Matematik och kaffe i Bengtsfors den januari 2011

Storlek: px
Starta visningen från sidan:

Download "Matematik och kaffe i Bengtsfors den 11-12 januari 2011"

Transkript

1 Matematik och kaffe i Bengtsfors den januari 2011 I Bengtsfors har Sten och Elisabeth förstått vad ett trevligt, vänligt och vackert bemötande betyder för inlärning. Mattesmedjan har verkligen insett grunderna för en god pedagogik. Vi var sju välmotiverade utomhuspedagoger som anlände till den ombyggda metodistkyrkan för att få nya insikter om matematikens inspirerande värld. Bosse mådde inte riktigt bra och var tvungen att stanna hemma den här omgången. Efter den nybakade sockerkakan hade Claes förberett en matematisk startövning. Vi fick blunda och ta upp en liten sten ur en tygpåse. Stenen skulle vi tilldela en siffra mellan 0 och nio. Efter att vi tittat på den fick vi ändra på siffran om vi ville. Indelade i två lag skulle vi sedan bilda ett så stort tal som möjligt med siffrorna. Efter det, ett så litet tal som möjligt. Ett och samma lag vann båda gångerna. Stenarna kom från olika platser runtomkring i världen och vi fick dem av Claes som ett minne! Därefter var det dags för Sten att ta över scenen. Han började med att presentera vilka länder som dominerat den matematiska scenen under årtusendena. Tre tusen år f.kr. var Babylon centrum, ungefär det nuvarande Irak. Femhundra år senare var Egypten dominerande för att på 700-talet f.kr. lämna över stafettpinnen till Grekland. Pythagoras, Euklides och Archimedes är tre välbekanta matematiker därifrån. Efter Mohammed och islams intåg blev araberna herre på täppan tills Italien under renässansen på talen med Leonardo da Vinci i spetsen blev matematikens centrum. Under de två kommande århundradena klev Descartes Frankrike fram. På 1700-talet dök Newton upp i England och Gauss och Leibniz i Tyskland. Därefter klev den stora jätten USA in på banan för att på senare tid få konkurrens av Kina, Japan och Indien. En av dagens största matematiker är den engelskfödde Andrew Wiles (f -53) som 1995 kunde bevisa Fermats stora sats. En utomordentlig prestation. Efter den historiska genomgången ägnades tiden åt cirkeln och dess omkrets. Sten konstaterade att omkretsen oftast är längre än man tror (liksom midjan). Han hade en i plywood tillverkad cirkel med ett band som satt på plats med hjälp av små kardborrebitar. Se bild:

2 Andra försök gjordes med den gamla barnvagnen. Om det lilla hjulet snurrade fem varv, hur långt kom vagnen då? Salens längd räckte precis till! Därpå berättade Sten om en möjlig förklaring på varför Japan ligger så bra till i jämförelser med Sverige och våra elevers mattekunskaper. En metod man använder är att man går på djupet med problemlösningen. Ett tal/problem får ta en hel lektion att lösa och resonera omkring. Problemet presenteras och eleverna får fråga om talet så att det inte skall vara några oklarheter. Därefter får eleverna i smågrupper komma på en lösning. De olika lösningarna som eleverna sedan kommit fram till presenteras mot slutet av lektionen på en lång tavla och man diskuterar de olika förslagens för- och nackdelar. De japanska lärarna auskulterar mycket hos varandra och diskuterar hela tiden hur den optimala lektionen skall utföras. När geometri skall introduceras för eleverna rekommenderar Sten att man börjar i 3d. Det finns en hel rad med grundformer: Cylinder, kub, klot, kon, pyramid, rätblock, prisma, parallellepiped. Tar man av toppen på en kon heter den delen som är kvar stympad kon. En pyramid, cylinder och pyramid kan också vara stympade. Ett villkor för att en figur skall kallas prisma är att botten och lock är lika.

3 De olika formerna förhåller sig till varandra enligt följande: Därpå gav vi oss på ytor. Till dessa räknas: kvadrat, rektangel, triangel, cirkel, parallellogram, romb, parallelltrapets trapets(fyrhörning), ellips, hexagon och pentagon. För att få en korrekt förklaring till ett matematiskt uttryck tyckte Sten att vi skulle införskaffa det här lexikonet: Wahlström & Widstrands matematiklexikon En del av eftermiddagen ägna vi oss åt att rita kurvor över hur vi förflyttade oss i rum-tiden. Det är svårt att berätta om det med ord men det var en mycket intressant uppgift. På kvällen bjöd vår ledare Anders på en god måltid bestående av ugnsstekt lax. kokt potatis, sallad och en underbar sås. Efter laxen diskuterade vi ledarskap utifrån boken. Konsten att leda en fråga om timing, rytm och kommunikation. Det blev ett mycket bra samtal, där alla var aktiva och bidrog med olika infallsvinklar. En hel del rent konkreta problemlösningar kom upp. Ljudet i många skolmatsalar kan bli alldeles för högt. Några av oss hade provat att ha fem tysta minuter under början av

