurrenskraftigt alternativ till globalfonder? En jämförelse med fokus på risk och avkastning. Uppsala Unverstet Företagsekonomska nsttutonen Magsteruppsats HT 2009 Fond--fonder med global placerngsnrktnng Ett konkurrenskraftgt alternatv tll globalfonder? En jämförelse med fokus på rsk och avkastnng.

Läs mer

Mätfelsbehandling. Lars Engström

Mätfelsbehandling. Lars Engström Mätfelsbehandlng Lars Engström I alla fyskalska försök har de värden man erhåller mer eller mndre hög noggrannhet. Ibland är osäkerheten en mätnng fullständgt försumbar förhållande tll den precson man

Läs mer

Att identifiera systemviktiga banker i Sverige vad kan kvantitativa indikatorer visa oss?

Att identifiera systemviktiga banker i Sverige vad kan kvantitativa indikatorer visa oss? Att dentfera systemvktga banker Sverge vad kan kvanttatva ndkatorer vsa oss? Elas Bengtsson, Ulf Holmberg och Krstan Jönsson* Författarna är verksamma vd Rksbankens avdelnng för fnansell stabltet. Elas

Läs mer

Gymnasial yrkesutbildning 2015

Gymnasial yrkesutbildning 2015 Statstska centralbyrån STATISTIKENS FRAMTAGNING UF0548 Avdelnngen för befolknng och välfärd SCBDOK 1(22) Enheten för statstk om utbldnng och arbete 2016-03-11 Mattas Frtz Gymnasal yrkesutbldnng 2015 UF0548

Läs mer

En studiecirkel om Stockholms katolska stifts församlingsordning

En studiecirkel om Stockholms katolska stifts församlingsordning En studecrkel om Stockholms katolska stfts församlngsordnng Studeplan STO CK HOLM S K AT O L S K A S T I F T 1234 D I OECE S I S HOL M I ENS IS En studecrkel om Stockholm katolska stfts församlngsordnng

Läs mer

Beställningsintervall i periodbeställningssystem

Beställningsintervall i periodbeställningssystem Handbok materalstyrnng - Del D Bestämnng av orderkvantteter D 41 Beställnngsntervall perodbeställnngssystem Ett perodbeställnngssystem är ett med beställnngspunktssystem besläktat system för materalstyrnng.

Läs mer

Lösningar modul 3 - Lokala nätverk

Lösningar modul 3 - Lokala nätverk 3. Lokala nätverk 3.1 TOPOLOGIER a) Stjärna, rng och buss. b) Nät kopplas ofta fysskt som en stjärna, där tll exempel kablar dras tll varje kontorsrum från en gemensam central. I centralen kan man sedan

Läs mer

Undersökning av vissa försäkringsantaganden i efterlevandepension för anställda i kommuner och landstinget och dess påverkan på prissättningen

Undersökning av vissa försäkringsantaganden i efterlevandepension för anställda i kommuner och landstinget och dess påverkan på prissättningen Matematsk statstk Stockholms unverstet Undersöknng av vssa försäkrngsantaganden efterlevandepenson för anställda kommuner och landstnget och dess påverkan på prssättnngen Ilkay Gölcük Eamensarbete 7:5

Läs mer

Lektion 8 Specialfall, del I (SFI) Rev 20151006 HL

Lektion 8 Specialfall, del I (SFI) Rev 20151006 HL Lekton 8 Specalfall, del I (SFI) Rev 0151006 HL Produktvalsproblem och cyklsk planerng Innehåll Nvå 1: Produktval (LP-problem) (SFI1.1) Cyklsk planerng, produkter (SFI1.) Nvå : Maxmera täcknngsbdrag (produktval)

Läs mer

Kompenserande löneskillnader för pendlingstid

Kompenserande löneskillnader för pendlingstid VTI särtryck 361 2004 Kompenserande löneskllnader för pendlngstd En emprsk undersöknng med Svenska data Konferensbdrag från Transportforum 8 9 januar 2003 Lnköpng Gunnar Isacsson VTI särtryck 361 2004

Läs mer

Bankernas kapitalkrav med Basel 2

Bankernas kapitalkrav med Basel 2 RAPPORT DEN 16 jun 2006 DNR 05-5630-010 2006 : 6 Bankernas kaptalkrav med Basel 2 R A P P o r t 2 0 0 6 : 6 Bankernas kaptalkrav med Basel 2 R a p p o r t 2 0 0 6 : 6 INNEHÅLL SAMMANFATTNING 31 RESULTAT

Läs mer

Steg 1 Arbeta med frågor till filmen Jespers glasögon

Steg 1 Arbeta med frågor till filmen Jespers glasögon k r b u R pers s e J n o g ö s gla ss man m o l b j a M 4 l 201 a r e t a m tude teg tre s g n n v En ö Steg 1 Arbeta med frågor tll flmen Jespers glasögon Börja med att se flmen Jespers glasögon på majblomman.se.

