KOMPRESSIBEL STRÖMNING I RÖR OCH KANALER, KONSTANT TVÄRSNITT

Storlek: px
Starta visningen från sidan:

Download "KOMPRESSIBEL STRÖMNING I RÖR OCH KANALER, KONSTANT TVÄRSNITT"

Transkript

1 KOMPRESSIBEL STRÖMNING I RÖR OCH KANALER, KONSTANT TVÄRSNITT Stationär, endimensionell strömning, perfekt gas, konstant tvärsnitt. Inget tekniskt eller visköst arbete, försumbara variationer i potentiell energi. Väggskjuvspänning m.h.a. Darcys friktionsfaktor, τ w = fρv 2 /8, f = φ(re, ǫ/ ), = 4A/P, Re = 4ṁ/(Pµ), där µ endast beror av temperaturen. Massbalans: ṁ/a = ρv = G = konst. dρ ρ + dv V = 0 Impulsbalans: pa (p + dp)a τ w Pdx = ṁ(v + dv V ) dp + ρv dv + fρv 2 (dx/ )/2 = dp 0 + fρv 2 (dx/ )/2 = 0 Tillståndsekvation: p = ρrt dp p = dρ ρ + dt T Energibalans: δq = dh 0 = c p dt 0 = c p dt + V dv c p = kr/(k 1), k = c p /c v = konst. Ma = V/a, a = krt = kp/ρ ρv 2 = kpma 2 Betrakta först adiabatisk strömning, δq = 0 dt 0 = 0, konstant stagnationstemperatur. Entropin ökar, ds δq/t = ds > 0. Ch. 9.7 Strömningslära C. Norberg, LTH

2 ADIABATISK KOMPRESSIBEL RÖRSTRÖMNING MED FRIKTION dp 1 + (k 1)Ma2 = kma2 p 2(1 Ma 2 f dx ) dρ ρ = dv V = kma2 2(1 Ma 2 ) f dx dp 0 = dρ 0 = 1 p 0 ρ 0 2 kma2 f dx < 0 dt 1)Ma4 = k(k T 2(1 Ma 2 ) f dx dma 2 Ma 2 = kma (k 1)Ma2 2 1 Ma 2 f dx Storhet Ma < 1 Ma > 1 p minskar ökar ρ minskar ökar V ökar minskar p 0, ρ 0 minskar minskar T minskar ökar Ma ökar minskar s ökar ökar Stagnationstrycket p 0 sjunker, entropin ökar. Hastigheten liksom Machtalet ökar vid underljudsströmning, omvänt vid överljud. Oavsett inloppstillstånd drivs strömningen mot soniska förhållanden, Ma = 1 (maximal entropi). Lämpligt referenstillstånd: Ma = 1 (betecknat med *) Inlopp vid x = 0 Tänkt utlopp vid x = L Ma = 1, p = p, T = T, o.s.v. Ch. 9.7 Strömningslära C. Norberg, LTH

3 ADIABATISK KOMPRESSIBEL RÖRSTRÖMNING MED FRIKTION... Ekvationen för dma 2 kan integreras: L 0 f dx = fl = 1 Ma2 kma 2 + k + 1 2k ln f representerar medelvärde över [ 0, L ]. (k + 1)Ma (k 1)Ma 2 Övriga storheter: Varje tvärsnitt har en egen kritisk längd, d.v.s. f L = fl 1 fl 2 p/p = Ma 1 g 1 2 ; ρ/ρ = V /V = Ma 1 g 1 2 T/T = (a/a ) 2 = g ; p 0 /p 0 = ρ 0 /ρ 0 = Ma 1 g 2(k 1) k+1 k + 1 g = 2 + (k 1)Ma 2 Vid problemlösning, p 2 /p 1 = (p 2 /p )/(p 1 /p ), etc. Ch. 9.7 Strömningslära C. Norberg, LTH

4 STRYPNING P.G.A. FRIKTION För varje givet Machtal Ma 1 vid tänkt inlopp (x = 0) kommer strömningen till slut att bli sonisk, Ma = 1, vid x = L (Ma 1 ). Exempel: f = 0.020, k = 1.40; Ma 1 = L / = 205; (a) Ma 1 = 3.00 L / = 26.1; Ma 1 L / = Vad händer om L > L, d.v.s. röret längre än kritisk längd? Strömningen i utloppet blir sonisk, strypt. (i) Ma 1 < 1. Machtalet vid inloppet kan inte upprätthållas. Strömningen anpassas (bromsas upp) så att Machtalet vid inloppet blir lägre, Ma 1,new < Ma 1, L = L (Ma 1,new ). Massflödet minskar. (ii) Ma 1 > 1. Stötbildning med övergång till Ma < 1 så att Ma blir exakt ett vid utloppet (b, c). Givet inlopps-machtal innebär att viss längd ger stöt precis vid inloppet. Exempel: f = 0.020, k = 1.40; Ma 1 = 3.00 = Ma n1 Ma n2 = 0.475, L / = Vid ännu längre rör (d) sker stöt uppströms inloppet, i det förmodade Lavalmunstycket. Först då stöten når munstyckets minsta sektion minskar massflödet. Ch. 9.7 Strömningslära C. Norberg, LTH