4 måltiden. Det hade slagit väl ut och ljudnivån dämpades oftast under hela måltiden. På Annikas skola började man matrasten med att promenera 700 meter. Det hade medfört betydligt lugnare måltider. Under tiden eleverna tar mat droppar de in några i taget och det blir aldrig stökigt då. Skol-Comet; Beröm det du vill ha fram. Med anda ord: Beröm de som sköter sig. Sättet är oslagbart enlig Annika. Som avslutning på kvällen visade Claes makalöst fina bilder från sin resa till Peru i höstas. Dag 2 Efter den sedvanliga havregrynsfrukosten och städningen var det dags för Claes att starta dagen med en kort ringdans som följdaktningen slutade med att vi stod i ring. Därefter skulle vi göra vågen ett par gånger genom att hålla upp våra, med vår granne hopknäppta, händer. Vi skulle också ta ner händerna i tur och ordning. Till slut i riktigt hög hastighet. Här gäller det dock att se upp så att man inte sliter av armen på grannen. När vi var uppvärmda fick vi stå stilla, med slutna ögon och hålla en kamrat i varje hand. Efter det skickade Claes en signal genom att trycka till lite i sin ena hand. Därefter skulle vi så snabbt som möjligt skicka signalen vidare till grannen. När trycket gått hela varvet runt och kommit tillbaka till Claes ropade han till. Sedan provade vi lite olika signaler bl.a. att skicka åt båda hållen samtidigt. Det var en rolig övning. Vår ledare Anders tipsade om att man kan prova att ha armarna i kors och skicka signaler på det sättet. Det gick förvånansvärt bra och man kom varandra riktig nära. Flickan har röda kinder Och på huvudet en cylinder. Sten började dagen med att visa oss en pärm med bilder på olika mer eller mindre surrealistiska bilder med en vers till, på olika matematiska begrepp. Det här är ett trix för att inlärningen skall gå bra och begreppen skall kommas ihåg. Det finns ett förhållande mellan volymerna på våra vanliga figurer som i varje fall inte jag kände till tidigare; Om en kon har volymen 1(bas och höjd lika) har ett klot med samma mått volymen 2, en cylinder 3 och slutligen en kub 4. Den sista, kubens volym, är inte exakt 4.

5 De sista timmarna innan lunchen fick vi en gedigen uppgift. Vi skulle i grupper om två eller tre rita in 14 byggnader i Bengtsfors centrum på ett A4-papper. Det gick dock över förväntan. Men när vi sedan jämförde den riktiga kartan med våra försök såg vi att vi hade haft lite svårt med hur de krökta gatorna uppförde sig. Hade vi bara fått en vecka till på oss hade det blivit i stort sätt perfekt trodde Sten. Sista delen av dagen ägna vi oss åt att titta närmare på några olika matematiska hjälpmedel. Tangram. Sju bitar vars yta tillsammans bildar en kvadrat. Det går att bygga en oändlig massa figurer med hjälp av dessa bitar. Beroende av hur uppgiften ges kan tangramet användas i alla åldrar. Det är bland det bästa som finns för att träna geometri, formsinne och logik. Geobräda. En platta med vanligen fem gånger fem spikar islagna. Det finns att köpa fabrikstillverkade. Med gummisnoddar kan man göra olika geometriska figurer. Även här kan problemen omformas till att passa alla åldrar. Fritt bygge på anslagstavla:

6 Här kan man ha en fast omkrets(snöre) och forma ett oändligt antal figurer. Pentomino: En figur som består av fem hopsatta kvadrater. Dessa kan sättas ihop till tolv olika figurer. Med hjälp av dessa tolv figurer kan man i likhet med tangramet göra ett oändligt antal nya figurer. En av Stens elever blev matematiker mycket på grund av dennes övningar med pentomino. Den sista tiden ägnades åt tallinjen. Det är ett mycket bra för att inte säga oumbärligt redskap för att reda ut talen och dess ordning. Här visar Sten exempel på tal som kan finnas på linjen: Under tallinjen på Whitboarden syns pentominens tolv figurer. För varje gång vi varit i Mattesmedjan i Bengtsfors blir vägen dit kortare. Undrar vilken matematisk formel som kan bevisa det. Vid pennan: Anders Martinsson Nästa!