Läs mer

A2009:004. Regional utveckling i Sverige. Flerregional integration mellan modellerna STRAGO och raps. Christer Anderstig och Marcus Sundberg

A2009:004. Regional utveckling i Sverige. Flerregional integration mellan modellerna STRAGO och raps. Christer Anderstig och Marcus Sundberg A2009:004 Regonal utvecklng Sverge Flerregonal ntegraton mellan modellerna STRAGO och raps Chrster Anderstg och Marcus Sundberg Regonal utvecklng Sverge Flerregonal ntegraton mellan modellerna STRAGO

Läs mer

Företagsrådgivning i form av Konsultcheckar. Working paper/pm

Företagsrådgivning i form av Konsultcheckar. Working paper/pm Workng paper/pm 2012:02 Företagsrådgvnng form av Konsultcheckar En effektutvärderng av konsultcheckar nom ramen för regonalt bdrag för företgsutvecklng Tllväxtanalys har uppdrag att utvärdera effekterna

Läs mer

VALUE AT RISK. En komparativ studie av beräkningsmetoder. VALUE AT RISK A comparative study of calculation methods. Fredrik Andersson, Petter Finn

VALUE AT RISK. En komparativ studie av beräkningsmetoder. VALUE AT RISK A comparative study of calculation methods. Fredrik Andersson, Petter Finn ISRN-nr: VALUE AT RISK En komparatv stude av beräknngsmetoder VALUE AT RISK A comparatve study of calculaton methods Fredrk Andersson, Petter Fnn & Wlhelm Johansson Handledare: Göran Hägg Magsteruppsats

Läs mer

Hur bör en arbetsvärderingsmodell

Hur bör en arbetsvärderingsmodell Hur bör en arbetsvärderngsmodell specfceras? en analys baserad på mångdmensonell beslutsteor Stg Blomskog Johan Brng RAPPORT 2009:19 Insttutet för arbetsmarknadspoltsk utvärderng (IFAU) är ett forsknngsnsttut

Läs mer

Klarar hedgefonder att skapa positiv avkastning oavsett börsutveckling? En empirisk studie av ett urval svenska hedgefonder

Klarar hedgefonder att skapa positiv avkastning oavsett börsutveckling? En empirisk studie av ett urval svenska hedgefonder NATIONALEKONOMISKA INSTITUTIONEN Uppsala unverstet Examensarbete C Författare: Sara Engvall och Matylda Hussn Handledare: Martn Holmén Hösttermnen 2006 Klarar hedgefonder att skapa postv avkastnng oavsett

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 6. Regression & Korrelation. (LLL Kap 13-14) Inledning till Regressionsanalys

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 6. Regression & Korrelation. (LLL Kap 13-14) Inledning till Regressionsanalys Fnansell Statstk (GN, 7,5 hp,, HT 8) Föreläsnng 6 Regresson & Korrelaton (LLL Kap 3-4) Department of Statstcs (Gebrenegus Ghlagaber, PhD, Assocate Professor) Fnancal Statstcs (Basc-level course, 7,5 ECTS,

Läs mer

Mycket i kapitel 18 är r detsamma som i kapitel 6. Mer analys av policy

Mycket i kapitel 18 är r detsamma som i kapitel 6. Mer analys av policy Blanchard kaptel 18-19 19 Växelkurser, räntor r och BNP Mycket kaptel 18 är r detsamma som kaptel 6. Mer analys av polcy F11: sd. 1 Uppdaterad 2009-05-04 IS-LM den öppna ekonomn IS-LM den öppna ekonomn

Läs mer

1. a Vad menas med medianen för en kontinuerligt fördelad stokastisk variabel?

1. a Vad menas med medianen för en kontinuerligt fördelad stokastisk variabel? Tentamenskrvnng: TMS45 - Grundkurs matematsk statstk och bonformatk, 7,5 hp. Td: Onsdag den 9 august 2009, kl 08:30-2:30 Väg och vatten Tesen korrgerad enlgt anvsngar under tentamenstllfället. Examnator:

Läs mer

Ekonomihögskolan Lunds Universitet Vårterminen 2006. Priset på Poker. En studie av efterfrågeelasticiteten på Internetpoker.