5 ISOTERM KOMPRESSIBEL RÖRSTRÖMNING MED FRIKTION Adiabatisk approximation är oftast OK för relativt korta rör och kanaler, upp till 100 vid normal isolering (naturlig konvektion). För riktigt långa rör, t.ex. gasströmning i långa pipelines, är isoterm approximation mer lämplig. En strikt isoterm kompressibel strömning kräver dock anpassat värmeutbyte, δq = V dv. Supersonisk isoterm strömning är mycket ovanligt. p/ρ = RT = konst. dρ/ρ = dp/p ρv = ṁ/a = konst. dρ/ρ = dv/v vilket insatt ger Machtalsrelationer... dp/p = dv/v Strömningen drivs mot Machtal lägre än ett, Ma crit = 1/ k; k = 1.40 Ma crit = Strypt strömning sker vid L max, fl max = 1 kma2 kma 2 + ln ( kma 2 ) (9.71) Mycket snarligt adiabatiska fallet, speciellt subsonisk strömning. Beteckna det tänkta strypta tillståndet vid x = L max med prim, p, ρ, V, etc. Då gäller V/V = ρ /ρ = p /p = k Ma (9.72) I motsats till adiabatisk strömning finns en explicit formel för massflödet: G 2 = ṁ A 2 = p 2 1 p2 2 RT[ fl/ + 2 ln(p 1 /p 2 ) ] (9.73) Subsoniskt inlopp (Ma 1 < 1) kräver Ma 2 Ma crit = 1/ k; om inte måste Ma 1 minskas så att Ma 2 = Ma crit uppfylls. Vid adiabatisk strömning kan ekv. (9.73) med fördel användas som utgångspunkt vid iterativ beräkning av ṁ. Ch. 9.8 Strömningslära C. Norberg, LTH

6 FRIKTIONSFRI KOMPRESSIBEL STRÖMNING MED VÄRMEUTBYTE Vid kraftig kylning/värmning eller internt värmeutbyte, t.ex. i brännkammare, kan oftast väggfriktionen försummas, 4τ w d(x/ ) ρ δq. [KE] ρ 1 V 1 = ρ 2 V 2 = G = ṁ/a = konst. [IE] p 1 p 2 = G(V 2 V 1 ) = ρ 2 V2 2 ρ 1 V1 2 [EE] Q/ṁ = q = c p (T 02 T 01 ) = kr k 1 (T 02 T 01 ) p 2 [TE] = p 1 ρ 2 T 2 ρ 1 T 1 [Machtal] Ma = V a = V krt ρv 2 = kpma 2 p 2 = 1 + kma2 1 p kma 2 2 V 2 V 1 = Ma 2 Ma 1 a 2 a 1 = Ma 2 Ma 1 T 2 T 1 = ρ 2 ρ 1 p 2 p 1 = V 2 V 1 p 2 p 1 T 2 T 1 = T 1/2 2 T kma kma 2 2 Ma 2 Ma 1 T 0 T = 1 + k 1 Ma 2 samt p 0 2 p = T k 1 0 T 02 och p 02 T T 01 p 01 T 02 = T 01 + k 1 kr q, o.s.v. k 2 Ch. 9.8 Strömningslära C. Norberg, LTH

7 STRÖMNING MED VÄRMEUTBYTE... q = c p (T 02 T 01 ), d.v.s. värmning (q > 0) ökar T 0, omvänt vid kylning. Max. T 0 sker vid Ma = 1, d.v.s. vid givna inloppsförhållanden kan bara en viss värmemängd q max tillföras. Låt tänkt utloppstillstånd vara vid Ma = 1 och beteckna alla övriga storheter med {.}, ex. p, T,.... Arbetssamband (k = 1.40, se Table B.4): T 0 T0 p 0 p 0 = (k + 1)Ma2 [ 2 + (k 1)Ma 2 ] (1 + k Ma 2 ) 2 = k k Ma 2 T T = k + 1 Ma2 1 + k Ma 2 p p = k k Ma 2 V V = ρ ρ 2 + (k 1)Ma 2 2 = (k + 1)Ma2 1 + kma 2 k + 1 k k 1 Ex. värmning; q > q max? Utloppet blir soniskt, strypt, Ma 2 = 1. Strömningen måste anpassa sig så att tillförd värmemängd klaras av, T 02 = T 01 + q/c p = T 0. Vid subsoniskt inlopp minskar Ma 1, Ma 1,new < Ma 1. Om Ma 1 > 1 utbildas stöt uppströms, inloppet blir subsoniskt, Ma 1,new < 1. Ch. 9.8 Strömningslära C. Norberg, LTH

8 TVÅDIMENSIONELL SUPERSONISK STRÖMNING Betrakta en liten partikel som färdas med hastigheten U genom stillastående gas. Partikeln sänder ut ljudpulser som utbreder sig med ljudhastigheten a. Machtal, Ma = U/a. (a) Ma < 1. Partikeln kommer inte ifatt sina ljudpulser, a δt > U δt, subsonisk hastighet. Ljudet hörs i alla riktningar. (b) Ma = 1. Precis ifatt! Hastigheten är sonisk. Ljudet hörs endast bakom partikeln. (c) Ma > 1. Partikeln åker ifatt och förbi sina egna ljudpulser, U δt > a δt, supersonisk hastighet. Vågfronter formar sig till en kon. Inget ljud hörs utanför denna s.k. Machkon. Machvinkel, µ = arcsin 1 Ma Ch. 9.9 Strömningslära C. Norberg, LTH