Uppsala Universitet Instutionen för pedagogik, didaktik och utbildningsstudier Matematik 2, Ht 2014 Tilde Henriksson, Hannah Kling, Linn Kristell

Uppsala Universitet Instutionen för pedagogik, didaktik och utbildningsstudier Matematik 2, Ht 2014 Tilde Henriksson, Hannah Kling, Linn Kristell Del 1: Pedagogisk planering a) Vi har gjort två lektionsplaneringar med fokus på tvådimensionella geometriska figurer för årskurs 1-3. Utifrån det centrala innehållet i Lgr11 för årskurs 1-3 ska eleverna

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

Matematik Uppnående mål för år 6

Matematik Uppnående mål för år 6 Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

Under en forskningscirkel, som vi matematikutvecklare i Göteborg har

Under en forskningscirkel, som vi matematikutvecklare i Göteborg har Britt Holmberg Analysera mera i geometri Inom undervisningen i geometri behöver vi utmana elevernas nyfikenhet med frågeställningar och ge dem tid att undersöka geometriska objekt. Praktiskt arbete där

Läs mer

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. 1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd

Läs mer

Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v.

Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v. TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det nionde skolåret: Eleven skall ha förvärvat sådana kunskaper i matematik som behövs för att kunna beskriva och hantera situationer samt lösa

Läs mer

M=matte - Handledning

M=matte - Handledning Fingris Fingerräkning Grunden för matematik är taluppfattning. I detta spel parar du ihop tal med fingrarnas antal. Finns det fler fingrar än talet anger? Eller färre? Lika många? Det finns många frågor

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

Matematikvandring på Millesgården

Matematikvandring på Millesgården Matematikvandring på Millesgården Kort beskrivning Detta är en matematikvandring på Millesgården där läraren går runt tillsammans med klassen och gör gemensamma stopp där eleverna löser olika matematikuppgifter

Läs mer

Geometri. G. Diagnoserna i området avser att kartlägga om eleverna behärskar grundläggande geometriska begrepp och metoder.

Geometri. G. Diagnoserna i området avser att kartlägga om eleverna behärskar grundläggande geometriska begrepp och metoder. . G Diagnoserna i området avser att kartlägga om eleverna behärskar grundläggande geometriska begrepp och metoder. Området består av följande tre (fyra) delområden: MGF Förberedande mätning och geometri

Läs mer

Kommunövergripande Mål i matematik, åk 1-9

Kommunövergripande Mål i matematik, åk 1-9 Kommunövergripande Mål i matematik, åk 1-9 Många skolor har lagt ner mycket tid på att omforma de mål som anges på nationell nivå till undervisningsmål på den egna skolan. Tanken är att vi nu ska kunna

Läs mer

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK KRAVNIVÅER Åtvidabergs kommuns grundskolor MATEMATIK Reviderade april 2009 Förord Välkommen att ta del av Åtvidabergs kommuns kravnivåer och bedömningskriterier för grundskolan. Materialet har tagits fram

Läs mer

Fira Pi-dagen med Liber!

Fira Pi-dagen med Liber! Fira Pi-dagen med Liber! Specialuppdrag från Uppdrag: Matte o Kul-diagram o Geometri med färg UPPDRAG: MATTE Mattedetektiverna Mattespanarna Hej! Den 14 mars är det Pi-dagen (3.14). Det är värt att uppmärksammas

Läs mer

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Matematik Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven

Läs mer

LENNART SKOOGH. B. Låt eleverna ställa upp etappmål. A. Varje lärare är en matematiklärare. C. Kontinuitet i färdighetsträningen

LENNART SKOOGH. B. Låt eleverna ställa upp etappmål. A. Varje lärare är en matematiklärare. C. Kontinuitet i färdighetsträningen LENNART SKOOGH Det finns ingen kungsväg då det gäller att skaffa sig grundläggande färdigheter i matematik. Det behövs hårt och målmedvetet arbete. Men och det är ett viktigt men detta arbete kan göras

Läs mer

Veckomatte åk 4 med 10 moment

Veckomatte åk 4 med 10 moment Veckomatte åk 4 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik 3 Grundläggande struktur i Veckomatte - Åk 4 4 Veckomatte och det centrala innehållet i

Läs mer

Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -

Kap 1: Aritmetik - Positiva tal -  -  -  -  - -  -  -  -  - År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel

Läs mer

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna

Läs mer

GRUPP 1 JETLINE. Åk, känn efter och undersök: a) Hur låter det när tåget dras uppför första backen? Vad beror det på? (Tips finns vid teknikbordet)