Ekonomihögskolan Lunds Universitet Vårterminen 2006. Priset på Poker. En studie av efterfrågeelasticiteten på Internetpoker. Natonalekonomska Insttutonen Kanddatuppsats Ekonomhögskolan Lunds Unverstet Vårtermnen 006 Prset på Poker En stude av efterfrågeelastcteten på Internetpoker Författare Tony Krstensson Dag Larsson Handledare

Läs mer

Beräkning av Sannolikheter för Utfall i Fotbollsmatcher

Beräkning av Sannolikheter för Utfall i Fotbollsmatcher Natonalekonomska Insttutonen Uppsala Unverstet Examensarbete D Författare: Phlp Jonsson Handledare: Johan Lyhagen VT 2006 Beräknng av Sannolkheter för Utfall Fotbollsmatcher Oddsen på dn sda Sammanfattnng

Läs mer

Industrins förbrukning av inköpta varor (INFI) 2008

Industrins förbrukning av inköpta varor (INFI) 2008 STATISTISKA CENTRALBYRÅN 1(97) Industrns förbruknng av nköpta varor (INFI) 2008 NV0106 Innehåll SCBDOK 3.1 0 Admnstratva uppgfter 0.1 Ämnesområde 0.2 Statstkområde 0.3 SOS-klassfcerng 0.4 Statstkansvarg

Läs mer

Förklaring:

Förklaring: rmn Hallovc: EXTR ÖVNINR ETIND SNNOLIKHET TOTL SNNOLIKHET OEROENDE HÄNDELSER ETIND SNNOLIKHET Defnton ntag att 0 Sannolkheten för om har nträffat betecknas, kallas den betngade sannolkheten och beräknas

Läs mer

Industrins förbrukning av inköpta varor INFI

Industrins förbrukning av inköpta varor INFI Statstska centralbyrån SCBDOK 3.2 (37) Industrns förbruknng av nköpta varor INFI 2003 NV006 Innehåll 0 Allmänna uppgfter... 2 0. Ämnesområde... 2 0.2 Statstkområde... 2 0.3 SOS-klassfcerng... 2 0.4 Statstkansvarg...

Läs mer

Skoldemokratiplan Principer och guide till elevinflytande

Skoldemokratiplan Principer och guide till elevinflytande Skoldemokratplan Prncper och gude tll elevnflytande I Skoldemokratplan Antagen av kommunfullmäktge 2012-02-29, 49 Fnspångs kommun 612 80 Fnspång Telefon 0122-85 000 Fax 0122-850 33 E-post: kommun@fnspang.se

Läs mer

BEREDSKAP MOT ATOMOLYCKOR I SVERIGE

BEREDSKAP MOT ATOMOLYCKOR I SVERIGE SSI:1';74-O15 BEREDSKAP MOT ATOMOLYCKOR I SVERIGE John-Chrster Lndll Pack, 104 01 STOCKHOIJ! ;4 aprl 1974 BEREDSOP TJÖT ATOMOLYCKOR I SVERIGE Manuskrpt grundat på ett föredrag vd kärnkraftmötot Köpenhamn,

Läs mer

Performansanalys LHS/Tvåspråkighet och andraspråksinlärning Madeleine Midenstrand 2004-04-17

Performansanalys LHS/Tvåspråkighet och andraspråksinlärning Madeleine Midenstrand 2004-04-17 1 Inlednng Jag undervsar tyskar på folkhögskolan Nürnberg med omgvnngar. Inför uppgften att utföra en perforsanalys av en elevtext lät mna mest avancerade elever skrva en uppsats om vad de tyckte var svårt

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrvnng Expermentella metoder, 12 hp, för kanddatprogrammet, år 1 Onsdagen den 17 jun 2009 kl 9-1. S.H./K.H./K.J.-A./B.S. Införda betecknngar bör förklaras och uppställda

Läs mer

Hur har Grön Flagg-rådet/elevrådet arbetat och varit organiserat? Hur har rådet nått ut till resten av skolan?