9 SNEDA STÖTAR Sneda stötar uppträder då supersonisk strömning tvingas till omlänkning i samband med kompression (tryckökning). Supersonisk 2-D strömning kring kilformade kroppar: Anliggande stöt, liten omlänkning, θ < θ max Friliggande stöt, stor omlänkning, θ > θ max Under vissa förhållanden kan supersonisk strömning upprätthållas även efter en sned stöt. Ch. 9.9 Strömningslära C. Norberg, LTH

10 SNEDA STÖTAR... Stötvinkel β; Omlänkningsvinkel θ; Tunn stöt A 2 = A 1 ; Adiabatiskt T 02 = T 01 ; Irreversibelt s 2 > s 1 [KE] ρ 1 V n1 = ρ 2 V n2 [IE] n p 1 p 2 = ρ 2 Vn2 2 ρ 1 Vn1 2 [IE] t 0 = ρ 1 V n1 (V t2 V t1 ) V t2 = V t1 [EE] ĥ 1 + Vn1/2 2 = ĥ2 + Vn2/2 2 Ekvationssystemet identiskt med det som gäller raka stötar om V 1 och V 2 ersätts med V n1 resp. V n2. Samma form på Machtalsrelationer! Ma 1 Ma n1 = V n1 /a 1 = Ma 1 sinβ > 1 Ma 2 Ma n2 = V n2 /a 2 = Ma 2 sin(β θ) < 1 p 2 = p 1 ρ 2 = ρ [ 2k Ma 2 k sin 2 β (k 1) ] tanβ tan(β θ) = (k + 1)Ma2 1 sin2 β (k 1)Ma 2 1 sin 2 β + 2 = V n1 V n2 Ma 2 n2 = (k 1)Ma2 n k Ma 2 n1 (k 1) Ch. 9.9 Strömningslära C. Norberg, LTH

11 HODOGRAF, MAXIMAL OMLÄNKNINGSVINKEL En stråle från origo som tangerar eller skär genom den droppformade hodografen motsvarar möjlig omlänkning θ vid sned stöt, vid givet Machtal Ma 1 innan stöten. Två möjligheter (lösningar) om θ < θ max ; stötvinklar β w och β s, svag resp. stark stöt. Ingen lösning om θ > θ max. Den maximala omlänkningsvinkeln θ max ökar med Ma 1 men är begränsad även då Ma 1. Omlänkningsvinkel, θ = arctan V t V n2 arctan V t V n1. Derivering m.a.p. V t och derivatan noll ger θ max = arctanr 1/2 arctanr 1/2, r = V n1 /V n2 Ma n1 r = (k + 1)/(k 1); med k = 1.4 fås r = V n1 /V n2 = 6.0 θ max = 46 (β = 68 ); Ma n1 = 3.0 r = 3.86 θ max = 36 (β = 63, Ma 1 = Ma n1 / sinβ = 3.4). Ch. 9.9 Strömningslära C. Norberg, LTH

12 SAMBAND MELLAN VINKLAR tanθ = 2 tanβ Ma 2 1 sin2 β 1 Ma 2 1 (k + cos 2β) + 2 (9.86) θ = 0, β = 90 (rak stöt, Ma 2 < 1 ) θ = 0, Ma 2 > 1 β = µ (Machvågor) θ > 0 β > µ (stötvågor) Given omlänkningsvinkel θ < θ max två möjliga stötvinklar β: Liten stötvinkel Svag stöt (oftast är Ma 2 > 1) Stor stötvinkel Stark stöt (Ma 2 < 1). Typ av stöt beror av förhållanden nedströms. Ch. 9.9 Strömningslära C. Norberg, LTH

13 EXTREMT SVAGA STÖTAR Vid ändlig omlänkningsvinkel θ är stötvinkeln β alltid större än Machvinkeln µ (sinµ = 1/Ma 1 ). Linjärisering kring θ = 0 ger sinβ = sinµ + k cosµ tanθ + O(tan2 θ) (9.88) p 2 p 1 p 1 = kma 2 1 Ma tanθ + O(tan2 θ) (9.89) s 2 s 1 c p = (k2 1)Ma (Ma 2 1 1) 3/2 tan3 θ + O(tan 4 θ) (9.90) Svaga stötar med små θ approximativt isentropa (förlustfria). Ma = 2: p 2 /p 1 inom 10% då θ < 5 ; Ma = 6: θ < 2 ; motsvarande β inom 0.2 ; ekv. (9.88) ger bra β-startvärde vid iteration med ekv. (9.86). Linjärisering ligger till grund för teorin om supersoniska expansionsfanor (Prandtl-Meyers expansionsvågor). Ch. 9.9 Strömningslära C. Norberg, LTH

14 GRADVIS OMLÄNKNING, EXPANSIONSFANOR Linjäriserad teori kan användas vid gradvisa omlänkningar av supersonisk strömning. Processen kan approximeras som isentrop. (a) Gradvis kompression minskar Machtalet, Machvågor sammanstrålar/samverkar stötvåg med ändlig amplitud. (b) Gradvis expansion ökar Machtalet, Machvågorna divergerar. (c) Plötslig kompression kan endast approximeras med linjär teori vid små θ och låga Ma 1 > 1, alldeles invid hörnet dock som fall (a). (d) Vid plötslig expansion sprids Machvågorna ut från hörnet likt en solfjäder ( expansionsfana ), hela omlänkningen kan behandlas med linjäriserad teori, genom integration (Prandtl & Meyer, 1908). Vid givet Machtal uppströms och given expansionsvinkel kan t.ex utgående Machtal enkelt beräknas. Ch Strömningslära C. Norberg, LTH