GRUPP 1 JETLINE. Åk, känn efter och undersök: a) Hur låter det när tåget dras uppför första backen? Vad beror det på? (Tips finns vid teknikbordet) GRUPP 1 JETLINE a) Hur låter det när tåget dras uppför första backen? Vad beror det på? (Tips finns vid teknikbordet) b) Var under turen känner du dig tyngst? Lättast? Spelar det någon roll var i tåget

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Bedömning. Formativ bedömning - en väg till bättre lärande. Formativ bedömning. Formativ bedömning. Visible teaching - visible learning

Bedömning. Formativ bedömning - en väg till bättre lärande. Formativ bedömning. Formativ bedömning. Visible teaching - visible learning Formativ bedömning - en väg till bättre lärande Inger Ridderlind Stina Hallén www.prim-gruppen.se Bedömning Bedömning av kunskap - summativ Bedömning för kunskap - formativ Från att mäta kunskap till pedagogisk

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

fredag den 11 april 2014 POOL BYGGE

fredag den 11 april 2014 POOL BYGGE POOL BYGGE KLADD Såhär ser min kladd ut: På min kladd så bestämde jag mig för vilken form poolen skulle ha och ritade ut den. På min kladd har jag även skrivit ut måtten som min pool skulle vara i. Proportionerna

Läs mer

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK RÖDA TRÅDEN MATEMATIK F-KLASS ÅK 5 F-KLASS TALUPPFATTNING ALGEBRA Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas Matematiska likheter och likhetstecknets

Läs mer

Interaktiva skrivtavlor en möjlighet till ökad lust och lärande i matematik?

Interaktiva skrivtavlor en möjlighet till ökad lust och lärande i matematik? Patrik Gustafsson Interaktiva skrivtavlor en möjlighet till ökad lust och lärande i matematik? Interaktiva skrivtavlor är på väg mot ett genombrott i Sverige, men leder användandet till en ökad lust och

Läs mer

Konkretisering av matematiska begrepp i skolan

Konkretisering av matematiska begrepp i skolan Karin Kairavuo Konkretisering av matematiska begrepp i skolan Den kinesiska författaren och nobelpristagaren i litteratur, Gao Xingjian, använder en spännande metod i sitt arbete. Han talar in sina blivande

Läs mer

LEKTION PÅ GRÖNA LUND, GRUPP 1

LEKTION PÅ GRÖNA LUND, GRUPP 1 LEKTION PÅ GRÖNA LUND, GRUPP 1 JETLINE Tåget är 9,2 m långt. Hur lång tid tar det för tåget att passera en stolpe? Hur fort går tåget? Var under turen tror du att känner man sig tyngst? Lättast? Två gånger

Läs mer

Mål som eleverna skall ha uppnått i slutet av år 5 enligt nationella kursplanen

Mål som eleverna skall ha uppnått i slutet av år 5 enligt nationella kursplanen MATEMATIK Mål att sträva mot enligt nationella kursplanen Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den

Läs mer

EXTRA UPPGIFTER I C++ PROGRAMMERING-A

EXTRA UPPGIFTER I C++ PROGRAMMERING-A EXTRA UPPGIFTER I C++ PROGRAMMERING-A Uppgifterna är ej sorterade efter svårighetsgrad 1. Gör ett program som kan beräkna arean och omkretsen av en cirkel om användaren (du) matar in cirkelns radie. Skapa

Läs mer

Lektion på Gröna Lund, Grupp 1

Lektion på Gröna Lund, Grupp 1 Lektion på Gröna Lund, Grupp 1 Jetline Tåget är 9,2m långt. Hur lång tid tar det för tåget att passera en stolpe? Hur fort går tåget? Var under turen tror du att känner man sig tyngst? Lättast? Om du har

Läs mer

Träningsguide för barn och ungdom inom IK Huge Fotboll

Träningsguide för barn och ungdom inom IK Huge Fotboll Träningsguide för barn och ungdom inom IK Huge Fotboll Detta dokument är en bilaga till Riktlinjer för träning och beskriver hur ett träningsprogram kan läggas upp, vad man ska tänka på under övningarna

Läs mer

Leonardo da Vinci och människokroppen

Leonardo da Vinci och människokroppen Leonardo da Vinci och människokroppen När vi läser om renässansen, är det självklart att studera Leonardo da Vinci eftersom han behärskade så många områden och kom att prägla mycket av det som vi referar

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

Lutande torn och kluriga konster!