Hur har Grön Flagg-rådet/elevrådet arbetat och varit organiserat? Hur har rådet nått ut till resten av skolan? I er rapport dokumenterar n kontnuerlgt och laddar upp blder. N beskrver vad n har gjort, hur n har gått tllväga arbetsprocessen och hur eleverna fått nflytande. Här fnns utrymme för reflektoner från elever

Läs mer

Balansering av vindkraft och vattenkraft i norra Sverige. Elforsk rapport 09:88

Balansering av vindkraft och vattenkraft i norra Sverige. Elforsk rapport 09:88 Balanserng av vndkraft och vattenkraft norra Sverge Elforsk rapport 09:88 Mkael Ameln, Calle Englund, Andreas Fagerberg September 2009 Balanserng av vndkraft och vattenkraft norra Sverge Elforsk rapport

Läs mer

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet

Läs mer

Lönebildningen i Sverige 1966-2009

Lönebildningen i Sverige 1966-2009 Rapport tll Fnanspoltska rådet 2008/6 Lönebldnngen Sverge 1966-2009 Andreas Westermark Uppsala unverstet De åskter som uttrycks denna rapport är författarens egna och speglar nte nödvändgtvs Fnanspoltska

Läs mer

ANN fk. Örjan Ekeberg. Strukturell Riskminimering. Kernels. Konsten att undvika att räkna högdimensionellt. Kernels

ANN fk. Örjan Ekeberg. Strukturell Riskminimering. Kernels. Konsten att undvika att räkna högdimensionellt. Kernels Kernel Methods Observaton Nästan alltng är lnjärt separerbart högdmensonella rum Vanlga lågdmensonella data kan enkelt slängas ut ett rum. Två problem uppstår. Många fra parametrar dålg generalserng. Mycket

Läs mer

Grön Flagg-rapport Förskolan Fjäderkobben 17 apr 2014

Grön Flagg-rapport Förskolan Fjäderkobben 17 apr 2014 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Fjäderkobben 17 apr 2014 Kommentar från Håll Sverge Rent 2014-02-25 11:44: Inskckad av msstag. 2014-04-17 09:52: Bra jobbat, Förskolan Fjäderkobben!

Läs mer

Grön Flagg-rapport Förskolan Duvan 4 jun 2014

Grön Flagg-rapport Förskolan Duvan 4 jun 2014 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Duvan 4 jun 2014 Kommentar från Håll Sverge Rent 2014-06-04 12:54: Vad rolgt att ta del av era tankar och ert arbete med Grön Flagg! Det är härlgt

Läs mer

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Talavidskolan 15 aug 2013

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Talavidskolan 15 aug 2013 Illustratoner: Anders Worm Grön Flagg-rapport Talavdskolan 15 aug 2013 Kommentar från Håll Sverge Rent 2013-02-21 13:32: V kunde nte läsa om era mål 4 och 5 någonstans. 2013-08-15 11:21: Tack för era kompletterngar.

Läs mer

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126 Projekt transformetoder Rkke Apelfröjd Sgnaler och System rkke.apelfrojd@sgnal.uu.se Rum 72126 Målsättnng Ur kursplanen: För godkänt betyg på kursen skall studenten kunna använda transformmetoder nom något

Läs mer

Kvalitetsjustering av ICT-produkter

Kvalitetsjustering av ICT-produkter Kvaltetsjusterng av ICT-produkter - Metoder och tllämpnngar svenska Prsndex Producent- och Importled - Enheten för prsstatstk, Makroekonom och prser, SCB December 2006 STATISTISKA CENTRALBYRÅN 2(55) Kontaktnformaton

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsnng -2 732G70 Statstk A Kaptel 2 Populatoner, stckprov och varabler Sd -46 2 Populaton Den samlng enheter (exempelvs ndvder) som v vll dra slutsatser om. Populatonen defneras på logsk väg med utgångspunkt

Läs mer

Handlingsplan. Grön Flagg. Pysslingförskolan Gläntan

Handlingsplan. Grön Flagg. Pysslingförskolan Gläntan Handlngsplan Grön Flagg Pysslngförskolan Gläntan Kommentar från Håll Sverge Rent 2014-09-19 11:18: Vlka fna och vktga utvecklngsområden n valt - det n gör kommer säkert att skapa engagemang och nyfkenhet

Läs mer

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Tryserums friskola 20 feb 2014

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Tryserums friskola 20 feb 2014 Illustratoner: Anders Worm Grön Flagg-rapport Tryserums frskola 20 feb 2014 Kommentar från Håll Sverge Rent 2014-02-20 10:39: Bra jobbat, Tryserums frskola! Det är nsprerande att läsa er rapport och se