15 PRANDTL-MEYERS FUNKTION Differentiell omlänkning dθ; Ma > 1 Isentrop omlänkning dp p = dθ = dω = kma2 Ma 2 1 dθ Ma (k 1)Ma 2 /2 d(ma) Ma Expansion (dω > 0) ökar således Machtalet. Integration med ω(ma = 1) = 0 ger Prandtl-Meyers funktion: ω(ma) = K arctan Ma2 1 K arctan ( Ma 2 ) 1 K = k + 1 k 1 Ma ω = ω max = π( K 1)/2. Med k = 1.40 fås K = 6.0, ω max = Expansion med vinkeln ω: ω = ω 1 2 = ω(ma 2 ) ω(ma 1 ) Ex. Ma 1 = 4.0, k = 1.40 ω 1 = (Table B.5). ω = 20 ω 2 = ω 1 + ω = Ma 2 = 6.2. Ch Strömningslära C. Norberg, LTH

16 TUNNA VINGPROFILER, SUPERSONISK STRÖMNING ACKERETS TEORI Tvådimensionell strömning, teori efter Jacob Ackeret (1925). α 1 bredd b C C = korda L = F cosα F D = F sinα F α : F = (p 2 p 3 )Cb = (p 2 p 3 )A p p 2 p 3 = (p 2 p ) (p 3 p ) = p p 2 p p p 3 p p 2 : svag stöt, θ = α p 2 p p = kma2 α Ma : expansionsfana, ω = α = θ p 3 p p L F = p kma 2 A p 2α Ma 2 1 C L = 2L/(ρ U 2 A p ), ρ U 2 = kp Ma 2 = kma2 ( α) Ma 2 1 C L 4α Ma 2 1, C D 4α 2 Ma 2 1 Ch Strömningslära C. Norberg, LTH

Arbete är ingen tillståndsstorhet!

Arbete är ingen tillståndsstorhet! VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

5C1201 Strömningslära och termodynamik

5C1201 Strömningslära och termodynamik 5C1201 Strömningslära och termodynamik Föreläsning 12: Kompressibel strömning Introduktion samt isentropisk strömning Målsättning: att formulera de grundekvationer som gäller då strömningen är kompressibel,

Läs mer

Arbetet beror på vägen

Arbetet beror på vägen VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

p + ρv ρgz = konst. Speciellt försumbara effekter av gravitation (alt. horisontellt): Om hastigheten ökar minskar trycket, och vice versa.

p + ρv ρgz = konst. Speciellt försumbara effekter av gravitation (alt. horisontellt): Om hastigheten ökar minskar trycket, och vice versa. BERNOULLIS EKVATION Vid inkompressibel, stationär strömning längs strömlinjer samt längs röravsnitt med homogena förhållanden över tvärsnitt, vid försumbara effekter av friktion, gäller Bernoullis ekvation:

Läs mer

3. En konvergerande-divergerande dysa har en minsta sektion på 6,25 cm 2 och en utloppssektion

3. En konvergerande-divergerande dysa har en minsta sektion på 6,25 cm 2 och en utloppssektion Betygstentamen, SG1216 Termodynamik för T2 26 augusti 2010, kl. 14:00-18:00 SCI, Mekanik, KTH 1 Hjälpmedel: Den av institutionen framtagna formelsamlingen, matematisk tabell- och/eller formelsamling (typ

Läs mer

Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00

Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00 Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00 SCI, Mekanik, KTH 1 Hjälpmedel: Den av institutionen framtagna formelsamlingen, matematisk tabell- och/eller formelsamling typ Beta),

Läs mer

P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3.

P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3. P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3. Luften värms nu långsamt via en elektrisk resistansvärmare

Läs mer

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi Entropi Är inte så enkelt Vi kan se på det på olika sätt (mikroskopiskt, makroskopiskt, utifrån teknisk design). Det intressanta är förändringen i entropi ΔS. Men det finns en nollpunkt för entropi termodynamikens

Läs mer

p + ρv ρgz = konst. [z uppåt] Speciellt försumbara effekter av gravitation (alt. horisontellt):

p + ρv ρgz = konst. [z uppåt] Speciellt försumbara effekter av gravitation (alt. horisontellt): BERNOULLIS EKVATION Vid inkompressibel, stationär strömning längs strömlinjer samt längs röravsnitt med homogena förhållanden över tvärsnitt, vid försumbara effekter av friktion, gäller Bernoullis ekvation:

Läs mer

v = dz Vid stationär (tidsoberoende) strömning sammanfaller strömlinjer, partikelbanor och stråklinjer. CH Strömningslära C.

v = dz Vid stationär (tidsoberoende) strömning sammanfaller strömlinjer, partikelbanor och stråklinjer. CH Strömningslära C. STRÖMLINJER, STRÅKLINJER,... En strömlinje (eng. streamline) är en kurva (linje) i rummet vars tangentvektor i varje punkt är parallell med hastighetsvektorn V. I vanliga rätvinkliga koordinater gäller:

Läs mer

Givet: ṁ w = 4.50 kg/s; T 1 = 20.0 C; T 2 = 70.0 C; Voil = 10.0 dm 3 /s; T 3 = 170 C; Q out = 11.0 kw.