Lutande torn och kluriga konster! Lutande torn och kluriga konster! Aktiviteter för barn under Vetenskapsfestivalens skolprogram 2001 Innehåll 1 Bygga lutande torn som inte faller 2 2 Om konsten att vinna betingat godis i spel 5 3 Den

Läs mer

Matematikundervisningen har under

Matematikundervisningen har under bengt aspvall & eva pettersson Från datorernas värld Hur kan vi stimulera elever i matematik, och hur kan vi genom matematiken visa delar av datorns funktioner? Författarna visar hur man kan introducera

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Människans möte med den mänskliga kroppen. Ett pedagogiskt studiematerial

Människans möte med den mänskliga kroppen. Ett pedagogiskt studiematerial Människans möte med den mänskliga kroppen Ett pedagogiskt studiematerial Inledning I dag så påverkas vi medvetet och omedvetet av yttre ideal. Ofta så glömmer vi bort att ställa frågan till oss själva

Läs mer

Lokal planering år 1-3

Lokal planering år 1-3 Lokal planering år 1-3 MÅL FÖR ÄMNET HISTORIA Åk 1: Livet förr och nu. Åk 2: Berättelser om Gudar och hjältar inom nordisk och antik mytologi. Åk 3: Hemortens och Skånes historia. Forntiden. MÅL FÖR ÄMNET

Läs mer

Ledarskapsutbildning Instruktörer 2012-2013

Ledarskapsutbildning Instruktörer 2012-2013 Ledarskapsutbildning Instruktörer 2012-2013 Målet med utbildningen Få en inblick i vad ledarskap handlar om Förstå situationer där du behöver använda ditt ledarskap Förstå vad som krävs för att utöva ledarskap

Läs mer

SKOGLIGA TILLÄMPNINGAR

SKOGLIGA TILLÄMPNINGAR STUDIEAVSNITT 3 SKOGLIGA TILLÄMPNINGAR I detta avsnitt ska vi titta på några av de skogliga tillämpningar på geometri som finns. SKOGSKARTAN EN MODELL AV VERKLIGHETEN Arbetar man i skogen klarar man sig

Läs mer

Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet

Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet AB Vår LP (8766) Flik 0 Förtest (Lev vc).qxd 00-0-6 :5 Sida Förtest För alla lärare är det viktigt att skaffa sig en god bild av elevens kunskaper för att veta vad eleven behöver för att gå vidare i sin

Läs mer

Tre saker du behöver. Susanne Jönsson. www.sj-school.se

Tre saker du behöver. Susanne Jönsson. www.sj-school.se Steg 1 Grunden 0 Tre saker du behöver veta Susanne Jönsson www.sj-school.se 1 Steg 1 Grunden Kärleken till Dig. Vad har kärlek med saken att göra? De flesta har svårt att förstå varför det är viktigt att

Läs mer

Matematik A Testa dina kunskaper!

Matematik A Testa dina kunskaper! Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer

Läs mer

MATEMATIK. Läroämnets uppdrag

MATEMATIK. Läroämnets uppdrag MATEMATIK Läroämnets uppdrag Syftet med undervisning i matematik är att utveckla ett logiskt, exakt och kreativt matematisk tänkande hos eleven. Undervisningen skapar en grund för förståelsen av matematiska

Läs mer

Matematik klass 2 Problemlösning nummer 2

Matematik klass 2 Problemlösning nummer 2 Matematik klass 2 Problemlösning nummer 2 Anneli Weiland Matematik åk 2 Problemlösning 1 Tor hade sjutton gamla bilar i sitt rum. Nu fick han tre nya. Hur många har han då? 17+3=20 Tor har 20 bilar nu.

Läs mer

ANDNINGSÖVNINGAR. OBS! Vid menstruation eller om du är gravid ingen eldandning, inga rotlås.

ANDNINGSÖVNINGAR. OBS! Vid menstruation eller om du är gravid ingen eldandning, inga rotlås. ANDNINGSÖVNINGAR Andningen är grundläggande i yogan. Det medvetna djupa andetaget är den röda tråden, den centrala komponenten, runt vilken de olika övningarna byggs upp.vi börjar detta pass med två andningstekniker.

Läs mer

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter. M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per

Läs mer

Nya vägar till språk och kunskap i matematik och NO

Nya vägar till språk och kunskap i matematik och NO Nya vägar till språk och kunskap i matematik och NO Per Johansson Lärare i Ma/Idh/NO Handledare matematiklyftet Navets skola - Örebro kommun Navets språkklass Navet språkklass blogg Språk och kunskap

Läs mer

räkna med vasa övningar att genomföra i vasamuseet

räkna med vasa övningar att genomföra i vasamuseet räkna med vasa övningar att genomföra i vasamuseet lärarhandledning 2 (av 2) övningar att genomföra i vasamuseet Denna handledning riktar sig till läraren som i sin tur muntligt instruerar sina elever.