Läs mer

Grön Flagg-rapport Pepparrotens förskola 15 aug 2014

Grön Flagg-rapport Pepparrotens förskola 15 aug 2014 Illustratoner: Anders Worm Grön Flagg-rapport Pepparrotens förskola 15 aug 2014 Kommentar från Håll Sverge Rent 2014-08-15 13:51: Det är fnt att få läsa om hur n har arbetat aktvt med nflytande och delaktghet

Läs mer

Optimering av underhållsplaner leder till strategier för utvecklingsprojekt

Optimering av underhållsplaner leder till strategier för utvecklingsprojekt Opterng av underhållsplaner leder tll strateger för utvecklngsprojekt Ann-Brh Ströberg 1 och Torgny Algren 1. Mateatska vetenskaper Chalers teknska högskola och Göteborgs unverset 41 96 Göteborg 31-77

Läs mer

Handlingsplan mot hedersrelaterat våld och förtryck i skolan

Handlingsplan mot hedersrelaterat våld och förtryck i skolan Fnspångs kommuns skolkuratorer 2014-08-22 Handlngsplan mot hedersrelaterat våld och förtryck skolan Framtagen utfrån Länsstyrelsens publkatoner Om våld hederns namn & Våga göra skllnad För mer nformaton

Läs mer

Viktig information från din kommun!

Viktig information från din kommun! Vktg nformaton från dn kommun! Att bry sg om, är att öka tryggheten för oss alla! Foto: Johnny Franzén V vll alla uppnå det goda lvet. Där är tryggheten och säkerheten vktga beståndsdelar. Därför är de

Läs mer

Grön Flagg-rapport Förskolan Arken 14 nov 2014

Grön Flagg-rapport Förskolan Arken 14 nov 2014 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Arken 14 nov 2014 Kommentar från Håll Sverge Rent 2014-11-14 09:03: Ännu en gång har n skckat n en mponerande rapport. N har fna, tydlga utvecklngsområden

Läs mer

Snabbguide. Kaba elolegic programmeringsenhet 1364

Snabbguide. Kaba elolegic programmeringsenhet 1364 Snabbgude Kaba elolegc programmerngsenhet 1364 Innehåll Informaton Förpacknngsnnehåll 3 Textförklarng 3 Ansvar 3 Skydd av systemdata 3 Frmware 3 Programmera Starta och Stänga av 4 Mnneskort 4 Exportera

Läs mer

Innehåll: har missbrukat jämfört med om man inte har. missbrukat. Risk 1 Odds Risk. Odds 1 Risk. Odds

Innehåll: har missbrukat jämfört med om man inte har. missbrukat. Risk 1 Odds Risk. Odds 1 Risk. Odds 22 5 Innehåll:. Rsk & Odds. Rsk Rato.2 Odds Rato 2. Logstsk Regresson 2. Ln Odds 2.2 SPSS Output 2.3 Estmerng (ML) 2.4 Multpel 3. Survval Analys 3. vs. Logstsk 3.2 Censurerade data 3.3 Data, SPSS 3.4 Parametrskt

Läs mer

Kvalitetssäkring med individen i centrum

Kvalitetssäkring med individen i centrum Kvaltetssäkrng med ndvden centrum TENA har tllsammans med äldreboenden Sverge utvecklat en enkel process genom vlken varje enskld ndvd får en ndvduell kontnensplan baserad på hans eller hennes unka möjlgheter

Läs mer

Riktlinjer för avgifter och ersättningar till kommunen vid insatser enligt LSS

Riktlinjer för avgifter och ersättningar till kommunen vid insatser enligt LSS Rktlnjer för avgfter och ersättnngar tll kommunen vd nsatser enlgt LSS Beslutad av kommunfullmäktge 2013-03-27, 74 Rktlnjer för avgfter och ersättnngar tll kommunen vd nsatser enlgt LSS Fnspångs kommun

Läs mer

Grön Flagg-rapport Ås skola 15 okt 2014

Grön Flagg-rapport Ås skola 15 okt 2014 Illustratoner: Anders Worm Grön Flagg-rapport Ås skola 15 okt 2014 Kommentar från Håll Sverge Rent 2014-10-15 09:54: N verkar ha ett mycket engagerat mljöråd som är påputtare (fnt ord). N har bra och spännande