Givet: ṁ w = 4.50 kg/s; T 1 = 20.0 C; T 2 = 70.0 C; Voil = 10.0 dm 3 /s; T 3 = 170 C; Q out = 11.0 kw. TENTAMEN I MMVA01 TERMODYNAMIK MED STRÖMNINGSLÄRA 21 oktober 2008; inkl. teorisvar/lösningar. T1. Definiera eller förklara kortfattat (a) kinematisk viskositet ν = µ/ρ, där µ är fluidens dynamiska viskositet

Läs mer

Re baseras på medelhastighet V samt hydraulisk diameter D h, Re = Re Dh = ρv D h. , D h = 4 A P. = V D h ν

Re baseras på medelhastighet V samt hydraulisk diameter D h, Re = Re Dh = ρv D h. , D h = 4 A P. = V D h ν RÖRSTRÖMNING Trots dess stora tekniska betydelse är den samlade kunskapen inom strömning i rörsystem väsentligen baserad på experiment och empiriska metoder, även när det gäller inkompressibel, stationär

Läs mer

TENTAMEN I MMVA01 TERMODYNAMIK MED STRÖMNINGSLÄRA, tisdag 23 oktober 2012, kl

TENTAMEN I MMVA01 TERMODYNAMIK MED STRÖMNINGSLÄRA, tisdag 23 oktober 2012, kl TENTAMEN I MMVA01 TERMODYNAMIK MED STRÖMNINGSLÄRA, tisdag 23 oktober 2012, kl. 14.00 18.00. P1. En sluten cylinder med lättrörlig kolv innehåller 0.30 kg vattenånga, initiellt vid 1.0 MPa (1000 kpa) och

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2014-01-14 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2014-01-14 kl. 08.30-12.30 CHALMERS (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM09/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM09 och KVM090) 204-0-4 kl. 08.30-2.30

Läs mer

1. Det totala tryckfallet från pumpens utlopp, via rörledningen och alla komponenterna tillbaks till pumpens inlopp ges av. p = d

1. Det totala tryckfallet från pumpens utlopp, via rörledningen och alla komponenterna tillbaks till pumpens inlopp ges av. p = d MEKANIK KTH Förslag till lösningar vid tentamen i 5C9 Teknisk strömningslära för M den 6 maj 004. Det totala tryckfallet från pumpens utlopp, via rörledningen och alla komponenterna tillbaks till pumpens

Läs mer

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω)

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω) FUKTIG LUFT Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft Normalt är ω 1 (ω 0.02) ω = m v /m a m = m a (1 + ω) Luftkonditionering, luftbehandling:

Läs mer

Överhettad ånga, Table A-6 (2.5 MPa): T [ C] v [m 3 /kg] ? Linjär interpolation:

Överhettad ånga, Table A-6 (2.5 MPa): T [ C] v [m 3 /kg] ? Linjär interpolation: Exempel 1, Ch.3 Givet: H 2 O, P = 2.5 MPa = 2500 kpa, T = 265 C = 538.15 K. Sökt: v (volymitet). Table A-4: T = 265 C > T sat@2.5mpa = 223.95 C Table A-5: P = 2500 kpa < P sat@265 C = 5085.3 kpa Överhettad

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16

CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16 CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg TME055 Strömningsmekanik 2015-01-16 Tentamen fredagen den 16 januari 2015 kl 14:00-18:00 Ansvarig lärare: Henrik Ström Ansvarig lärare besöker

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V CHLMERS 1 (3) TENTMEN I TERMODYNMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V Hjälpmedel: Kursböckerna Elliott-Lira: Introductory Chemical Engineering Thermodynamics och P. tkins, L. Jones:

Läs mer

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.) Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30 CHALMERS 1 (5) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30

Läs mer

A. Egenskaper hos plana figurer (MTM458)

A. Egenskaper hos plana figurer (MTM458) uleå tekniska universitet Hans Åkerstedt Aerodynamik f37t 8/9 FORMESAMING I AEROYNAMIK INNEHÅ:. Hydrostatik och standard atmosfären. Kinematik 3. Konserveringslagar 4. Modellförsök och likformighet 5.

Läs mer

Lösningar/svar till tentamen i MTM119/052 Hydromekanik Datum:

Lösningar/svar till tentamen i MTM119/052 Hydromekanik Datum: Lösningar/svar till tentamen i MTM9/05 Hydromekanik Datum: 005-08-4 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

B1 Lösning Givet: T = 20 C 0 T = 72 C T = 100 C D x1 = = 0.15 m 2 Det konvektiva motståndet kan försummas Beräkna X i punkten som är 6 cm från mitten T T 100 72 Y = = = 0.35 T T 100 20 1 0 m 0 (det konvektiva

Läs mer

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2)

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2) Inre energi Begreppet energi är sannerligen ingen enkel sak att utreda. Den går helt enkelt inte att definiera med några få ord då den förekommer i så många olika former. Man talar om elenergi, rörelseenergi,

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 5 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Kap 4 energianalys av slutna system

Kap 4 energianalys av slutna system Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

ARBETSGIVANDE GASCYKLER

ARBETSGIVANDE GASCYKLER ARBETSGIVANDE GASCYKLER Verkliga processer är oftast mycket komplicerade till sina detaljer; exakt analys omöjlig. Om processen idealiseras som internt reversibel fås en ideal process vars termiska verkningsgrad

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

SG1216. Termodynamik för T2

SG1216. Termodynamik för T2 SG1216 Termodynamik för T2 Klassisk termodynamik med kompressibel strömning. rörelseenergi och arbete inom mekanik rörströmning inom strömningslära integralkalkyl inom envariabelsanalys differentialkalkyl

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) 2010-01-15 kl. 14.00-18.00

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) 2010-01-15 kl. 14.00-18.00 CHALMERS 1 (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi Termodynamik (KVM091/KVM090) TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) 2010-01-15 kl. 14.00-18.00

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive

Läs mer

Lösningar kapitel 10

Lösningar kapitel 10 Lösningar kapitel 0 Endimensionell analys Fabian Ågren, π Lösta uppgifter 0............................................... 0............................................... 0.6..............................................