Läs mer

Kängurutävlingen Matematikens hopp

Kängurutävlingen Matematikens hopp Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt

Läs mer

Matte på riktigt! Specialuppdrag från Uppdrag: Matte. o Matematikens ABC o Hur många ryms i en dinosauriemage? o Massor av suddiga tal

Matte på riktigt! Specialuppdrag från Uppdrag: Matte. o Matematikens ABC o Hur många ryms i en dinosauriemage? o Massor av suddiga tal Matte på riktigt! Specialuppdrag från Uppdrag: Matte o Matematikens ABC o Hur många ryms i en dinosauriemage? o Massor av suddiga tal uppdrag: matte Mattedetektiverna Mattespanarna Hej! I vårt nya grundläromedel

Läs mer

Känguru 2014 Student sida 1 / 8 (gymnasiet åk 2 och 3)

Känguru 2014 Student sida 1 / 8 (gymnasiet åk 2 och 3) Känguru 2014 Student sida 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal.

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2011. Anvisningar Provtid

Läs mer

Autismspektrumtillstånd AST

Autismspektrumtillstånd AST Autismspektrumtillstånd AST Malin Sunesson, specialpedagog Resursgrupp Au4sm malin.sunesson@orebro.se Centralt skolstöd orebro.se DSM-5 Autismspektrumtillstånd Autistiskt syndrom Desintegrativ störning

Läs mer

Om serien Ramp om matematik

Om serien Ramp om matematik Om serien AV-nummer: 31430tv 1 6 Alla använder vi matematik varje dag utan att ens kanske tänka på det. Och då handlar det inte bara om att få rätt tillbaka i butiken eller att betala bussbiljetten. Matte

Läs mer

Du är klok som en bok, Lina!

Du är klok som en bok, Lina! Du är klok som en bok, Lina! Den här boken handlar om hur det är när man har svårt att vara uppmärksam och har svårt att koncentrera sig. Man kan ha svårt med uppmärksamheten och koncentrationen, men på

Läs mer

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10 Namn: Hela och halva tusental till 00 000 Addera och subtrahera. 000+ 000= 000 000+ 00 = 00 000-000= 000 000-00 = 00 Skriv talen i fallande ordningsföljd. 000 0 00 0 00 0 00 00 0 000 0 00 0 00 0 00 0 00

Läs mer

En 34 veckors onlinereträtt i det dagliga livet. Vägledning vecka 2

En 34 veckors onlinereträtt i det dagliga livet. Vägledning vecka 2 i En 34 veckors onlinereträtt i det dagliga livet Vägledning vecka 2 Vägledning: Vi tittar närmare på våra berättelser Vår historia från djupet När vi granskade vårt livs historia i fotoalbumet förra veckan,

Läs mer

Förstå tal i bråkform

Förstå tal i bråkform Förstå tal i bråkform Förstå tal i bråkform Erfarenheter i förskoleålder och sedan? Kursplan 2008 Skolan ska i sin undervisning sträva efter att eleven inser värdet av och använder matematikens uttrycksformer

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg Tema: Pythagoras sats Linnéa Utterström & Malin Öberg Innehåll: Introduktion till Pythagoras sats! 3 Pythagoras sats! 4 Variabler! 5 Potenser! 5 Att komma tillbaka till ursprunget! 7 Vi bevisar Pythagoras

Läs mer

ÄVENTYR I TROLLSKOGEN KONSTVERKET

ÄVENTYR I TROLLSKOGEN KONSTVERKET ÄVENTYR I TROLLSKOGEN KONSTVERKET ÄVENTYR I TROLLSKOGEN 1. Trollen är skickliga på att ta sig över hinder i skogen. Hur kan ni ta er över en sten, en stor gren eller ett omkullfallet träd? 2. Trollen tycker

Läs mer

Matematik Åk 3 Tal och räkning

Matematik Åk 3 Tal och räkning FA C I T Lgr 11 Matematik Åk 3 Tal och räkning Catherine Bergman Maria Österlund Kan du använda och beskriva tal? Hur långt kan du räkna framåt? Jag kan räkna till: Hur långt kan du räkna bakåt? Jag kan

Läs mer

Högskoleprovet. Block 4. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 4. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 4 2009-10-24 Högskoleprovet Svarshäfte nr. DELPROV 7 NOGa Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