Läs mer

Grön Flagg-rapport Fridhems förskola 24 apr 2015

Grön Flagg-rapport Fridhems förskola 24 apr 2015 Illustratoner: Anders Worm Grön Flagg-rapport Frdhems förskola 24 apr 2015 Kommentar från Håll Sverge Rent 2015-04-24 10:39: N har bra och spännande utvecklngsområden, och vad som är ännu bättre n gör

Läs mer

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Hässlegårdens förskola 15 apr 2014

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Hässlegårdens förskola 15 apr 2014 Illustratoner: Anders Worm Grön Flagg-rapport Hässlegårdens förskola 15 apr 2014 Kommentar från Håll Sverge Rent 2014-04-15 15:26: N har på ett engagerat och varerat sätt arbetat med ert Grön flagg-arbete.

Läs mer

DAGLIGVARUPRISERNA PÅ ÅLAND

DAGLIGVARUPRISERNA PÅ ÅLAND Rapport 2000:1 DAGLIGVARUPRISERNA PÅ ÅLAND - EN KOMPARATIV ANALYS I pdf-versonen av denna rapport saknas enkätblanketterna (blaga 2). En fullständg rapport pappersformat kan beställas från ÅSUB, tel. 018-25490,

Läs mer

Grön Flagg-rapport Förskolan Näckrosen 9 dec 2014

Grön Flagg-rapport Förskolan Näckrosen 9 dec 2014 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Näckrosen 9 dec 2014 Kommentar från Håll Sverge Rent 2014-12-09 16:00: N har bra och spännande utvecklngsområden, och vad som är ännu bättre n gör

Läs mer

för alla i Landskrona

för alla i Landskrona , den 3 september LANDSKRDlHLA 2015 STAD K015/[\flUf STYRELSEN 201509 0 7 Ank. Darenr. ldossenr. Moton: Utrymme för alla Regerngen beslutade antalet maj 2008 nleda ett urbant bostadråden männskor de mest

Läs mer

Arbetskraftskostnadsindex 2008=100

Arbetskraftskostnadsindex 2008=100 Handböcker 47b Arbetskraftskostnadsndex 2008=100 Användarens handbok Handböcker 47b Arbetskraftskostnadsndex 2008=100 Användarens handbok Helsngfors 2013 Förfrågnngar: Pekka Haapala Hanna Jokmäk +358 9

Läs mer

Handlingsplan. Grön Flagg. I Ur och Skur Pinneman

Handlingsplan. Grön Flagg. I Ur och Skur Pinneman Handlngsplan Grön Flagg I Ur och Skur Pnneman Kommentar från Håll Sverge Rent 2013-09-23 12:55: N har fna och ntressanta utvecklngsområden med aktvteter som anpassas efter barnens förmågor. Se er själva

Läs mer

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Föräldrakooperativet Dalbystugan 22 sep 2013

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Föräldrakooperativet Dalbystugan 22 sep 2013 Illustratoner: Anders Worm Grön Flagg-rapport Föräldrakooperatvet Dalbystugan 22 sep 2013 Kommentar från Håll Sverge Rent 2013-09-22 17:47: N har på ett mycket kreatvt och varerat sätt jobbat med era utvecklngsområden.

Läs mer

Grön Flagg-rapport Tryserums förskola 3 dec 2014

Grön Flagg-rapport Tryserums förskola 3 dec 2014 Illustratoner: Anders Worm Grön Flagg-rapport Tryserums förskola 3 dec 2014 Kommentar från Håll Sverge Rent 2014-12-03 09:47: N har på ett mycket kreatvt och varerat sätt jobbat med era mål och aktvteter.

Läs mer

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Förskolan Kalven 23 jan 2014

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Förskolan Kalven 23 jan 2014 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Kalven 23 jan 2014 Kommentar från Håll Sverge Rent 2014-01-23 11:26: Bra jobbat, förskolan Kalven! Det är nsprerande att läsa er rapport och se hur

Läs mer

Grön Flagg-rapport Förskolan Kalven 20 jan 2016

Grön Flagg-rapport Förskolan Kalven 20 jan 2016 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Kalven 20 jan 2016 Kommentar från Håll Sverge Rent 2016-01-20 09:07: Förskolan Kalven, n har lämnat n en toppenrapport även denna gång! Bra områden

Läs mer

Handlingsplan. Grön Flagg. Bosgårdens förskolor

Handlingsplan. Grön Flagg. Bosgårdens förskolor Handlngsplan Grön Flagg Bosgårdens förskolor Kommentar från Håll Sverge Rent 2015-08-11 14:16: Det är nsprerande att läsa hur n genom röstnng tagt tllvara barnens ntressen när n tagt fram er handlngsplan.