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen

SF1625 Envariabelanalys Lösningsförslag till tentamen SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.

Läs mer

Entropi. Det är omöjligt att överföra värme från ett "kallare" till ett "varmare" system utan att samtidigt utföra arbete.

Entropi. Det är omöjligt att överföra värme från ett kallare till ett varmare system utan att samtidigt utföra arbete. Entropi Vi har tidigare sett hur man kunde definiera entropi som en funktion (en konstant gånger naturliga logaritmen) av antalet sätt att tilldela ett system en viss mängd energi. Att ifrån detta förstå

Läs mer

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer). Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och

Läs mer

R LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x.

R LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x. Armin Halilovic: EXTRA ÖVNINGAR, SF676 Begynnelsevärdesproblem Enkla DE ALLMÄN LÖSNING PARTIKULÄR LÖSNING SINGULÄR R LÖSNINGG BEGYNNELSEVÄRDESPROBLEM (BVP) Låt ( n) F(,,,, y ( )) vara en ordinär DE av

Läs mer

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och

Läs mer

mg F B cos θ + A y = 0 (1) A x F B sin θ = 0 (2) F B = mg(l 2 + l 3 ) l 2 cos θ

mg F B cos θ + A y = 0 (1) A x F B sin θ = 0 (2) F B = mg(l 2 + l 3 ) l 2 cos θ Institutionen för teknikvetenskap och matematik Kurskod/kursnamn: F0004T, Fysik 1 Tentamen datum: 019-01-19 Examinator: Magnus Gustafsson 1. Friläggning av balken och staget: Staget är en tvåkraftsdel

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER

Läs mer

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x = UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH TERMODYNAMIK? Termodynamik är den vetenskap som behandlar värme och arbete samt de tillståndsförändringar som är förknippade med dessa energiutbyten. Centrala tillståndsstorheter är temperatur, inre energi,

Läs mer

Teknisk termodynamik repetition

Teknisk termodynamik repetition Först något om enheter! Teknisk termodynamik repetition Kom ihåg att använda Kelvingrader för temperaturer! Enheter motsvarar vad som efterfrågas! Med konventionen specifika enheter liten bokstav: E Enhet

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN 6 mars 06 Tid 8:-: Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan

Läs mer

TFEI02: Vågfysik. Tentamen : Lösningsförslag

TFEI02: Vågfysik. Tentamen : Lösningsförslag 160530: TFEI0 1 Uppgift 1 TFEI0: Vågfysik Tentamen 016-05-30: Lösningsförslag a) Ljudintensiteten, I, är ett mått på hur stor effekt, P eff, som transporteras per area. Om vi vet amplituden på vågen kan

Läs mer

Lektion 5: Innehåll. Bernoullis ekvation. c 5MT007: Lektion 5 p. 1

Lektion 5: Innehåll. Bernoullis ekvation. c 5MT007: Lektion 5 p. 1 Lektion 5: Innehåll Bernoullis ekvation c 5MT007: Lektion 5 p. 1 Lektion 5: Innehåll Bernoullis ekvation Reynoldstal (Re) c 5MT007: Lektion 5 p. 1 Lektion 5: Innehåll Bernoullis ekvation Reynoldstal (Re)

Läs mer

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t 2π T x. s(x,t) = 2 cos [2π (0,4x/π t/π)+π/3]

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t 2π T x. s(x,t) = 2 cos [2π (0,4x/π t/π)+π/3] TFEI0: Vågfysik Tentamen 14100: Svar och anvisningar Uppgift 1 a) Vågen kan skrivas på formen: vilket i vårt fall blir: s(x,t) =s 0 sin t π T x + α λ s(x,t) = cos [π (0,4x/π t/π)+π/3] Vi ser att periodtiden

Läs mer

David Wessman, Lund, 29 oktober 2014 Statistisk Termodynamik - Kapitel 3. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.

David Wessman, Lund, 29 oktober 2014 Statistisk Termodynamik - Kapitel 3. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. 1 Entropi 1.1 Inledning Entropi införs med relationen: S = k ln(ω (1 Entropi har enheten J/K, samma som k som är Boltzmanns konstant. Ω är antalet

Läs mer

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Termodynamikens grundlagar Nollte grundlagen Termodynamikens 0:e grundlag Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Temperatur Temperatur är ett mått på benägenheten

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 10 Institutionen för matematik KTH 19 september 2016 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel (men inte bara) hastighet.

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Uppsala Universitet Matematiska Institutionen Bo Styf Envariabelanalys, 10 hp STS, X 010-10-7 Genomgånget på föreläsningarna 11-15. Föreläsning 11, 4/11 010: Här kommer vi in i kapitel 4, som handlar om

Läs mer

BERNOULLIS EKVATION. Friktionsfri strömning, Eulers ekvation på vektorform:

BERNOULLIS EKVATION. Friktionsfri strömning, Eulers ekvation på vektorform: BERNOULLIS EKVATION Friktionsfri strömning, Eulers ekvation på vektorform: dv dt = V t +(V )V = g ρ 1 p (1) Cartesiska koordinater: V = (u,v,w), = ( / x, / y, / z). Vektoridentitet: (V )V = (V 2 /2)+ξ

Läs mer

KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.

KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637. KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att

Läs mer

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi Föreläsning 13/5 Relativistisk kinematik Ulf Torkelsson 1 Relativistisk rörelsemängd, kraft och energi Antag att en observatör O följer med en kropp i rörelse. Enligt observatören O så har O hastigheten

Läs mer

6.2 Partikelns kinetik - Tillämpningar Ledningar

6.2 Partikelns kinetik - Tillämpningar Ledningar 6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste

Läs mer

bh 2 π 4 D2 ] 4Q1 πd 2 =

bh 2 π 4 D2 ] 4Q1 πd 2 = MEKANIK KTH Förslag till lösningar vid tentamen i 5C1921 Teknisk strömningslära för M den 27 maj 2005 1. Medelhastigheten i rören är ū 1 4Q 1 πd 2 ochikanalenär den ū 2 och ges av Q 2 [bh 2 π ] 4 D2 Kravet

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

DELPROV 2/TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR OKTOBER 2003, 08:00-11:00 (Delprov), 08:00-13:00 (Tentamen)

DELPROV 2/TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR OKTOBER 2003, 08:00-11:00 (Delprov), 08:00-13:00 (Tentamen) Joakim Malm Teknisk Vattenresurslära LTH DELPROV /TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR0 4 OKTOBER 003, 08:00-:00 (Delprov), 08:00-3:00 (Tentamen) Tillåtna hjälpmedel: Kom ihåg: För samtliga uppgifter: Rättning:

Läs mer

MEKANIK KTH Forslag till losningar till Sluttentamen i 5C1201 Stromningslara och termodynamik for T2 den 30 augusti Stromfunktionen for den ho

MEKANIK KTH Forslag till losningar till Sluttentamen i 5C1201 Stromningslara och termodynamik for T2 den 30 augusti Stromfunktionen for den ho MEKNK KH Forslag till losningar till Sluttentamen i 5C0 Stromningslara och termodynamik for den 30 augusti 00. Stromfunktionen for den homogena fristrommen och kallan ar ;Vy; m dar den forsta termen (fristrommen)

Läs mer

Termodynamik Föreläsning 7 Entropi

Termodynamik Föreläsning 7 Entropi ermodynamik Föreläsning 7 Entropi Jens Fjelstad 200 09 5 / 2 Innehåll FS 2:a upplagan (Çengel & urner) 7. 7.9 FS 3:e upplagan (Çengel, urner & Cimbala) 8. 8.9 8.3 D 6:e upplagan (Çengel & Boles) 7. 7.9

Läs mer

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 6 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

STRÖMNING MED FRIA VÄTSKEYTOR

STRÖMNING MED FRIA VÄTSKEYTOR STRÖMNING MED FRIA VÄTSKEYTOR Vid den fria vätskeytan (vattenytan) kan trycket antas lika med det konstanta atmosfärstrycket (ytspänningseffekter försummas). Stationär, inkompressibel och oftast turbulent

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Kulstötning. Israt Jahan Martin Celander Andreas Svensson Jonathan Koitsalu

Kulstötning. Israt Jahan Martin Celander Andreas Svensson Jonathan Koitsalu Kulstötning Israt Jahan Martin Celander Andreas Svensson Jonathan Koitsalu Abstract I detta projekt undersöktes en kulstötning med starthöjden meter och en längd på,5 meter med hjälp av matematiska modeller.

Läs mer

ALTERNATIVA KOORDINATSYSTEM -Cylindriska koordinatsystem. De polära koordinaterna r och " kan beskriva rörelsen i ett xyplan,

ALTERNATIVA KOORDINATSYSTEM -Cylindriska koordinatsystem. De polära koordinaterna r och  kan beskriva rörelsen i ett xyplan, KOMIHÅG 8: --------------------------------- Rörelsemängd: p = mv, Kinematiska storheter: r ( t), v ( t), a ( t) Kinematiska samband med begynnelsevillkor 1 Föreläsning 9: ALTERNATIVA KOORDINATSYSTEM -Cylindriska

Läs mer

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1)

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1) ATM-Matematik Mikael Forsberg 734 41 3 31 Flervariabelanalys mag31 1669 Skrivtid: 9:-14:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Lösningar/svar till tentamen i MTM119 Hydromekanik Datum:

Lösningar/svar till tentamen i MTM119 Hydromekanik Datum: Lösningar/svar till tentamen i MTM9 Hydromekanik Datum: 005-05-0 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas

Läs mer

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 26-3-2 DEL A. Låt D vara fyrhörningen med hörn i punkterna, ), 6, ),, 5) och 4, 5). a) Skissera fyrhörningen D och beräkna dess area. p) b) Bestäm

Läs mer

x ( f u 2y + f v 2x) xy = 24 och C = f

x ( f u 2y + f v 2x) xy = 24 och C = f Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet

Läs mer

Definitioner: hastighet : v = dr dt = r fart : v = v

Definitioner: hastighet : v = dr dt = r fart : v = v KOMIHÅG 8: --------------------------------- Jämvikten kan rubbas: stjälpning, glidning Flexibla system- jämvikt bara i jämviktslägen ---------------------------------- Föreläsning 9: PARTIKELKINEMATIK

Läs mer

Applicera 1:a H.S. på det kombinerade systemet:

Applicera 1:a H.S. på det kombinerade systemet: (Çengel, 998) Applicera :a H.S. på det kombinerade systemet: E in E out E c på differentialform: δw δw + δw δ Q R δwc dec där C rev sys Kretsprocessen är (totalt) reversibel och då ger ekv. (5-8): R R

Läs mer

Vad tror du ökning av entropi innebär från ett tekniskt perspektiv?