Matematik 1A 4 Potenser

Matematik 1A 4 Potenser Matematik 1A 4 Potenser förklara begrepp t ex. potens, bas, exponent och grundpotensform (Nivå E C) tolka, skriva och räkna med tal i grundpotensform (Nivå E A) helst kunna redogöra för räkneregler för

Läs mer

KARTLÄGGNING I MATEMATIK

KARTLÄGGNING I MATEMATIK KARTLÄGGNING I MATEMATIK Datum Namn Födelseår Uppväxt i (land) Modersmål Antal månader i Sverige Förord För personal som arbetar i grundskolan är behovet av att kunna kartlägga nyanlända elevers ämneskunskaper

Läs mer

Målet med undervisningen är att eleverna ges förutsättningar att:

Målet med undervisningen är att eleverna ges förutsättningar att: Matematik Målet med undervisningen är att eleverna ges förutsättningar att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska

Läs mer

Aktiviteter förskolan

Aktiviteter förskolan Aktiviteter förskolan Äggkartongsuppdrag Du behöver: Äggkartonger Typ av aktivitet: par Tränar följande: - att bilda par - hälften och dubbelt - geometriska former och talföljder - jämförelseord - antal

Läs mer

1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik

1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik 1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik Beskriver några projekt, laborationer och alternativa arbetsformer som gett goda resultat. Diskussion om tillvägagångssätt

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Vilka tal pekar pilarna på? a) b) Skriv talen med siffror 2 a) trehundra sju b) femtontusen fyrtiofem c) tvåhundrafemtusen tre 3 a) fyra tiondelar b) 65 hundradelar c) 15 tiondelar

Läs mer

Pedagogisk planering för förskoleklassen på Enskede byskola

Pedagogisk planering för förskoleklassen på Enskede byskola Pedagogisk planering för förskoleklassen på Enskede byskola SKOLANS UPPDRAG Skolans uppdrag är att främja lärande där individen stimuleras att inhämta och utveckla kunskaper och värden (LGR11 s9) Syftet

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Välkommen till Borgar!

Välkommen till Borgar! Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter

Läs mer

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Är talet a) 5 ett heltal b) 9 ett naturligt tal c) π ett rationellt tal d) 5 ett reellt tal 6 2 Rita av figuren och placera in talen rätt talmängd. naturliga tal hela tal rationella

Läs mer

Öppna frågor (ur Good questions for math teaching)

Öppna frågor (ur Good questions for math teaching) Här är öppna frågor som jag hämtat från boken Good questions for math teaching som jag läste i våras när jag gick Lärarlyftet. Frågorna är sorterade efter ämne/tema och förhoppningsvis kan fler ha nytta

Läs mer

Algebra - uttryck och ekvationer

Algebra - uttryck och ekvationer Förenkla: Tänk så här: Du går till affären och köper 3 äpplen och 2 bananer och lösgodis för 7 kr. Din kompis köper 1 äpple och 3 bananer och lösgodis för 10 kr. Hur många äpplen och hur många bananer

Läs mer

Värderingsövningar. Avdelningsmöte. Innehåll. Material. Lek- Antingen eller

Värderingsövningar. Avdelningsmöte. Innehåll. Material. Lek- Antingen eller Avdelningsmöte Värderingsövningar Under detta möte får scouterna möjlighet att sätta sig in i andra människors situationer från olika delar av världen och möta sin fördomar och tankar om hur vi lever.

Läs mer

ROCKJET GRUPP A (GY) FRITT FALL

ROCKJET GRUPP A (GY) FRITT FALL GRUPP A (GY) FRITT FALL a) Hur långt är det till horisonten om man är 80 m.ö.h.? Titta på en karta i förväg och försök räkna ut hur långt man borde kunna se åt olika håll när man sitter högst upp. b) Titta

Läs mer

Pluritoriska upplösningar av kvotsingulariteter

Pluritoriska upplösningar av kvotsingulariteter OCHALMERS TEKNISKA H GSKOLA GOTEBORG Pluritoriska upplösningar av kvotsingulariteter Den impopulärovetenskapliga versionen Samuel Bengmark Department of Mathematics Göteborg 1998 Populärvetenskaplig version

Läs mer

Grundläggande simning

Grundläggande simning Grundläggande simning En del av charmen med simning är den variation den erbjuder. I alla fyra simsätten gäller det att driva sig själv genom vattnet så effektivt som möjligt. Då är det inte överraskande

Läs mer

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60. Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

Barn och matematik. Hallonet. Förskolor Syd Munkedals kommun Annelie Carstensen Maria Herdebrant Elisabeth Söderblom Namn Namn Namn Namn

Barn och matematik. Hallonet. Förskolor Syd Munkedals kommun Annelie Carstensen Maria Herdebrant Elisabeth Söderblom Namn Namn Namn Namn Barn och matematik Hallonet 2014 Förskolor Syd Munkedals kommun Annelie Carstensen Maria Herdebrant Elisabeth Söderblom Namn Namn Namn Namn Innehåll Grundfakta och förutsättningar... 3 Kartläggning av

Läs mer

STRÄVANSMÅL VISÄTTRASKOLAN - FÖRSKOLEKLASS

STRÄVANSMÅL VISÄTTRASKOLAN - FÖRSKOLEKLASS STRÄVANSMÅL VISÄTTRASKOLAN - FÖRSKOLEKLASS Svenska - Språkutvecklande Vi arbetar med slingerpedagogik och Bornholms modellen vägen till läsning. Detta med utgångspunkt från rim, meningar, ord, stavelser

Läs mer

Geometri. Kapitel 8 Geometri. Borggården sidan 66 Diagnos sidan 79 Rustkammaren sidan 80 Tornet sidan 84 Sammanfattning sidan 89 Utmaningen sidan 90

Geometri. Kapitel 8 Geometri. Borggården sidan 66 Diagnos sidan 79 Rustkammaren sidan 80 Tornet sidan 84 Sammanfattning sidan 89 Utmaningen sidan 90 Geometri Kapitel 8 Geometri I detta kapitel möter eleverna vinkelbegreppet och får öva på att avgöra om en vinkel är rät, spetsig eller trubbig. De får också öva på att namnge olika månghörningar och be

Läs mer

barnhemmet i muang mai måndag 16 juni - måndag 14 juli

barnhemmet i muang mai måndag 16 juni - måndag 14 juli barnhemmet i muang mai måndag 16 juni - måndag 14 juli Det är lugnt på Phuket när det är sommar i Europa, i alla fall mycket lugnare. Men hos oss är allt som vanligt fast med lite mindre besök. Och som

Läs mer

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna. REPETITION Hur mcket är a) 9 b) 00 0 c) 00 På en karta i skala : 0 000 är det, cm mellan två små sjöar. Hur långt är det i verkligheten? Grafen visar hur långt en bil hinner de se första sekunderna efter

Läs mer

Du är klok som en bok, Lina! Janssen-Cilag AB

Du är klok som en bok, Lina! Janssen-Cilag AB Du är klok som en bok, Lina! Janssen-Cilag AB Den här boken handlar om hur det är när man har svårt att vara uppmärksam och har svårt att koncentrera sig. Man kan ha svårt med uppmärksamheten och koncentrationen,

Läs mer

INTRODUKTION 3 INOMHUS LEKAR 4. Kartritar leken 4. Kartteckenmemory 4. Kopieringsstafett 5. Pusselstafett 5. Ja & Nej stafett 6 UTOMHUSLEKAR 7

INTRODUKTION 3 INOMHUS LEKAR 4. Kartritar leken 4. Kartteckenmemory 4. Kopieringsstafett 5. Pusselstafett 5. Ja & Nej stafett 6 UTOMHUSLEKAR 7 INNEHÅLL INTRODUKTION 3 INOMHUS LEKAR 4 Kartritar leken 4 Kartteckenmemory 4 Kopieringsstafett 5 Pusselstafett 5 Ja & Nej stafett 6 UTOMHUSLEKAR 7 Emit-stafett 7 Trollskogen 7 Kartan 8 Karttecken 8 SKATTJAKTEN

Läs mer

Uråldrig kunskap för ett nytt arbetsliv

Uråldrig kunskap för ett nytt arbetsliv Kapitel 1 Uråldrig kunskap för ett nytt arbetsliv Enligt legenden levde mänskligheten för många tusen år sedan i hälsa och lycka. Men efterhand som årtusendena gick förbi så började sjukdomar och olycka

Läs mer

Intervjusvar Bilaga 2

Intervjusvar Bilaga 2 49 Intervjusvar Bilaga 2 Fråga nummer 1: Vad säger ordet motivation dig? Motiverade elever Omotiverade elever (gäller även de följande frågorna) (gäller även de följande frågorna) Att man ska vilja saker,

Läs mer

En sann berättelse om utbrändhet

En sann berättelse om utbrändhet En sann berättelse om utbrändhet Marie är 31 år, har man och en hund. Bor i Stockholm och arbetar som webbredaktör på Företagarnas Riksorganisation (FR). Där ansvarar hon för hemsidor, intranät och internkommunikationen

Läs mer