Läs mer

2013-04-16. Motion om bättre villkor för vissa grupper beträffande uthyrning av FaBo s lägenheter. Dnr KS 2012-400

2013-04-16. Motion om bättre villkor för vissa grupper beträffande uthyrning av FaBo s lägenheter. Dnr KS 2012-400 Utdrag ur protokoll fört vd sammanträde med kommunstyrelsens arbetsutskott Falkenberg FALKENBERG 2013-04-16 130 Moton om bättre vllkor för vssa grupper beträffande uthyrnng av FaBo s lägenheter. Dnr KS

Läs mer

DOM. Meddelad Malmö. Trelleborgs tingsrätts dom 1995-10-19, DT 556, se bilaga A. Gustaf Them, 160628-4519 Barsebäcksgatan 64, 216 20 MALMÖ

DOM. Meddelad Malmö. Trelleborgs tingsrätts dom 1995-10-19, DT 556, se bilaga A. Gustaf Them, 160628-4519 Barsebäcksgatan 64, 216 20 MALMÖ . Nummer DT 1224 l (9) 000AD01.SAM Överklagat avgörande Trelleborgs tngsrätts dom 1995-10-19, DT 556, se blaga A Klagande Gustaf Them, 160628-4519 Barsebäcksgatan 64, 216 20 MALMÖ Ombud Bolagsjursten Lef

Läs mer

Grön Flagg-rapport Borrby förskola 18 maj 2015

Grön Flagg-rapport Borrby förskola 18 maj 2015 Illustratoner: Anders Worm Grön Flagg-rapport Borrby förskola 18 maj 2015 Kommentar från Håll Sverge Rent 2015-05-11 09:08: skckar tllbaka enl tel samtal 2015-05-18 15:32: Det har vart rolgt att läsa er

Läs mer

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Ugglan förskola 15 aug 2013

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Ugglan förskola 15 aug 2013 Illustratoner: Anders Worm Grön Flagg-rapport Ugglan förskola 15 aug 2013 Kommentar från Håll Sverge Rent 2013-08-15 13:57: N har på ett mycket kreatvt och varerat sätt jobbat med era utvecklngsområden

Läs mer

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Borrby förskola 24 jan 2013

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Borrby förskola 24 jan 2013 Illustratoner: Anders Worm Grön Flagg-rapport Borrby förskola 24 jan 2013 Kommentar från Håll Sverge Rent 2013-01-24 16:36: N har på ett mycket kreatvt och varerat sätt jobbat med ert tema. Vad kul att

Läs mer

En kort introduktion till principalkomponenttransformation och kanonisk diskriminantanalys av multispektrala data

En kort introduktion till principalkomponenttransformation och kanonisk diskriminantanalys av multispektrala data Januar 22 ISSN 65-942 Metodrapport Tomas Hallberg En kort ntrodukton tll prncpalkomponenttransformaton och kanonsk dskrmnantanalys av multspektrala data x 2 σ A σ W σ W2 x Sensorteknk Box 65 58 Lnköpng

Läs mer

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Borrby förskola 13 feb 2014

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Borrby förskola 13 feb 2014 Illustratoner: Anders Worm Grön Flagg-rapport Borrby förskola 13 feb 2014 Kommentar från Håll Sverge Rent 2014-02-07 14:13: N har en bra rapport och det är nte långt från ett godkännande. V skulle vlja

Läs mer

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Vindelälvsskolan 27 maj 2014

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Vindelälvsskolan 27 maj 2014 Illustratoner: Anders Worm Grön Flagg-rapport Vndelälvsskolan 27 maj 2014 Kommentar från Håll Sverge Rent 2014-05-27 15:19: N har på ett mycket kreatvt och varerat sätt jobbat med era mål och aktvteter.

Läs mer

Handlingsplan. Grön Flagg. Saxnäs skola

Handlingsplan. Grön Flagg. Saxnäs skola Handlngsplan Grön Flagg Saxnäs skola Kommentar från Håll Sverge Rent 2015-01-05 09:27: Jättefnt att n jobbat utfrån elevernas önskemål när n satt hop er handlngsplan för att måna om deras nflytande. N

Läs mer

Handlingsplan. Grön Flagg. Förskolan Trollet

Handlingsplan. Grön Flagg. Förskolan Trollet Handlngsplan Grön Flagg Förskolan Trollet Kommentar från Håll Sverge Rent 2013-06-24 14:09: N har fna och ntressanta utvecklngsområden med aktvteter som anpassas efter barnens förmågor - Bra jobbat. Låt

Läs mer

Grön Flagg-rapport Vallaskolan 4 jul 2014

Grön Flagg-rapport Vallaskolan 4 jul 2014 Illustratoner: Anders Worm Grön Flagg-rapport Vallaskolan 4 jul 2014 Kommentar från Håll Sverge Rent 2014-07-04 13:38: Vlka jättebra flmer barnen har spelat n fantastskt bra och underhållande som samtdgt

Läs mer

Problem i sammanfattande mått i ASI

Problem i sammanfattande mått i ASI Allmän SS-rapport 2001:10 Problem sammanfattande mått ASI Av Ingegerd Jansson ISSN 10-258 Förord Statens nsttutonsstyrelse, SS, svarar för planerng, lednng och drft av nsttutoner för tvångsvård av mssbrukare

Läs mer

N A T U R V Å R D S V E R K E T

N A T U R V Å R D S V E R K E T 5 Kselalger B e d ö m n n g s g r u vattendrag n d e r f ö r s j ö a r o c h v a t t e n d r a g Parameter Vsar sta hand effekter Hur ofta behöver man mäta? N på året ska man mäta? IPS organsk Nngspåver

Läs mer

Grön Flagg-rapport Förskolan Skogsgläntan 13 aug 2014

Grön Flagg-rapport Förskolan Skogsgläntan 13 aug 2014 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Skogsgläntan 13 aug 2014 Kommentar från Håll Sverge Rent 2014-08-13 09:11: N har jättefna aktvteter tll era utvecklngsområden. Det är en mycket bra

Läs mer

Generellt ägardirektiv

Generellt ägardirektiv Generellt ägardrektv Kommunala bolag Fastställt av kommunfullmäktge 2014-11-06, 223 Dnr 2014.0450.107 2 Generellt ägardrektv för Fnspångs kommuns drekt eller ndrekt helägda bolag Detta ägardrektv ska antas

Läs mer

Grön Flagg-rapport Rots skola 30 dec 2014

Grön Flagg-rapport Rots skola 30 dec 2014 Illustratoner: Anders Worm Grön Flagg-rapport Rots skola 30 dec 2014 Kommentar från Håll Sverge Rent 2014-12-30 15:1: Vlken toppenrapport n har skckat n tll oss- trevlg läsnng. N har fna, tydlga utvecklngsområden

Läs mer

Sammanfattning av kvalitetsrapporter - kommunala skolorna

Sammanfattning av kvalitetsrapporter - kommunala skolorna 1 (5) Barn- och utbldnngskontoret BARN- OCH UTBILDNINGSSEKTORN Sammanfattnng av kvaltetsrapporter - kommunala skolorna Bakgrund Huvudmannen har stt Kvaltet- och utvecklngsprogram prorterat tre målområden

Läs mer

Grön Flagg-rapport Förskolan Morkullan 4 mar 2015

Grön Flagg-rapport Förskolan Morkullan 4 mar 2015 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Morkullan 4 mar 2015 Kommentar från Håll Sverge Rent 2015-03-04 10:52: Gratts tll er första godkända rapport och en toppenbra sådan! N har bra och

Läs mer

Almedalsveckan 2011. Snabba fakta om aktuella ämnen under Almedalsveckan 2011 2-3 6-7 8-9. Ungas ingångslöner. Stark som Pippi? Löner och inflation

Almedalsveckan 2011. Snabba fakta om aktuella ämnen under Almedalsveckan 2011 2-3 6-7 8-9. Ungas ingångslöner. Stark som Pippi? Löner och inflation Almedalsveckan 11 Snabba fakta om aktuella ämnen under Almedalsveckan 11 Stark som Ppp? 2-3 Ungas ngångslöner Välfärdsföretagen 8-9 Löner och nflaton Närmare skattegenomsnttet 1 5 Studemotverade eller

Läs mer

Ensamma kan vi inte förändra

Ensamma kan vi inte förändra 2013, vnter/vår Behandlngsföreståndaren har ordet Drogtestnng Ultmatum på jobbet ledde tll nyktert lv Vårdutbldnngsprogram för företagshälsovården Ideella resurser vd mssbruk för företagshälsovården Arbetsplatsprogram

Läs mer