Vad tror du ökning av entropi innebär från ett tekniskt perspektiv? Entropi Entropi är ett mått på oordning En process går alltid mot samma eller ökande entropi. För energi gäller energins bevarande. För entropi gäller entropins ökande. Irreversibla processer innebär att

Läs mer

LEONARDO DA VINCI ( )

LEONARDO DA VINCI ( ) LEONARDO DA VINCI (1452 1519) En kropp som rör sig med en viss hastighet i stillastående luft erfar samma strömningsmotstånd som om kroppen vore stillastående och utsatt för en luftström med samma hastighet.

Läs mer

Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen

Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen Jens Fjelstad 2010 09 01 1 / 23 Energiöverföring/Energitransport Värme Arbete Masstransport (massflöde, endast öppna system) 2 / 23 Värme Värme

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende.

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende. Institutionen för matematik KTH MOELLTENTAMEN Tentamensskrivning, år månad dag, kl. x. (x + 5).. 5B33, Analytiska metoder och linjär algebra. Uppgifterna 5 svarar mot varsitt moment i den kontinuerliga

Läs mer

Lösningar Heureka 2 Kapitel 3 Rörelse i två dimensioner

Lösningar Heureka 2 Kapitel 3 Rörelse i två dimensioner Lösningar Heureka Kapitel 3 Rörelse i två dimensioner Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik Heureka:Kapitel 3 3.1) Enligt figuren: nordliga förflyttningen: 100+00-100=00m Östliga förflyttningen:

Läs mer

9. Magnetisk energi Magnetisk energi för en isolerad krets

9. Magnetisk energi Magnetisk energi för en isolerad krets 9. Magnetisk energi [RMC] Elektrodynamik, ht 005, Krister Henriksson 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f.

201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f. Kap..5,.8.9. Lutning, tangent, normal, derivata, höger och vänsterderivata, differential, allmänna deriveringsregler, kedjeregel, derivator av högre ordning, implicit derivering. Gränsvärden. 0. (A) Beräkna

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 180111 TFYA16 1 TFYA16: Tenta 180111 Svar och anvisningar Uppgift 1 a) Svar: 89 cm x = 0 t 3 dt = [ t 3 9 ] 0 = 8 m 89 cm 9 b) Om vi betecknar tågets (T) hastighet relativt marken med v T J, så kan vi

Läs mer

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a. . Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig

Läs mer

v = dz Vid stationär (tidsoberoende) strömning sammanfaller strömlinjer, partikelbanor och stråklinjer. CH Strömningslära C.

v = dz Vid stationär (tidsoberoende) strömning sammanfaller strömlinjer, partikelbanor och stråklinjer. CH Strömningslära C. STRÖMLINJER, STRÅKLINJER,... En strömlinje (eng. streamline) är en kurva (linje) i rummet vars tangentvektor i varje punkt är parallell med hastighetsvektorn V. I vanliga rätvinkliga koordinater, V = (u,

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid:

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid: HÖGSKOLAN I HALMSTAD Tentamensskrivning Akademin för informationsteknologi MA00 Envariabelanalys 6 p Mikael Hindgren Tisdagen den 9 januari 08 05-670 Skrivtid: 9.00-.00 Inga jälpmedel. Fyll i omslaget

Läs mer

Laboration i Tunneltransport. Fredrik Olsen

Laboration i Tunneltransport. Fredrik Olsen Laboration i Tunneltransport Fredrik Olsen 9 maj 28 Syfte och Teori I den här laborationen fick vi möjlighet att studera elektrontunnling över enkla och dubbla barriärer. Teorin bakom är den som vi har

Läs mer

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2"# n. x j,

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2# n. x j, KOMIHÅG 18: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = # n x j, 1 med konstanterna! n = k m och!" n = c m. ------------------------------------------------------

Läs mer

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop

Läs mer

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.

Läs mer

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11 Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd

Läs mer

Lite kinetisk gasteori

Lite kinetisk gasteori Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Måndag den 4 januari 008, kl. 8.30-.30 i M-huset. Examinator:

Läs mer

Problem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik

Problem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik KTH -matematik Problem i matematik EPR & MAT Flervariabelanalys Problem inför KS.. Låt F(, y, z) + y 3z + och G(, y, z) 3 + y 3 4z +. Visa att i en omgivning av punkten (,, ) definieras genom ekvationerna

Läs mer

1. Beräkna och klassificera alla kritiska punkter till funktionen f(x, y) = 6xy 2 2x 3 3y 4 2. Antag att temperaturen T i en punkt (x, y, z) ges av

1. Beräkna och klassificera alla kritiska punkter till funktionen f(x, y) = 6xy 2 2x 3 3y 4 2. Antag att temperaturen T i en punkt (x, y, z) ges av ATM-Matematik Mikael Forsberg 74-41 1 För ingenjörs- och distansstudenter Flervariabelanalys ma1b 15 1 14 Skrivtid: 9:-14:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer